Information and Communication Theory: First Mini-Test

October 5, 2022
Name: \qquad Number: \qquad
Duration: 45 minutes. Part I scores: correct answer $=3 / 2$ point; wrong answer $=-3 / 4$ points.

Useful facts: $\log _{a} b=\left(\log _{c} b\right) /\left(\log _{c} a\right) ; \log _{2} 3 \simeq 1.585$. Unless indicated otherwise, all logarithms are base- 2 .

Part I

1. Let $X, Y, Z \in\{1,2, \ldots, 6\}$ be three random variables representing the outcome of tossing three independent fair dice; then,
a) $H(X, Y, Z)<3+3 \log _{2}(3)$ bits/symbol;
b) $H(X, Y, Z)=3+3 \log _{2}(3)$ bits $/$ symbol;
c) $H(X, Y, Z)>3+3 \log _{2}(3)$ bits/symbol.

Explanation: X, Y, Z are independent, and each of them has uniform distribution, thus

$$
H(X, Y, Z)=H(X)+H(Y)+H(Z)=3 \log _{2} 6=3\left(\log _{2} 3+\log _{2} 2\right)=3+3 \log _{2} 3 \text { bits } / \text { symbol }
$$

2. Let $X, Y, Z \in\{1,2, \ldots, 6\}$ be the three random variables defined in question 1 and $A=X+Y+Z$; then,
a) $H(A)<H(X, Y, Z)$ bits/symbol;
b) $H(A)=H(X, Y, Z)$ bits $/$ symbol;
c) $H(A)>H(X, Y, Z)$ bits/symbol.

Explanation: A is given by a non-injective function of (X, Y, Z) (that is, knowing A is not sufficient to know $(X, Y, Z))$, thus its entropy is strictly smaller than that of X, Y, Z.
3. Let $X, Y, Z \in\{1,2, \ldots, 6\}$ be the three random variables defined in question 1 and A the one defined in question 2. Also, let $B=X+Y$ and $C=X-Y$. Then
a) $H(A, B, C)<H(X, Y, Z)$ bits/symbol;
b) $H(A, B, C)=H(X, Y, Z)$ bits/symbol;
c) $H(A, B, C)>H(X, Y, Z)$ bits/symbol.

Explanation: (A, B, C) is given by an injective function of (X, Y, Z); notice that if we know (A, B, C), we can solve for (X, Y, Z). Consequently, $H(A, B, C)=H(X, Y, Z)$.
4. Let B and C be as defined in question 3 . Then
a) $I(B, C)=0 \mathrm{bits} / \mathrm{symbol}$;
b) $I(B, C)=H(B)$ bits/symbol;
c) none of the previous answers.

Explanation: B and C are not independent; for example, if $B=12$, we known that $B=C=6$, thus $C=0$. Consequently, $I(B ; C) \neq 0$. Also, B is not a deterministic function of C; for example, if $C=4$, we can have $B=8$ (if $X=6$ and $Y=2$) or $B=6$ (if $X=5$ and $Y=1$). Consequently, $I(B ; C) \neq H(B)$.
5. Consider a stationary time-invariant Markov source $X=\left(X_{1}, \ldots, X_{t}, \ldots\right)$, where $X_{t} \in\{1,2,3\}$, with transition matrix

$$
\mathbf{P}=\left[\begin{array}{ccc}
0.2 & 0.3 & 0.5 \\
0.2 & 0.3+\alpha & 0.5-\alpha \\
0.2 & 0.5-\alpha & 0.3+\alpha
\end{array}\right]
$$

where $\alpha \in[0,0.5]$ is a parameter. Then,
a) this source is not memoryless for any value of α;
b) this source is memoryless for any value of α;
a) none of the previous answers.

Explanation: in a memoryless source, all rows of the transition matrix are equal. To have the second elements of rows 1 and 2 equal, we need $\alpha=0$, but in that case the second element of the third row is 0.5 .
6. Consider a stationary time-invariant Markov source $Y=\left(Y_{1}, \ldots, Y_{t}, \ldots\right)$, where $Y_{t} \in\{1,2,3\}$, with transition matrix

$$
\mathbf{P}=\left[\begin{array}{ccc}
0.5 & 0.2 & 0.3 \\
0.3+\beta & 0.5 & 0.2-\beta \\
0.2-\beta & 0.5 & 0.3+\beta
\end{array}\right]
$$

where $\beta \in[0,0.2]$ is a parameter. Let $C=H(0.2,0.3,0.5)$ be entropy of the probability distribution $(0.2,0.3,0.5)$. Then, the conditional entropy rate of this source satisfies
a) $H^{\prime}(Y) \leq C$, for any value of β;
b) $H^{\prime}(Y)=C$, for any value of β;
c) $H^{\prime}(Y) \geq C$, for any value of β;

Explanation: $H^{\prime}(Y)$ is the weighted average of the entropies of the three rows of the matrix. Since α is positive, $H(0.2-\beta, 0.3+\beta, 0.5) \leq H(0.2,0.3,0.5)$, because increasing β leads to a more concentrated distribution.
7. Consider the source $X \in\{a, b, c, d\}$, with probabilities satisfying $\mathbb{P}[X=a]>\mathbb{P}[X=b]>\mathbb{P}[X=c]>\mathbb{P}[X=d]$. The binary code $\{C(a)=0, C(b)=10, C(c)=110, C(d)=111\}$
a) is optimal for this source;
b) may or not be optimal for this source, depending on the values of the probabilities;
c) is not optimal for this source.

Explanation: for example, for $\mathbb{P}[X=a]=0.27, \mathbb{P}[X=b]=0.26, \mathbb{P}[X=c]=0.24$, and $\mathbb{P}[X=d]=0.23$, a code with all words having two bits is better. But for $\mathbb{P}[X=a]=0.5, \mathbb{P}[X=b]=0.25, \mathbb{P}[X=c]=0.125, \mathbb{P}[X=d]=$ 0.125 , the given code is optimal, even ideal.
8. Consider a source $Z \in\{1, \ldots, N\}$, with uniform distribution (all symbols have the same probability). Then,
a) in an optimal binary code for this source, all codewords have the same length;
b) an optimal binary code for Z has expected length equal to the entropy: $H(Z)=\log N$ bits/symbol;
c) none of the previous questions.

Explanation: for example, for $N=3$, the optimal binary code has two 2-bit words and one 1-bit word. Also for $N=1$, the optimal code has $L(C)=(1+2+2) / 3=5 / 3$ bits/symbol, while $H(X)=\log _{2} 3$ bits/symbol.

Part II

1. Let $A \in\{1,2,3,4,5,6\}$ be the outcome of a fair die and $B \in\{0,1\}$ a binary random variable corresponding to a fair coin toss. Finally, let $X=A+B$. Compute $H(X), H(X \mid A), H(X \mid B), H(A \mid X), H(B \mid X), I(X ; A)$), and $I(X ; B)$.
Solution. Probability distribution of X :

x	1	2	3	4	5	6	7
$f_{X}(x)$	$f_{A}(1) f_{B}(0)=\frac{1}{12}$	$f_{A}(2) f_{B}(0)+f_{A}(1) f_{B}(1)=\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$f_{A}(6) f_{B}(1)=\frac{1}{12}$

Entropies:

$$
\begin{gathered}
H(X)=-\frac{2}{12} \log _{2} \frac{1}{12}-\frac{5}{6} \log _{2} \frac{1}{6}=\log _{2} 12-\frac{5}{6}=\frac{7}{6}+\log _{2} 3 \mathrm{bits} / \mathrm{symbol} \\
H(X \mid A)=H(B \mid A)=H(B)=1 \mathrm{bit} / \mathrm{symbol} \\
H(X \mid B)=H(A \mid B)=H(A)=\log _{2} 6=1+\log _{2} 3 \mathrm{bit} / \mathrm{symbol} \\
H(A \mid X)=H(X \mid A)+H(A)-H(X)=1+1+\log _{2} 3-\frac{7}{6}-\log _{2} 3=\frac{5}{6} \mathrm{bit} / \mathrm{symbol} \\
H(B \mid X)=H(X \mid B)+H(B)-H(X)=1+\log _{2} 3+1-\frac{7}{6}-\log _{2} 3=\frac{5}{6} \mathrm{bit} / \mathrm{symbol} \\
I(X ; A)=H(X)-H(X \mid A)=\frac{7}{6}+\log _{2} 3-1=\frac{1}{6}+\log _{2} 3 \mathrm{bit} / \mathrm{symbol} \\
I(X ; B)=H(X)-H(X \mid B)=\frac{7}{6}+\log _{2} 3-1-\log _{2} 3=\frac{1}{6} \text { bit/symbol}
\end{gathered}
$$

2. Consider the source A defined above; obtain the Shannon-Fano code for this source and compute its expected length. Is it optimal? Why?
Solution. Since the distribution of A is uniform, $f_{A}(a)=1 / 6$, for all $a \in\{1, \ldots, 6\}$. Since

$$
\left\lceil-\log _{2} \frac{1}{6}\right\rceil=\left\lceil 1+\log _{2} 3\right\rceil=\lceil 2.585 \ldots\rceil=3
$$

the Shannon-Fano code uses 6 words of 3 bits, such that no word is a prefix of another word. A possible code is

x	1	2	3	4	5	6
$C(x)$	000	001	010	011	100	101

The expected length is obviously $L(C)=3$ bits/symbol. The code is not optimal, because there are better ones; for example,

x	1	2	3	4	5	6
$C^{\prime}(x)$	00	01	100	101	110	111

which has expected length $L\left(C^{\prime}\right)=(2+2+3+3+3+3) / 6=8 / 3 \simeq 2.67$ bits $/$ symbol.
3. Let $A, B \in\{0,1\}$ be two independent binary random variable corresponding to two tosses of a biased coin with $\mathbb{P}[A=1]=\mathbb{P}[B=1]=\alpha$, and $X=A+B$. Consider the following binary code for $X: C(0)=1, C(1)=00$, $C(2)=01$. For what values of α is this code optimal for X ?
Solution. An optimal binary code for any source with alphabet of three symbols has two words with two bits and one word with one bit. The code is optimal if the 1-bit word corresponds to the most probable symbol. In this case, the distribution is: $f_{X}(0)=(1-\alpha)^{2}, f_{X}(1)=2 \alpha(1-\alpha)$, and $f_{X}(2)=\alpha^{2}$. For the given code to be optimal, we need:

$$
(1-\alpha)^{2} \geq 2 \alpha(1-\alpha) \Leftrightarrow\left(\alpha \leq \frac{1}{3}\right) \text { or }(\alpha \geq 1)
$$

and

$$
(1-\alpha)^{2} \geq \alpha^{2} \Leftrightarrow \alpha \leq \frac{1}{2}
$$

The intersection of the two conditions leads to $\alpha \leq \frac{1}{3}$.

