• Algebraic and Geometric Methods in Engineering and Physics: J. Mourão, J. Natário and J.P. Nunes 2020 Course Notes
  • An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity: L. Godinho, J. Natario 1984 Springer
  • Concrete abstract algebra. From numbers to Gröbner basis: N. Lauritzen 2003 Cambridge Univ Press
  • Groups and Symmetries. From Finite Groups to Lie Groups: : Y. Kosmann-Schwarzbach 2010 Springer
  • Homogeneous relativistic cosmologies: M. Ryan and L. Shepley 1975 Princeton Univ Press
  • Introduction to Applied Algebraic Topology: T. Needham 2019 Course notes
  • Lie Groups, Lie Algebras, and Representations An Elementary Introduction: B. Hall 2015 Springer
  • Optimal Analysis of Structures by Concepts of Symmetry and Regularity: A. Kaveh 2013 Springer
  • Persistent homology – a survey: H. Edelsbrunner and J. Harer 2008 Contemporarry Math
  • Representation Theory of Finite Groups. An Introductory Approach: B. Steinberg 2012 Springer


Não foi definida bibliografia secundária