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Instituto Superior Técnico 

Calculus of variations and Optimal Control 

 

Problem Series nº 2 

P1. Snell’s law of refraction and Fermat’s Principle of Least Time 

Consider the situation shown in figure P1-1 where a light ray travels from 𝐴 to 

𝐵 through two optical media separated by a flat surface, and such that, from 𝐴 

to 𝐶 the velocity in medium 𝐼 is 𝑐1, and from 𝐶 to 𝐵 the velocity in medium 𝐼𝐼 is 

𝑐2. 

 

Figure P1-1. Deduction of Snell’s law of refraction from Fermat’s Principle of 

Least Time. 

Write the first order necessary condition for 𝑥 (the abscissa of point 𝐶) to be 

the minimum for the time of travel 𝜏 from from 𝐴 to 𝐵, and show that this 

condition is equivalent to Snell’s law: 

sin 𝛼

sin 𝛽
=

𝑐1

𝑐2
 

Hint: Denote by τ1 the travel time between 𝐴 and 𝐶, by 𝜏2 the travel time 

between 𝐶 and 𝐵, and by 𝜏 the total travel time between 𝐴 and 𝐵, that is a 

function of 𝑥. Compute τ1 and 𝜏2 as a function of 𝑐1 and 𝑐2, and use the 1st 

order necessary conditions for minimum. 
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Remarks on exercise P1 

The Principle of Least Time 

The search for a general principle that allows to predict the path of a light ray 

in geometrical optics is very old and may be traced back to the Ancient 

Greece, where Heron of Alexandria stated that, for an homogeneous media, 

the light follows the shortest path ([FITAS2012], p. 14, Table 1.1). This 

principle allowed him to interpret reflection. In turn, the arab Ibn Haytham 

stated that a light ray follows the easiest way, in the sense that it founds the 

least resistance ([FITAS2012], p. 14, Table 1.1). 

Of interest to modern thought in what concerns Variational Calculus, Fermat 

stated in 1162, in a letter to a correspondant, Marie Cureau de la Chambre, 

the Principle of Least Time ([GOLDSTINE1980], p. 1). Starting from the 

observation of Galileo that particles moving under the action of gravity follow 

paths that require the least time to travel, instead of the ones of least length, 

Fermat stated that nature operates by means and ways that are easiest and 

fastest. Combining this principle with his original method to find maxima and 

minima of functions, Fermat deduced Snell’s law in a way that was very much 

similar to exercise P1. See [GOLDSTINE1980], p. 2-6, for a description of the 

original Fermat’s deduction. 

Fermat’s principle of least time may be stated as follows: From all the possible 

paths that light might follow to go from one point to another, the path that 

requires the shortest time is chosen. This principle might be used to deduce 

all the results in geometrical optics ([FEYNMAN1975], ch. 26). 

In addition to illustrating the use of necessary conditions for the minima of a 

ℝ𝑛 → ℝ function, Fermat’s principle has the interest of having been used by 

Johann Bernouilli in his solution of the Brachistochrone problem, a topic to be 

addressed latter, that amounts to find the shape of a wire such that a bead 

sliding on it by the sole action of the gravity force goes from a starting to an 

end point in the least time. Indeed, Bernouilli replaced the bead by a light ray 

that crosses a series of optically transparent media with different densities 

[SUSSMANN1997]. 

Fermat was much criticized by the disciples of Descartes on the basis that, if 

aa light ray would follow a  least time path between two points, it would 

behave according to a moral principle [FITAS2012]. Although the argument of 
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the Cartesians was sound, it was refuted because they committed a mistake. 

Indeed, the Cartesians were convinced that the speed of light was higher in 

more dense media, probably by assuming that the situation was similar to 

what happens with the speed of sound. 

Instead, Fermat assumed the opposite, and together with his Principle, and 

his method to compute maxima and minima of functions, he could deduce in a 

rigorous way Snell’s law, that had a striking experimental verification. 

Can we thus conclude that light has a “moral sense”? In other terms, how 

does a light ray knows the correct path, for instance when passing fron media 

to another? 

Actually, the answer is that it does not know, and was provided by Quantum 

Mechanics [FEYNMAN2005] and the solution of the Schroedinger equation. 

The solution of this equation, and its relation with the Principle of Least Time 

is explained in an elementary and beautiful way in [FEYNMAN1985]. It is 

therefore not a surprise that the Schroedinger equation may be deduced from 

Pontryagin’s Maximum Principle [LEVI2010]. 

 

Figure P1-2.  

In order to understand how light appears to follow the Principle of Least Time 

from a macroscopic point of view, consider (figure P1-2) a source of light at 

point 𝐴 [FEYNMAN1985]. According to geometrical optics, and the Principle of 
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Least Time, a light ray that reaches point 𝐵 will follow a path such that the 

travel time between 𝐴 and 𝐵is minimum. Call 𝐹 the point at the surface 

between medium 𝐼 and medium 𝐼𝐼 that corresponds to this path. 

According to Quantum Mechanics, however, the description is not in terms of 

light rays but in probabilistic terms. As such, the probability that a particle of 

light – a photon – that leaves 𝐴 reaches 𝐵is the probability that it passes 

through 𝐹 compounded with the one corresponding to any other point , 

including not only 𝐶, 𝐷, 𝐸, etc., but all the points in the surface as well. 

The probability associated to a single path 𝑖 is the square o the modulus of a 

vector Ψ𝑖. The composition of the probabilities associated to different paths is 

made by adding the vectors, and then computing the square of the amplitude 

of the resulting vector. 

Each individual vector is of unit length and has a phase that is proportional to 

the time of travel of the corresponding photon. Since 𝐹 corresponds to a 

minimum, where the derivative vanishes (1st order necessary condition), 

points close to it will have a similar travel time, and these vectors are 

approximately aligned. An example is point 𝐸. Instead, points away from the 

minimum will yield phases that can be in opposition to the one that 

corresponds to the minimum, and the resulting probability is very small (see 

the lower part of figure P1-2). 

To conclude, all the paths are possible, but only the ones that are close to the 

least time have a high probability of being followed. The above justification, 

presented in [FEYNMA1985], is somewhat ad hoc, but may actually be 

justified on the basis of Schroedinger equation. 
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P2. Consider (figure P2-1) the rectangular box defined by the origin of the 

coordinates ℴ (0,0,0) and point ℘, with coordinates (𝑥1, 𝑥2, 𝑥3), where 𝑥𝑖 > 0. 

 

Figure P2-1. The rectangular box to be optimized in problem P1. 

In this problem we want to find the values of the coordinates of the point ℘ 

such that the enclosed volume is 𝑎 (a given generic value) and the sum 𝑆 of 

the areas of all surfaces is minimum. 
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Solve this problem in two different ways: 

a) Eliminate 𝑥3 from 𝑆(𝑥1, 𝑥2, 𝑥3) using the constraint on the volume to 

express 𝑥3 as a function of 𝑥1 and 𝑥2 and obtain the stationary point(s) 

of the resulting function 𝑆 = 𝜑(𝑥1, 𝑥2). Use the 2nd order sufficient 

condition to prove that your solution is actually a minimum. 

b) Use Lagrange multipliers to tackle the constraint on the volume.   

 

P3. Consider the linear, time invariant, SISO system described by the discrete 

time state model  

𝑥(𝑘 + 1) = Φ𝑥(𝑘) + Γ𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) 

This is a 2nd order system and we know that 

Φ = [
0 1

0,5 0,4
],   Γ = [

0
1

],    𝐶 = [1 1], 

The system starts from zero initial conditions: 

𝑥(0) = [
0
0

]. 

Using the method of Lagrange multipliers, compute the sequence of values of 

the control variable 𝑢(0), 𝑢(1), 𝑢(2) that drives the system output to the 

reference value 𝑟 = 5,  at time instant 𝑘 = 3, that is to say, that forces 

𝑦(3) = 𝑟 = 5, and is such that the energy of the control sequence, given by 

𝐽(𝑢) = 𝑢(0)2 + 𝑢(1)2 + 𝑢(2)2, 

Is minimum. Start by obtaining general expressions for 𝑢(0), 𝑢(1), 𝑢(2) as 

functions of Φ, Γ, 𝐶 e 𝑟, and only afterwards obtain numerical values. 

Hint: By iterating the state equation, start by obtaining expressions for 𝑥(𝑘), 

𝑘 = 1, 2, 3. 

 

P4. In general, the 1st and 2nd order necessary conditions for minimum are not 

sufficient. This exercise provides an example. 

On the (𝑥1, 𝑥2) plane, consider the function 𝑥1(1 + 𝑥1) + 𝑥2(1 + 𝑥2). Let 𝐷 be 

the union of the closed first quadrant {(𝑥1, 𝑥2) ∶  𝑥1 ≥ 0, 𝑥2 ≥ 0} and some 

curve (e.g. a circular arc) directed from the origin into the first quadrant (figure 

P4-1). 
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Figure P4-1. The domain of the function considered in problem P4-1. 

a) Show that the origin is not a local minimum; 

b) State what are the feasible directions at the origin; 

c) Show that, although the necessary conditions for a local minimum hold, 

the origin is not a local minimum. Take into consideration that you are 

in the presence of an inequality constraint. 

 

P5. Prove that if x∗ is a local minimum of f (not necessarily in the interior of D), 

then 

dT∇2f(x∗) ∙ d ≥ 0 

for every feasible direction d that satisfy 

∇f(x∗) ∙ d = 0 

Hint: Modify the argument used in the 2st order necessary condition for 

minimum at an interior point. Consider the function 𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑), where 

𝛼 ∈ ℝ and show that 𝑔′(0) = 0. Use a 2nd order Taylor expansion of 𝑔 to 

conclude that 𝑔′′(0) ≥ 0. Finally, prove that 𝑔′′(0) = 𝑑𝑇∇2𝑓(𝑥∗)𝑑. 

 

P6. Consider 𝑥1, … , 𝑥𝑘 ∈ 𝐶 ⊂ ℝ𝑛 a convex set, and 𝜃1, … , 𝜃𝑘 ∈ ℝ that satisfy 

𝜃𝑖 ≥ 0 ∀𝑖=1,…,𝑘 and 𝜃1 + ⋯ + 𝜃𝑘 = 1. Show that 𝜃1𝑥1 + ⋯ + 𝜃𝑘𝑥𝑘 ∈ 𝐶. 

 

Hint: Use mathematical induction on 𝑘. 

 

Proof by mathematical induction 

Consider the problem of proving that some proposition ℘𝑘 that depends on a 

mathematical entity that varies with the 𝑘 ∈ ℕ holds for any integer 𝑘. The 

method of Mathematical induction consists of the following steps: 

1. Prove that it holds for 𝑘 = 1 

2. Assume that the proposition is valid for a generic 𝑘. Then show that if 

this assumption is valid, it must hold for 𝑘 + 1 as well. 
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As the method of proof by contradiction, proof by mathematical induction is 

not accepted by the Intuitionists. 

 

Example 

Prove that 

1 + 2 + 3 + ⋯ + 𝑘 =
𝑘(𝑘 + 1)

2
 

Step 1: For 𝑘 = 1 the equality is true because 

1 =
1 × (1 + 1)

2
 

Step 2: Assume that the equality is true for some 𝑘 ≥ 1, that is, assume that it 

is true that 

1 + 2 + 3 + ⋯ + 𝑘 =
𝑘(𝑘 + 1)

2
 

In this case, one has 

1 + 2 + 3 + ⋯ + 𝑘 + (𝑘 + 1) =
𝑘(𝑘+1)

2
+ (𝑘 + 1) = (𝑘 + 1) (

𝑘

2
+ 1) =

(𝑘+1)(𝑘+2

2
, 

Which means that, if the equality holds for 𝑘, then it also holds for 𝑘 + 1. 

 

P7. Consider the problem: 

 Minimize 𝑓(𝑥1, 𝑥2, 𝑥3) = −3𝑥1
2 + 𝑥2

2 + 2𝑥3
2 + 2(𝑥1 + 𝑥2 + 𝑥3) 

 Subject to 𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 1 

a) Find the stationary points of 𝐿(𝑥, 𝜆) using the KKT conditions. 

b) Compute 𝑓 at each stationary point. 

Use MATLAB when appropriate. 

 

 


