• An introduction to topological data analysis: fundamental and practical aspects for data scientists: F. Chazal, B. Michel arXiv:1710.040119.
  • Semisimple Lie Algebras and Their Representations: R. N. Cahn 1984 Benjamin Cummings, Menlo Park, USA
  • An Introduction to Riemannian Geometry with Applications to Mechanics and Relativity: L. Godinho, J. Natario 1984 Springer
  • Algebraic aspects of combinatorics: N. Koblitz 1999 Springer
  • Riemannian geometry: P. Petersen 2006 Springer
  • Grand Unified Theories: G. G. Ross 2003 Frontiers in Physics
  • Geometric fundamentals of robotics: J.M. Selig 2005 Springer
  • Topology and data Bull: G. Carlsson 2009 AMS, 255-308


  • Topology and data Bull: G. Carlsson 2009 AMS, 255-308
  • Persistent homology – a survey: H. Edelsbrunner and J. Harer 2008 Contemporarry Math
  • Homological algebra and data: R. Ghrist AS/Park City Math Series
  • Barcodes: The_persistent topology of data Bull: R. Ghrist 2008 AMS 61-75
  • Geometrical and topological approaches to Big Data, Future Generation: V. Snášel etal 2017 Future Generation Computer Systems 67, 286–296
  • mperfect symmetry: A new approach to structural optima via group representation theory: P.L. Várkonyi, G. Domokos 2007 International Journal of Solids and Structures 44, 4723–4741
  • Group-theoretic insights on the vibration of symmetric structures in engineering: A. Zingoni Phil Trans of the Royal Soc, Phil. Trans. R. Soc. A 372: 20120037