Instituto Superior Técnico

Calculus of variations and Optimal Control

Problem Series № 5

P1. An air balloon is to be operated between $t=0$ and $t=100$ (minutes) and its motion satisfies

$$
\dot{x}=-0.01 x+u
$$

with the initial condition $x(0)=0$, where x (scalar) is the balloon height.
At each time t, the manipulated variable is subject to the constraint

$$
0 \leq u \leq 5
$$

By the application of Pontryagin's principle, find the control that maximizes

$$
J(u)=x(100)-\int_{0}^{100} 0,5 u(t) d t
$$

Make a sketch of the optimal profiles of λ (co-state), u and x.

Hints: In this problem what is the shape of the Hamiltonian as a function of u ? This shape defines the way in which you find the optimum.

P2. Consider the scalar Riccati differential equation

$$
\begin{equation*}
\dot{w}=q_{1}+q_{2} w+q_{3} w^{2} \tag{P2-1}
\end{equation*}
$$

where q_{1}, q_{2}, and q_{3} are time functions. Assume that you know a solution w_{1}.
a) Write an equation verified by the function v such that

$$
w=w_{1}+\frac{1}{v}
$$

is as a solution of the scalar Riccati equation (P2-1).
b) Given the scalar system

$$
\dot{x}=-x+u,
$$

The solution of the problem that consists in minimizing

$$
J(u)=\frac{1}{2} \int_{0}^{6}\left[x^{2}(t)+\rho u^{2}(t)\right] d t
$$

leads to the scalar Riccati differential equation

$$
\dot{p}=-1+2 p+\frac{1}{\rho} p^{2}, \quad p(6)=0 .
$$

Solve this equation using the technique suggested in a).

Hint: The technique assumes that you know one solution. Is there a solution that is easy to obtain?

