
 

 1 

 

Instituto Superior Técnico 

Calculus of variations and Optimal Control 

 

Problem Series nº 3 

P1. Basic CV problem 

Find the extremal for the following fixed end points basic CV problem 

𝐽(𝑦) = ∫ (𝑦′2
𝜋

0

+ 2𝑦 sin 𝑥)𝑑𝑥 

𝑦(0) = 𝑦(𝜋) = 0 

 

P2. Find the extremal for the following fixed end points basic CV problem 

𝐽(𝑦) = ∫ [𝑦2 + 2𝑘𝑦𝑦′ + (𝑦′)2]
𝑏

𝑎

𝑑𝑥 

𝑦(𝑎) = 𝑦0, 𝑦(𝑏) = 𝑦1 

With 𝑎, 𝑏, 𝑦0 and 𝑦1 generic and 𝑘 a constant. 

 

P3. Find the extremal for the following fixed end points basic CV problem 

𝐽(𝑦) = ∫
(𝑦′)2

𝑥3
𝑑𝑥

𝜋

0

 

𝑦(1) = 0, 𝑦(2) = 3 

Take advantage of the fact that this is special case 1 (“no 𝑦”) of the EL 

equation. 

 

P4. Free end point. Find the curve that links the point 𝑥 = 0, 𝑦(0) = 5 with the 

circle defined in the plane (𝑥, 𝑦) by 𝑦2 + (𝑥 − 5)2 − 4 = 0, and such that the 

curve is an extremal to the length. 

In other words, consider the problem with free end point and free end “time” 

Minimize  𝐽(𝑦) = ∫ √1 + 𝑦′2𝑥𝑓

0
𝑑𝑥 

      s. t.   𝑦(0) = 5 

The end points must lie on the circle 

 𝑦2 + (𝑥 − 5)2 − 4 = 0,  
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with 𝑥𝑓 free. 

Draw a sketch to interpret the solution. 

 

P5. This problem shows how a variational technique based on the Euler- 

Lagrange equation can be used to model conservative mechanical systems.  

This technique is based on the description of physical system using the so 

called generalised coordinates. The vector of generalised coordinates will be 

represented by q  and exists in the configuration space of the system. For 

instance, a mass point in the plane is described by the Cartesian coordinates 

describing its position, xq 1  and yq 2 . 

 

From the dynamical point of view, a mechanical system may be seen as a set 

of interconnected particles. These interconnections impose constraints on the 

system behaviour. 

 

The basis for modelling is Hamilton’s Principle. In order to understand it, 

imagine a mass point in the plane that is thrown with an initial velocity from 

point 1 at instant 1t  and reaches point  2 at time 2t  (fig. P5-1). 

 

Fig. P5-1. A mass point moving between two points. 

 

The mass point follows a unique and well defined trajectory, shown in bold in 

fig. P5-1. We may however imagine several other trajectories. Actually, there 

is an infinite number of them connecting points 1 and 2. Hamilton’s Principle 
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characterizes the trajectory that is actually followed. For that sake, define the 

Lagrangian function L  as the difference between the kinetic energy T  and 

the potential energy V : 

VTL   

The Lagrangian function is a function of the generalized coordinates q  and of 

their first derivatives q : 

),( qqLL   

Consider the following integral: 

  
2

1

t

t

dtVTI  

From all values of I  for all possible trajectories (of which there is an infinite 

number), the one that corresponds to the actual trajectory is the one that 

remains invariant to a small perturbation (is an extremal of 𝐼). This statement 

is Hamilton’s Principle that for a system made from interacting particles reads 

as follows: 

 

Hamilton’s Principle: From the whole set of admissible conditions 

that a system may assume when evolving from one configuration in 

a given time instant to another configuration in a successive time 

instant, the one that is actually followed is the one that is an 

extremal of the integral of the Lagrangian function in that time 

interval. 

 

Remark that applying Hamilton’s Principle requires the solution of an 

optimization problem in an infinite dimensional space. This means that the 

integral I  is a function that takes real values but its argument is itself a 

continuous function (hence requiring an infinite set of numbers to be 

described). This problem may no longer be solved with the basic optimization 

technique of “equating the derivative to zero”.  Its solution is yielded by other 

methods, called “variational” because they rely on performing variations of the 

optimal trajectory and relating them with the corresponding variation in I . 

They are studied within the realm of Variational Calculus theory. 
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Under certain conditions that are assumed satisfied in the cases to consider, it 

is a necessary condition for the integral I  to be minimum that the 

Laggrangian satisfies the Euler-Lagrange equation that reads: 

F
q

L

q

L

dt

d




















 

where F  is the vector of generalized forces (moments in the case of rotating 

movements) that act positively along the direction of coordinate q . 

 

a) Consider the mass-spring system shown in fig. P5-2. This system is made 

of a mass m suspended by a spring. In the absence of an outside F  applied 

to the mass, the spring is stretched up to a length where the elastic force 

equilibrates the gravity force.  

 

 

Fig. P5-2 – Mass-spring system to model. 

 

Beyond this equilibrium point, that corresponds to the coordinate 0x , when 

the elongation x  increases, the spring applies to the mass a force in the 

opposite sense, with modulus Kx .  At position x , with velocity x , the system 

has a kinetic energy given by 

2

2

1
xmT  , 

and a potential energy given by 

2

2

1
KxV  . 

K

x
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m x=0
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Take as generalized coordinate xq  . Write the Euler-Lagrange equation for 

this system, obtaining thereby an ordinary differential equation for x . 

Compare this equation with the equation yielded by Newton’s Law of motion. 

 

b) Consider now (fig. P5-3) a satellite  of mass m  moving in a gravity force 

field that varies with 2/ rk . The satellite is equipped with actuators that exert 

radial oriented forces, along 1u , and tangential, along 2u . 

 

 

Fig. P5-3. Satellite model. 

 

The kinetic energy is 

 222

2

1
 rrmT  . 

The potential energy is 

r

k
V   

Take as generalized coordinates  21 , qrq . Remark that in this case the 

Euler-Lagrange equation yields two equations (one for each generalized 

coordinate). Write this equations with respect to r  and  . Write a nonlinear 

state model for the satellite movement using as state 𝑥 = [𝑟 �̇�    𝜃 �̇�]𝑇. 
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