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2. Background on finite and infinite dimensional 

optimization. 

 

Objective: Prepare the ground by introducing (reviewing) optimality conditions 

in finite dimensional problems that will then be generalized to infinite 

dimensional problems and later applied to CV problems. 

 

Ref.: [L2012] ch. 1, pp. 3-25. 

Slides reviewed 2019 
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Finite dimensional optimization 

• [L2, pp.012], pp. 3-17 

• [F1968], Ch. 3 (Differential Calculus of ℝ𝑛), pp. 77-167. Section 3.14 is 

devoted to Extrema for ℝ𝑛 − ℝ functions. This material may also be found 

in many Vector Calculus books. Select your favorite one and give a look. 

What is peculiar in Fadell’s book are its intuitive and clear, yet rigorous, 

explanations supported on nice pictures. Unfortunately it is an old book 

that is a bit hard to find 
 

[F1968] A. G. Fadell. Vector Calculus and Differential equations, Van Nostrand 

1968. 
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Functions A function 𝑓:ℝ𝑛 → ℝ 

The domain of the function, 𝐷 a subset of ℝ𝑛 for which the function is defined. 

𝐷 might be the entire ℝ𝑛. Each element of 𝐷 is a point 

Example in ℝ3:    

An example is the Euclidean norm of each point of ℝ𝑛 

‖𝑥‖ = √𝑥1
2 + 𝑥2

2 + ⋯+ 𝑥𝑛
2 
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Minima 

Def. (p.3): 𝑥∗ ∈ 𝐷 is a local minimum over 𝐷 if 

∃휀 > 0 ∶  ∀𝑥 ∈ 𝐷 such that if ‖𝑥 − 𝑥∗‖ < 휀 then 𝑓(𝑥∗) ≤ 𝑓(𝑥) 
 

𝑥∗ is a local minimum if in some ball 

around it, 𝑓 does not attain a value 

smaller than 𝑓(𝑥∗). 

Strict local minimum: 𝑓(𝑥∗) < 𝑓(𝑥) 

Global minimum: 
∀𝑥 ∈ 𝐷, 𝑓(𝑥∗) ≤ 𝑓(𝑥) 
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First order necessary conditions for optimality p. 4, 5 

𝑓a 𝐶1 (continuous, with continuous derivatives) function 

𝑥∗ a local minimum 

Pick a vector 𝑑 

Define the scalar function 𝑔 by 

𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑) 

Since 𝑥∗ is a local minimum of 𝑓, 

then 𝛼 = 0 is a local minimum of 

𝑔(𝛼). (prove!) 
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Exercise 1 

Let 𝑓 ∶ 𝐷 ⊂ ℝ𝑛 → ℝ and 𝑥∗ a local minimum in the interior of 𝐷. 

Define the function 𝑔 by 

𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑), 

where 𝑑 is a constant. 

Show that 𝛼 = 0 is a local minimum of 𝑔. 
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Solution 

Since 𝑥∗ is a local minimum of 𝑓 (by definition of local minimum), in a region 

around this point 

𝑔(0) = 𝑓(𝑥∗) ≤ 𝑓(𝑥∗ + 𝛼𝑑) = 𝑔(𝛼). 

Hence, for 𝛼 ≠ 0, sufficiently small, 

𝑔(0) ≤ 𝑔(𝛼). 

q.e.d. 
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𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑), 

First order expansion of 𝑔 around 𝛼 = 0 

𝑔(𝛼) = 𝑔(0) + 𝑔′(0)𝛼 + 𝑜(𝛼) 

The higher order terms 𝑜(𝛼) verify (by definition) 

lim
𝛼→0

𝑜(𝛼)

𝛼
= 0 

We claim that 

𝑔′(0) = 0 

The proof is made by contradiction. 
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Method of proof by contradiction 

• Assume that the contrary of what you want to prove holds true. This is the 

so-called absurd assumption.  

• From this assumption show that the fact that contradicts the assumptions 

of the sentence that you want to prove can be concluded to hold true. 

• This means that the original statement must be true. 
 

This logic way of reasoning is valid although it has the drawback of not being constructive. 

It is remarked that, because of this fact, proof by contradiction is not accepted by the intuitionist 

school of Mathematics. Indeed, for the intuitionists, the claim that an object with certain properties 

exists is equivalent to claim that an object with those properties can be constructed. But this is 

another story…  
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Proof by contradiction that 𝑔′(0) = 0 in  𝑔(𝛼) = 𝑔(0) + 𝑔′(0)𝛼 + 𝑜(𝛼) 

Suppose (absurd assumption) that 𝑔′(0) ≠ 0. 

𝑔(𝛼) − 𝑔(0) = 𝑔′(0)𝛼 + 𝑜(𝛼) 

There exists 휀 > 0 ∶ ∀|𝛼| < 휀, then  |
𝑜(𝛼)

𝛼
| < |𝑔′(0)| 

Hence 

𝑔(𝛼) − 𝑔(0) < 𝑔′(0)𝛼 + |𝑔′(0)𝛼| 

Further restrict 𝛼 to have the negative sign to 𝑔′(0). For these values of 𝛼 

𝑔(𝛼) − 𝑔(0) < 0     or     𝑔(𝛼) < 𝑔(0) 

that contradicts the assumption that 𝛼 = 0 is a minimum. Therefore, it must be 

𝑔′(0) = 0                                q.e.d. 
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Re-express now this result in terms of the original function 𝑓. 

By the chain rule of derivatives 

𝑔′(𝛼) =
𝑑

𝑑𝛼
𝑓(𝑥∗ + 𝛼𝑑) = 

=
𝜕𝑓

𝜕𝑥1
𝑑1 +

𝜕𝑓

𝜕𝑥2
𝑑2 + ⋯+

𝜕𝑓

𝜕𝑥𝑛
𝑑𝑛 = ∇𝑓(𝑥∗ + 𝛼𝑑). 𝑑 

Thus, since 𝑔′(0) = 0, it follows that ∇𝑓(𝑥∗). 𝑑 = 0 

Since this equality is valid for all 𝑑, we conclude that 

∇𝑓(𝑥∗) = 0 
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First order necessary conditions for optimality 

𝑥∗ an interior point of 𝐷 

𝑓 ∈ 𝐶1 

∇𝑓(𝑥∗) = 0 
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Stationary points 

Points satisfying ∇𝑓(𝑥∗) = 0 are called stationary points 

 

Stationary points are not just minima. They comprise minima, maxima and 

saddle/inflection points. 
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Second-order necessary condition for optimality p. 6, 7 

𝑓 ∈ 𝐶2 (twice continuous differentiable) 

𝑥∗ a local minimum in the interior of 𝐷 

𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑), 

Second order Taylor expandion 

𝑔(𝛼) = 𝑔(0) + 𝑔′(0)𝛼 +
1

2
𝑔′′(0)𝛼2 + 𝑜(𝛼2) 

lim
𝛼→0

𝑜(𝛼2)

𝛼2
= 0 
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 Caychy definition of limit of a real function of real variable 

𝑓 ∶  ℝ → ℝ 

We say that the limit of 𝑓(𝑥) is 𝑏 when 𝑥 → 𝑎 iff 

∀𝛿 > 0 ∃휀 > 0 ∶  |𝑥 − 𝑎| < 휀 ⇒ |𝑓(𝑥) − 𝑏| < 𝛿 

 

 

An alternative definition of limit of a function is the Heine definition. A 

function 𝑓 has a limit 𝑏 when 𝑥 → 𝑎 iff for every sequence {𝑥𝑛}, that has a 

limit 𝑎, the sequence {𝑓(𝑥𝑛)} has the limit 𝑏. The Heine and Cauchy definitions 

of limit of a function are equivalent. 
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Exercise 2 

Prove that, if 

lim
𝛼→0

𝑜(𝛼2)

𝛼2 = 0, 

then 

∃휀 > 0 ∶  |𝛼| < 휀 ⇒  |𝑜(𝛼2)| <
1

2
|𝑔′′(0)|𝛼2 

 

Hint: Use the Cauchy definition of limit of a function and make a suitable 

choice for the 𝛿 appearing on it. 

  



Calculus of Variations and Optimal Control  17 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

lim
𝛼→0

𝑜(𝛼2)

𝛼2 = 0, 

By definition of limit 

∀𝛿>0 ∃ >0∶  |𝛼| < 휀 ⇒
|𝑜(𝛼2)|

𝛼2
< 𝛿 

In particular, if we choose 

𝛿 =
1

2
|𝑔′′(0)|, 

then, 

∃ >0∶  |𝛼| < 휀 ⇒
|𝑜(𝛼2)|

𝛼2 <
1

2
|𝑔′′(0)|    or     |𝑜(𝛼2)| <

1

2
|𝑔′′(0)|𝛼2. 

q.e.d. 
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𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑), 

𝑔(𝛼) = 𝑔(0) + 𝑔′(0)𝛼 +
1

2
𝑔′′(0)𝛼2 + 𝑜(𝛼2) 

By the first order necessary conditions, 𝑔′(0) = 0: 

𝑔(𝛼) = 𝑔(0) +
1

2
𝑔′′(0)𝛼2 + 𝑜(𝛼2) 

We claim that 

𝑔′′(0) ≥ 0 
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Proof by contradiction 

𝑔(𝛼) = 𝑔(0) +
1

2
𝑔′′(0)𝛼2 + 𝑜(𝛼2)   →   𝑔(𝛼) − 𝑔(0) =

1

2
𝑔′′(0)𝛼2 + 𝑜(𝛼2)   (*) 

We have shown that ∃ >0∶  |𝛼| < 휀  implies   |𝑜(𝛼2)| <
1

2
|𝑔′′(0)|𝛼2 

For these values of 𝛼, (*) yields 

𝑔(𝛼) − 𝑔(0) <
1

2
𝑔′′(0)𝛼2 +

1

2
|𝑔′′(0)|𝛼2 =

1

2
𝛼2(𝑔′′(0) + |𝑔′′(0)|)    

Assume that 𝑔′′(0) < 0 (absurd assumption). Then it would be 

𝑔(𝛼) − 𝑔(0) < 0    or    𝑔(𝛼) < 𝑔(0) 

A conclusion that contradicts that 𝛼 = 0 is a minimum. Therefore, 𝑔′′(0) < 0 

may not be true, and the conclusion follows. 

q.e.d. 
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  The general chain rule for derivatives         [F1968] p. 127, 128 
 

 

𝑔:ℝ → ℝ𝑛 

𝑓:ℝ𝑛 → ℝ 

ℎ(𝑡) = 𝑓(𝑔(𝑡)) 

ℎ:ℝ → ℝ 

 

 

ℎ′(𝑡) = ∑
𝜕

𝜕𝑥𝑖
𝑓(𝑔(𝑡))

𝑑

𝑑𝑡
𝑔𝑖(𝑡)

𝑛
𝑖=1     also written as   ℎ′(𝑡) = ∇𝑓(𝑔(𝑡)). 𝑔′(𝑡) 
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What is the implication of 𝑔′′(0) > 0 on the minima of the function 𝑓? 

[L2012] p. 6, 7 

𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑) 

𝑔′(𝛼) = ∑
𝜕𝑓

𝜕𝑥𝑖
(𝑥∗ + 𝛼𝑑)𝑑𝑖

𝑛

𝑖=1

 

𝑔′′(𝛼) = ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥∗ + 𝛼𝑑)

𝑛

𝑖,𝑗

𝑑𝑖𝑑𝑗 

For 𝛼 = 0, 

𝑔′′(0) = ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥∗)

𝑛

𝑖,𝑗

𝑑𝑖𝑑𝑗 
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𝑔′′(0) = ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥∗)

𝑛

𝑖,𝑗

𝑑𝑖𝑑𝑗 

In matrix notation, this expression becomes 

𝑔′′(0) = 𝑑𝑇∇2𝑓(𝑥∗)𝑑 

where the Hessian matrix of 𝑓 is 

∇2𝑓(𝑥∗) ≔

[
 
 
 
 
 

𝜕2𝑓

𝜕𝑥1𝜕𝑥1
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
…

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑛 ]
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Since  

𝑔′′(0) = 𝑑𝑇∇2𝑓(𝑥∗)𝑑 ≥ 0 

And that this inequality holds for any 𝑑, if follows that the Hessian must be 

positive semidefinite at a minimum that is an interior point: 

∇2𝑓(𝑥∗) ≽ 0 
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Second-order necessary condition for optimality     [L2012] p. 6, 7 

𝑓 ∈ 𝐶2 (twice continuous differentiable) 

𝑥∗ a local minimum in the interior of 𝐷 

∇2𝑓(𝑥∗) ≽ 0 

The Hessian must be positive semidefinite at a minimum that is an interior 

point. 
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2nd order sufficient conditions for optimality       [L2012] p. 7 

𝑓 ∈ 𝐶2        𝑓: 𝐷 → ℝ,        𝑥∗ ∈ 𝑖𝑛𝑡(𝐷) 

∇𝑓(𝑥∗) = 0     and     ∇2𝑓(𝑥∗) ≻ 0 

Then, 𝑥∗ is a strict local minimum. 

 

If an interior point is such that the gradient vanishes and the hessian is positive 

definite, then the point is a strict local minimum. 
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Proof 

Take an arbitrary 𝑑. 

𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑) 

𝑔(𝛼) = 𝑔(0) + 𝑔′(0)𝛼 +
1

2
𝑔′′(0)𝛼2 + 𝑜(𝛼2) 

Because of the assumption on the gradient 

𝑔′(0) = ∇𝑓(𝑥∗) ∙ 𝑑 = 0 

𝑔′′(0) = 𝑑𝑇∇2𝑓(𝑥∗)𝑑 

Hence, the 2nd order Taylor expansion becomes  

𝑓(𝑥∗ + 𝛼𝑑) = 𝑓(𝑥∗) +
1

2
𝑑𝑇∇2𝑓(𝑥∗)𝑑𝛼2 + 𝑜(𝛼2) 
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𝑓(𝑥∗ + 𝛼𝑑) = 𝑓(𝑥∗) +
1

2
𝑑𝑇∇2𝑓(𝑥∗)𝑑𝛼2 + 𝑜(𝛼2) 

𝑓(𝑥∗) = 𝑓(𝑥∗ + 𝛼𝑑) −
1

2
𝑑𝑇∇2𝑓(𝑥∗)𝑑𝛼2 + (−𝑜(𝛼2)) 

From Exercise 2, there is an interval of values of 𝛼 such that 

|𝑜(𝛼2)| <
1

2
𝑑𝑇∇2𝑓(𝑥∗)𝑑𝛼2 

Hence, for any 𝑑, 

𝑓(𝑥∗) < 𝑓(𝑥∗ + 𝛼𝑑) −
1

2
𝑑𝑇∇2𝑓(𝑥∗)𝑑𝛼2 +

1

2
𝑑𝑇∇2𝑓(𝑥∗)𝑑𝛼2 = 𝑓(𝑥∗ + 𝛼𝑑) 

𝑓(𝑥∗) < 𝑓(𝑥∗ + 𝛼𝑑), 

and hence 𝑥∗ is a strict local minimum.                                          Q.e.d. 
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Exercise 4 

The distance of a point 𝐴 from a plane Π is defined as the minimum of the set 

of distances between the point 𝐴 and all the points in the plane. 

Find the distance from the point (-1, 4, 2) to the plane 

Π = {(𝑥1, 𝑥2, 𝑥3 ∶ 2𝑥1 − 3𝑥2 + 𝑥3 − 7 = 0} 

Hints: 

i) Since distance is non-negative, it is equivalent to minimize the square of 

the distance, given by 𝐹(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 1)2 + (𝑥2 − 4)2 + (𝑥3 − 2)2, 

where (𝑥1, 𝑥2, 𝑥3) ∈ Π. 

ii) To minimize 𝐹 while satisfying the constraint that (𝑥1, 𝑥2, 𝑥3) ∈ Π you 

may simply express 𝑥3 in terms of 𝑥1 and 𝑥2 using the plane equation to 



Calculus of Variations and Optimal Control  29 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

obtain a function 𝜑(𝑥1, 𝑥2) that yields the distance from 𝐴 to Π as a 

function of just 𝑥1 and  𝑥2. 

iii) To show that the hessian matrix is positive definite, you may use 

Sylvester’s criterium. 
 

Sylvester’s criterium 

A symmetric matrix with real entries 𝑀 is positive-definite if and only if all of the 
principal minors have a positive determinant. The principal minors are 

• the upper left 1-by-1 corner of 𝑀, 

• the upper left 2-by-2 corner of 𝑀, 

• the upper left 3-by-3 corner of 𝑀, 

• … 

•  𝑀 itself. 
 

  

https://en.wikipedia.org/wiki/Determinant
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Solution of exercise 4 

𝜑(𝑥1, 𝑥2) = (𝑥1 + 1)2 + (𝑥2 − 4)2 + (5 − 2𝑥1 + 3𝑥2)
2 

Compute the gradient and equate to zero 

𝜕𝜑

𝜕𝑥1
= 2(𝑥1 + 1) − 4(5 − 2𝑥1 + 3𝑥2) = 0 

𝜕𝜑

𝜕𝑥2
= 2(𝑥2 − 4) + 6(5 − 2𝑥1 + 3𝑥2) = 0 

The solution of this system of equations is (
12

7
, −

1

14
,
47

14
) 

The distance between 𝐴 and Π is obtained by computing the square-root of 

either 𝐹 or 𝜑 at this point, being 19/√14. 
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Furthermore, the elements of the hessian matrix are 

𝜕2𝜑

𝜕𝑥1
2 = 10        

𝜕2𝜑

𝜕𝑥1𝜕𝑥2
= −12         

𝜕2𝜑

𝜕𝑥21
= −12       

𝜕2𝜑

𝜕𝑥2
2 = 20 

Since the determinant of the hessian is 

|
10 −12

−12 20
| = 200 − 144 = 56 > 0, 

from the Sylvester criterion the hessian is positive definite, and the point that 

corresponds to the zero of the gradient is actually a minimum. 
  



Calculus of Variations and Optimal Control  32 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Feasible directions              [L2012] p. 8 

𝑑 ∈ ℝ𝑛 is a feasible direction at 𝑥∗ if 𝑥∗ + 𝛼𝑑 ∈ 𝐷 for small enough 𝛼 > 0.  

 

If not all directions 𝑑 at a minimum 𝑥∗ are not feasible, then the condition that 

the gradient vanishes, ∇𝑓(𝑥∗) = 0 is no longer necessary for optimality. 
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Example 

𝑥 ∈ [0,1] ⊂ ℝ, 𝑓(𝑥) = 2 − 𝑥 

 

The minimum is 𝑥∗ = 1, which is not an interior point to 𝐷. 

However, at the minimum, ∇𝑓(𝑥∗) = −1 ≠ 0. 
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Exercise 7 1st order necessary condition for minimum  

Prove that if 𝑥∗ is a local minimum of 𝑓 (not necessarily in the interior of 𝐷), 

then 

∇𝑓(𝑥∗) ∙ 𝑑 ≥ 0 

for every feasible direction 𝑑. 

 

Hint: Modify the argument used in the 1st order necessary condition for 

minimum at an interior point. 
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Geometrical interpretation 

For an interior point minimum, the gradient 

vanishes.  

Consider a minimum at the boundary. 

For the point to be a minimum, the function 

must grow when you move away from the 

minimum along any feasible direction 

Since the gradient points to an ascent position, the feasible directions, 

such as 𝑑, must be “somehow aligned” with it, requiring that the internal 

product is positive. Non-feasible directions such as 𝑣, point in descent 

directions, and the internal product is negative. 
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Solution of Exercise 7 

With 𝑑 any feasible direction, define the function 𝑔 by 

𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑) 

Since 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓(𝑥) ⇒ 𝛼 = 0 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔(𝛼) 

First order Taylor expansion 

𝑔(𝛼) − 𝑔(0) = 𝑔′(0)𝛼 + 𝑜(𝛼) 

Since 𝛼 = 0 is a minimum,  𝑔(𝛼) − 𝑔(0) ≥ 0, and 𝑔′(0)𝛼 + 𝑜(𝛼) ≥ 0 or 

𝑔′(0) +
𝑜(𝛼)

𝛼
≥ 0 

For 𝛼 > 0 small enough, it is thus 𝑔′(0) ≥ 0. 
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𝑔(𝛼) ≔ 𝑓(𝑥∗ + 𝛼𝑑) 

On the other way, by the chain rule of derivatives 

𝑔′(𝛼) = ∇𝑓(𝑥∗ + 𝛼𝑑) ∙ 𝑑 

For 𝛼 = 0 this becomes 

𝑔′(0) = ∇𝑓(𝑥∗) ∙ 𝑑 

And since 𝑔′(0) ≥ 0,  

∇𝑓(𝑥∗) ∙ 𝑑 ≥ 0. 

Q. e.d. 
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Exercise 8 – 2nd order necessary conditions for minimum 

Prove that if 𝑥∗ is a local minimum of 𝑓 (not necessarily in the interior of 𝐷), 

then 

𝑑𝑇∇2𝑓(𝑥∗) ∙ 𝑑 ≥ 0 

for every feasible direction 𝑑 that satisfies 

∇𝑓(𝑥∗) ∙ 𝑑 = 0 

 

Hint: Modify the argument used in the 2st order necessary condition for 

minimum at an interior point. 

Proof: 2nd Series of homework problems. 
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Compact sub-sets of ℝ𝒏 

𝐷 ⊂ ℝ𝑛 is compact if any of the following conditions apply: 

1. 𝐷 is closed and bounded 

2.  Every open cover of 𝐷 has a finite subcover 

3. 𝐷 every sequence in 𝐷 has a subsequence converging to some point in 𝐷 

Of the above criteria, only 2) and 3) carry over to infinite dimensional sets. 
 

A cover of a set 𝑋 is a collection of sets whose union contains 𝑋. 
A subcover of 𝑋 is a subset of a cover of 𝑋 that still covers  . 
 
Is {𝑥: 1 ≤ 𝑥 ≤ 10, 𝑎𝑛𝑑 𝑥 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙} a compact subset of ℝ? 

Is [1, 10] a compact subset of ℝ? 
Is ]1, 10[ a compact subset of ℝ? 
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Global minima: Weierstrass theorem   [L2012] p. 9,10 

If 𝑓 is a continuous function and 𝐷 is a compact set, then there exists a global 

minimum of 𝑓 over 𝐷. 
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Procedure to find a global minimum 

1.  Find all the interior points of 𝐷 that satisfy ∇𝑓(𝑥∗) = 0 (stationary points). 

2.  If 𝑓 is not differentiable, everywhere, include also points where ∇𝑓 does 

not exist (these points, together with the stationary points comprise the 

critical points). 

3. Find all boundary points that satisfy ∇𝑓(𝑥∗) ∙ 𝑑 ≥ 0 for all feasible 𝑑. 

4. Compare the values of the function at all these candidate points and 

choose the smallest one. 
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Convex functions 

A special case in which the minimum can be shown to be unique are convex 

functions. 

[BV2004], chs. 2, 3. 

 

[BV2004] S. Boyd and L. Vanderberghe. Convex Optimization. Cambridge 

University Press, 2004. 
 

This book is available in electronic form at http://stanford.edu/~boyd/cvxbook/ 

 

  

http://stanford.edu/~boyd/cvxbook/
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Parametrization of a line segment between two points 

[BV2004], p.22 

 

Line passing through 𝑥1 and 𝑥2 described parametrically by 

𝜃𝑥1 + (1 − 𝜃)𝑥2, 𝜃 ∈ ℝ 

The segment between 𝑥1 and 𝑥2 is obtained for 𝜃 ∈ [0, 1]. 
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Convex sets [BV2004] 

A set 𝐶 is convex if the line segment between any two points in 𝐶 lies in 𝐶, i.e. 

𝐶 is convex iff ∀𝑥1,𝑥2 ∈𝐶 , ∀𝜃∈[0,1], then 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝐶 
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Convex functions [BV2004], p. 67 

A function 𝑓:ℝ𝑛 → ℝ is a convex function iff its domain is a convex set and if 

for all 𝑥, 𝑦 ∈ 𝑑𝑜𝑚 𝑓, then 

𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) 
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First order convexity condition [BV2004] p.69, 70 

Assume that 

1) 𝑑𝑜𝑚 𝑓 is convex and open; 

2) 𝑓 is differentiable (∇𝑓 exists at each point in 𝑑𝑜𝑚 𝑓, which is open; 

Then, ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚 𝑓, 𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)(𝑦 − 𝑥) 

 
Proof: See companion document. 
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Uniqueness of the minimum of a 𝐶1convex function 

Let 𝑓:𝐷 ⊂ ℝ𝑛 → ℝ  be a 𝐶1 convex function. 

Consider a stationary point, i.e., a point 𝑥∗ for which ∇𝑓(𝑥∗) = 0. 

By the first order convexity condition 

𝑓(𝑦) ≥ 𝑓(𝑥∗) + ∇𝑓(𝑥∗)(𝑦 − 𝑥∗) = 𝑓(𝑥∗) + 0. (𝑦 − 𝑥∗) = 𝑓(𝑥∗) 

Hence 

𝑓(𝑦) ≥ 𝑓(𝑥∗)   ∀𝑦 ∈ 𝐷, 

meaning that 𝑥∗ is the global minimum of 𝑓 on 𝐷. 
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For a convex function 𝑓, the condition ∇𝑓(𝑥∗) = 0 is both necessary and 

sufficient for minimum. 

The minimum of 𝑓 always exists and is either an interior point, or a boundary 

point if 𝐷 is closed. 
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Constraints 

Equality constraints: An example in ℝ2 

The unconstrained minimum of 𝑓 is 𝑃. 

When 𝑥 is constrained to be on the line 

defined by ℎ(𝑥) = 0, the constrained 

minimum is point 𝑄.in  

Point 𝑄 results from the intersection of the  

level curves of 𝑓 with the line ℎ(𝑥) = 0, 

when this line is tangent to the level curves. 

The MATLAB function contour plots the level curves of functions defined in ℝ2  
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Inequality constrains 

        

                               (A)                                                    (B) 

For the moment, in the sequel we will study only equality constraints 

x1

x2
f(x1,x2)=c

P

Q

h(x)=0Forbidden

Allowed

x1

x2
f(x1,x2)=c

Q

h(x)=0

Forbidden

Allowed

P
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In situation A the unconstrained minimum 𝑃 is in the allowed region and the 

constrained minimum is equal to it. The constraint is not active. 

 

In situation B the unconstrained minimum 𝑃 is in the forbidden region and the 

constrained minimum 𝑄 is at the boundary of the allowed region. The 

constraint is active. 
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Constrained optimization [L2012] p. 11-16 

𝐷 ⊂ ℝ𝑛 a “surface” defined by the equality constraints 

ℎ1(𝑥) = ℎ2(𝑥) = ⋯ = ℎ𝑚(𝑥) = 0 

ℎ𝑖: ℝ
𝑛 → ℝ,    𝑖 = 1,… ,𝑚   𝐶1 functions 

𝑓 a 𝐶1 function 

Objective: Study the minima of 𝑓 over 𝐷 (constrained minima) 
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Regular points 

𝑥∗ ∈ 𝐷 a local minimum 

𝑥∗ is be assumed to a regular point. This means that ∇ℎ𝑖 , 𝑖 = 1,… ,𝑚 are 

linearly independent at 𝑥∗. 

 

This assumption rules out degenerate situations in which the necessary 

condition for minima to be presented may not hold. 
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Generalization of directional derivatives 

Instead of straight line segments, use 

curves in 𝐷 that pass through 𝑥∗. 

A family of points 𝑥(𝛼) ∈ 𝐷 

parameterized by 𝛼 ∈ ℝ, with 𝑥(0) = 𝑥∗ 

and 𝑥(∙) a 𝐶1 function for 𝛼 near 0. 

 

𝑔(𝛼) ≔ 𝑓(𝑥(𝛼)) 

Exercise 11 

Prove that 𝛼 = 0 is a minimum of 𝑔 and conclude that 𝑔′(0) = 0. 

Hints: Use the definition of 𝑔(𝛼) and the fact that 𝑥(𝛼) = 𝑥∗ for 𝛼 = 0. 
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Proof 

Let 𝛼 ≠ 0. 

𝑔(𝛼) = 𝑓(𝑥(𝛼)) ≥ 𝑓(𝑥∗) = 𝑔(0) 

And hence 𝑔(𝛼) ≥ 𝑔(0) for 𝛼 ≠ 0, meaning that 𝛼 = 0 is a minimum of 𝑔. 

Since 𝛼 = 0 is a minimum of 𝑔, it follows that 𝑔′(0) = 0 and since 

𝑔′(𝛼) = ∇𝑓(𝑥(𝛼)) ∙ 𝑥′(𝛼), 

for 𝛼 = 0,  𝑔′(0) = ∇𝑓(𝑥(0)) ∙ 𝑥′(0) and hence 

∇𝑓(𝑥∗)𝑥′(0) = 0 

This expression will be used later. 
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Tangent space 

𝑥′(0) defines a linear approximation of 𝑥(∙) at 𝑥∗: 

𝑥(𝛼) = 𝑥∗ + 𝑥′(0)𝛼 + 𝑜(𝛼) 

𝑥′(0) is a tangent vector of 𝐷 at 𝑥∗. 

It leaves in 𝑇𝑥∗𝐷, the tangent space to 𝐷 

at 𝑥∗ 
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Characterization of the tangent space 

Since 𝐷 is defined as the set of points that satisfy the constraints, and since 

𝑥(𝛼) satisfies the constraints, 

ℎ𝑖(𝑥(𝛼)) = 0     ∀𝛼,    𝑖 = 1,… ,𝑚 

Differentiating 

0 =
𝑑

𝑑𝛼
ℎ𝑖(𝑥(𝛼)) = ∇ℎ𝑖(𝑥(𝛼)) ∙ 𝑥′(𝛼),      𝑖 = 1,… ,𝑚 

for all 𝛼 close to 0. 

For 𝛼 = 0  (remember that 𝑥(0) = 𝑥∗): 

0 =
𝑑

𝑑𝛼
|𝛼=0ℎ𝑖(𝑥(𝛼)) = ∇ℎ𝑖(𝑥

∗) ∙ 𝑥′(0),    𝑖 = 1,… ,𝑚 
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0 =
𝑑

𝑑𝛼
|𝛼=0ℎ𝑖(𝑥(𝛼)) = ∇ℎ𝑖(𝑥

∗) ∙ 𝑥′(0),    𝑖 = 1,… ,𝑚 

This shows that for an arbitrary curve 𝑥(∙) in 𝐷 with 𝑥(0) = 𝑥∗, its tangent 

vector must satisfy 

∇ℎ𝑖(𝑥
∗) ∙ 𝑥′(0) = 0, for each 𝑖 = 1,… ,𝑚 

Actually, it is possible to prove that the converse is also true: 

Every vector 𝑑 ∈ ℝ𝑛 such that 

∇ℎ𝑖(𝑥
∗) ∙ 𝑑 = 0, for each 𝑖 = 1,… ,𝑚 

Is a tangent vector to 𝐷 at 𝑥∗ corresponding to some curve. 
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Characterization of the tangent space 

The tangent space 𝑇𝑥∗𝐷 is the space generated by the linear combination of 

the vectors 𝑑 that satisfy 

∇ℎ𝑖(𝑥
∗) ∙ 𝑑 = 0, for each 𝑖 = 1,… ,𝑚 
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First order necessary conditions of minimum under equality constraints 

We have seen that 

∇𝑓(𝑥∗)𝑥′(0) = 0 

Since 𝑥(∙) can be chosen in an arbitrary way, it follows that 

For all 𝑑 ∈ 𝑇𝑥∗𝐷,        ∇𝑓(𝑥∗) ∙ 𝑑 = 0 

The first order necessary conditions of minimum under equality constraints my 

be written 

∇𝑓(𝑥∗) ∙ 𝑑 = 0      ∀𝑑:  ∇ℎ𝑖(𝑥
∗) ∙ 𝑑 = 0 
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First order necessary conditions of minimum under equality constraints: 

∇𝑓(𝑥∗) ∙ 𝑑 = 0      ∀𝑑:  ∇ℎ𝑖(𝑥
∗) ∙ 𝑑 = 0 

We will now prove that these conditions are equivalent to 

At a regular point, the gradient of 𝑓 at 𝑥∗ is a linear combination of the 

gradients of the constraint functions ℎ1, … , ℎ𝑚 at 𝑥∗: 

∇𝑓(𝑥∗) ∈ 𝑠𝑝𝑎𝑛{∇ℎ𝑖(𝑥
∗), 𝑖 = 1,… ,𝑚} 
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Proof 

If the claim is not true, there is a 𝑑 ≠ 0 satisfying ∇ℎ𝑖(𝑥
∗) ∙ 𝑑 = 0, 𝑖 = 1,… ,𝑚, 

such that 

∇𝑓(𝑥∗) = 𝑑 − ∑𝜆𝑖
∗∇ℎ𝑖(𝑥

∗)

𝑚

𝑖=1

 

for some 𝜆1
∗ , … , 𝜆𝑚

∗ . But then 

∇𝑓(𝑥∗) ∙ 𝑑 = (𝑑 − ∑𝜆𝑖
∗∇ℎ𝑖(𝑥

∗)

𝑚

𝑖=1

) ∙ 𝑑 = 𝑑 ∙ 𝑑 ≠ 0 

That contradicts the assumption that 

∇𝑓(𝑥∗) ∙ 𝑑 = 0.                                           Q.e.d. 
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First order necessary condition for constrained optimality 

The condition 

∇𝑓(𝑥∗) ∈ 𝑠𝑝𝑎𝑛{∇ℎ𝑖(𝑥
∗), 𝑖 = 1,… ,𝑚} 

means that, at the regular points, there exist real numbers 𝜆1
∗ , … , 𝜆𝑚

∗  (known as 

Lagrange multipliers) such that the 1st order necessary condition for optimality 

holds: 

∇𝑓(𝑥∗) + 𝜆1
∗∇ℎ1(𝑥

∗) + ⋯+ 𝜆𝑚
∗ ∇ℎ𝑚(𝑥∗) = 0 
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Geometrical interpretation 

𝑛 = 3, 𝑚 = 2 

ℎ1(𝑥) = 0, 𝑥 ∈ ℝ3 defines a 

bidimensional surface. 

Idem for ℎ2(𝑥) = 0. 

The intersection of these two 

surfaces defines 𝐷. 

∇𝑓(𝑥∗) is a linear combination of 

∇ℎ1(𝑥
∗) and ∇ℎ2(𝑥

∗) and is 

orthogonal to the tangent to 𝐷 at 𝑥∗. 
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The Lagrange dual function 

[BV2004] ch. 5 

Special case for equality constraints 

Primal problem 

 Minimize 𝑓(𝑥)    𝑓:ℝ𝑛 → ℝ, 𝐷 = 𝑑𝑜𝑚 𝑓 

 Subject to ℎ𝑖(𝑥), 𝑖 = 1,… ,𝑚 

Lagrangian function:    𝐿: ℝ𝑛 × ℝ𝑚 → ℝ    𝑑𝑜𝑚 𝐿 = 𝐷 × ℝ𝑛 

 𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖ℎ𝑖(𝑥)𝑚
𝑖=1  

 𝜆 = [𝜆1 … 𝜆𝑚] Lagrange multiplier vector or dual variable 

Warning: Don’t get confused with the integrand function of the cost in optimal control problems that is also 

called “Lagrangian function”. This is another function, although in some problems they are the same. 
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Dual function 

𝑔(𝜆) = 𝐿(𝑥, 𝜆)𝑥∈𝐷
𝑖𝑛𝑓

 

The dual function yields lower bounds on the optimal value of the primal 

problem. 

The best lower bound is given by the solution of the dual problem 

  𝑔(𝜆)
𝜆

arg𝑚𝑎𝑥
. 
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KKT (Karush-Kuhn-Tucker) conditions 

Lagrangian function     𝐿(𝑥, 𝜆) = 𝑓(𝑥) + ∑ 𝜆𝑖ℎ𝑖(𝑥)𝑚
𝑖=1  

Special case for equality constraints [L2012] p.15 

At (𝑥∗, 𝜆∗), 

{

𝜕

𝜕𝑥
𝐿(𝑥, 𝜆) = 0

𝜕

𝜕𝜆
𝐿(𝑥, 𝜆) = 0

          or         [
∇𝑓(𝑥∗) + ∑ 𝜆𝑖∇ℎ𝑖(𝑥)𝑚

𝑖=1

ℎ(𝑥∗)
] = 0 

Loosely speaking, adding Lagrange multipliers converts a constrained problem 

into an unconstrained one. 

Warning: There are cases in which the stationary point of the Lagrangian 

function is not the constrained minimum. 
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How to solve the KKT conditions 

1)  In 
𝜕𝐿

𝜕𝑥
= 0 express 𝑥 in terms of 𝜆; 

2) Insert the expression of 𝑥 in terms of 𝜆 in 
𝜕𝐿

𝜕𝜆
= ℎ(𝑥) = 0 ; 

3) Solve the equation on 𝜆 that results from step 2) to get the stationary 

points for 𝜆 (𝜆∗); 

4) Go back to the expressions of 𝑥 in terms of 𝜆 obtained in step 1), and use 

the results of step 3) co cancel 𝜆 and obtain 𝑥∗. 

  



Calculus of Variations and Optimal Control  69 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Exercise 13 (KKT conditions) 

Consider the problem 

  𝑓(𝑥1, 𝑥2) = 𝑥1 + 1𝑥1,𝑥2
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  

Subject to ℎ(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 − 1 = 0 

a)  Write the Lagrangian function 

b)  Write the KKT conditions 

c) Find the stationary points of the Lagrangian function 

d) Make a sketch to provide a geometrical interpretation 
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Solution 

a) 𝐿(𝑥1, 𝑥2, 𝜆) = 𝑥1 + 1 + 𝜆(𝑥1
2 + 𝑥2

2 − 1) 

b) 
𝜕𝐿

𝜕𝑥1
= 1 + 2𝜆𝑥1 = 0          

𝜕𝐿

𝜕𝑥2
= 2𝜆𝑥2 = 0          

𝜕𝐿

𝜕𝜆
= 𝑥1

2 + 𝑥2
2 − 1 = 0 

c) From the first two equations:   𝑥1 = −
1

2𝜆
       𝑥2 = 0 

Insert these values for 𝑥1 and 𝑥2 in the 3rd equation and solve with respect to 𝜆 

1

4𝜆2 − 1 = 0   →    𝜆 =
1

2
 

Hence, 𝑥1 = −1 
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e) The constraint 𝑥1
2 + 𝑥2

2 − 1 = 0 

defines a circumference in the 

(𝑥1, 𝑥2) plane. The function 

𝑓(𝑥1, 𝑥2) = 𝑥1 + 1 defines a plane in 

the space (𝑥1, 𝑥2, 𝑓). The intersection 

of this plane with the cylinder having 

as a basis that circumference yields 

the elipse 𝐸, made by points with ordinate given by the value of 𝑓 at the 

feasible points (the points of the circumference that satisfy the constraint). 

The minimum value for the constrained problem is attained at (−1,0), in 

accordance with the stationary point of the KKT conditions. 
  



Calculus of Variations and Optimal Control  72 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Exercise 14 – Least-squares solution of linear equations 

Let 𝐴 ⊂ ℝ𝑝×𝑛 a matrix, and 𝑥 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑝 vectors. 

Consider the system of under-determined equations 

𝐴𝑥 = 𝑏 

Assume that 𝑟𝑎𝑛𝑘 (𝐴𝐴𝑇) = 𝑝 so that the inverse of 𝐴𝐴𝑇 exists. 

Since there are infinite values of 𝑥 that satisfy the equation, one possibility is to 

look for the minimum norm solution. As such, use the KKT conditions to solve 

the following minimization problem with equality constraints 

Minimize 𝑥𝑇𝑥 

Subject to 𝐴𝑥 − 𝑏 = 0 
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Solution 

𝐿(𝑥, 𝜆) = 𝑥𝑇𝑥 + 𝜆𝑇(𝐴𝑥 − 𝑏) 

∇𝑥𝐿 = 2𝑥𝑇 + 𝜆𝑇𝐴 = 0     or, transposing   2𝑥 + 𝐴𝑇𝜆 = 0 

From which    𝑥 = −
1

2
𝐴𝑇𝜆 

∇𝜆𝐿 = 𝑥𝑇𝐴𝑇 − 𝑏𝑇 = 0 → 𝐴𝑥 − 𝑏 = 0 

Insert now 𝑥 = −
1

2
𝐴𝑇𝜆 in this expression: 

−
1

2
𝐴𝐴𝑇𝜆 − 𝑏 = 0    →     𝜆 = −2(𝐴𝐴𝑇)−1𝑏 

𝑥 = −
1

2
𝐴𝑇(−2(𝐴𝐴𝑇)−1𝑏)      →     𝑥 = 𝐴𝑇(𝐴𝐴𝑇)−1𝑏 
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Preview of infinite dimensional optimization problems 

• [L2012] p. 17-24. 

• [L1969]. This is not the road followed in this course, but is certainly a very 

interesting (and classical) reference for those who want to start going 

deeply in infinite dimensional optimization. In its crystalline style that 

makes difficult issues to look understandable and attractive, Luenberger 

guides the reader in a functional analysis travel along optimization in 

infinite dimensional spaces, up to optimal control. 
 

[L1969] D. G. Luenberger. Optimization by vector space methods. John Wiley 

& Sons, 1969. Modern reprint by Wiley Interscience. 
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Functionals 

Functionals are maps of a 

vector space of functions 𝑉 on 

ℝ0
+  

𝑉 is infinite dimensional. 

Many different choices possible 

for 𝑉 

Local minima imply the notion of closeness (norm) 

In function spaces different choices of norm lead to drastically different notions 

of closeness. 
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A few notions on metric and normed spaces 

For further examples see 

[KREYSIG1978] 

E. Kreysig (1978). Introductory Functional Analysis with Applications. Wiley. 
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Cartesian product of two sets 

Given two sets A  and B  the cartesian product of A  by B , is denoted by 

BA  and is given by the set of all ordered pairs in which the first element 

belongs to A  and the second to B : 

( ) ByAxyxBA = ,|,  
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Metric space 

Let M  be a set and d  a function of MM   on ℝ0
+. The couple ( )dM ,  is 

said to be a metric space if the function d  (called metrics or distance) satisfies 

the following properties: 

For all Mzyx ,, : 

1) 0),( yxd , being 0),( =yxd  iff yx =  

2) ),(),( xydyxd =  

3) The triangular inequality holds 

),(),(),( zydyxdzxd +  
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Example of a metric space 

Let M  be the set of all the continuous functions in a closed set  10 , tt . Given 

Mgf ,  define the distance as 

 
)()(max),(

10 ,
tgtfgfd

ttt
−=

  

Remark that the maximum exists since )()( tgtf − is continuous. 

 

Show that  ),( gfd satisfies the properties of a distance. 

 

Hint: Use the properties of the modulo function. 
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Proof 

1) Since the modulus is non-negative, 0),( gfd . Furthermore, if gf =  

then 
00max)()(max),(

1010

==−=
 tttttt

tgtfgfd
. 

On the other way, if 0),( =gfd  then 
0)()(max

10

=−


tgtf
ttt  and 

 10 ,)()( ttttgtf =  

2) 
),()()(max)()(max),(

1010

fgdtftgtgtfgfd
tttttt

=−=−=
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3) 
)()(max),(

10




zxzxd
tt

−=
  Let *  be the value of the independent 

variable where the maximum is attained. Then, using the triangle 

inequality for the modulus of real numbers: 
 

),(),()()(max)()(max

*)(*)(*)(*)(

*)(*)()()(max),(

1010

10

zydyxdzyyx

zyyx

zxzxzxd

tttt

tt

+=−+−

−+−

−=−=















 

Q.e.d. 
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Function spaces to consider 

Typical function spaces to consider are spaces of functions that map 

[𝑎, 𝑏] ⊂ ℝ → ℝ𝑛 

Different spaces result from placing different requirements on these functions. 

Examples: 

• 𝐶𝑘([𝑎, 𝑏], ℝ𝑛), 𝑘 ≥ 0 

Function elements are assumed to be 𝑘 times differentiable. 

• Piecewise continuous functions 

• Measurable functions (this case is not addressed in this Course) 
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Convergence 

Given a sequence  
=0kkx  of elements in a metric space, we say that it 

converges to the limit Mx *   if 0*),( →xxd k  when →k . 

 

This definition reduces the notion of “convergence” in a metric space to 

convergence to 0 in ℝ. 
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Uniqueness of the limit 

When it exists, the limit is unique. 

Assume that there are two limits *x  and **x . Then, 

0*)*,()*,(*)**,( →+ xxdxxdxxd kk  

Therefore, 0*)**,( =xxd  and hence it must be (by the properties of distance)  

*** xx =  
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Cauchy sequences 

A sequence  
=0kkx  of elements of M  is a Cauchy sequence if 

0),( →mn xxd  when →mn,  . 

 

Proposition: If  
=0kkx  converges, then it is a Cauchy sequence. 

Proof Let the limit be *x . From the triangular inequality 

)*,(*),(),( mnmn xxdxxdxxd +  

When →mn,  both terms on the right approach zero, and hence 

0),( →mn xxd , q. e. d. 
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Complete metric spaces 

Although all convergence sequences are Cauchy sequences, the converse is 

not true: Depending on the space, there can be Cauchy sequences that do not 

converge to an element in the space. 
 

Definition A metric space is complete if all Cauchy sequences converge. 
 

Examples 

ℝ is complete. 

Is ℚ complete?  

Is the set of 𝐶1 functions defined in a interval complete? 
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Topological concepts 

Consider a metric space (𝑉, 𝑑). 

Given a point 𝑥0 ∈ 𝑉 and a real number 𝑟 > 0, we define 

• The open ball: 𝐵(𝑥0, 𝑟) = {𝑥 ∈ 𝑉|𝑑(𝑥, 𝑥0) < 𝑟} 

• The closed ball: �̅�(𝑥0, 𝑟) = {𝑥 ∈ 𝑉|𝑑(𝑥, 𝑥0) ≤ 𝑟} 

• The sphere 𝑆(𝑥0, 𝑟) = {𝑥 ∈ 𝑉|𝑑(𝑥, 𝑥0) = 𝑟} 
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The interior of a subsect 𝐾 ⊂ 𝑉 is the set of all the points of 𝐾 such that there 

is a ball around it, of sufficiently small radius, that only contains points of 𝐾. 

 

The boundary of 𝐾 is the set of points of 𝑉 such that any ball around it always 

contains points of 𝐾 and points that do not belong to 𝐾, no matter how small is 

the radius. 
 

The set 𝐾 is said to be closed if it contains its boundary, being open otherwise. 

 

The interior of a set is an open set. 
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Recollection of a few algebraic concepts 

Indeed very, very, few. But if you want to know more you may look at 

F. M. Goodman (1998). Algebra. Prentice Hall. 
 

Algebra might look somewhat static, but is the key to understand dynamical 

systems. It is worth studying it. The young Evariste Galois and Niels 

Abel set the basis of Group theory and the existence of formulas that 

express the solution of polynomial equations in a finite number of 

root extraction operations. Inspired by their work, Sophus Lie developed an 

algebraic theory for differential equations. 

  



Calculus of Variations and Optimal Control  90 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

In both cases symmetry played a major role, the same concept that 

is a corner stone in Variational Mechanics, where every quantity 

that is conserved is associated to a symmetry (that is to say, an 

invariant) of the Euler-Lagrange equation, a fact established by 

Emmy Noether in the early XX century. 
 

Both Galois and Lie have Romanesque stories associated to them. 

Galois wrote some notes about his theory on the eve of a duel in 

the sequel of which he died. “Je n’ait pas du temps” – I have not 

enough time – , he wrote in anguish. 
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The story of Lie is much less dramatic, and even fun: During the Franco-

Prussian war in 1970 he was leaving is hotel every day in Alsace 

and going to the forest to think about his mathematical problems. 

People started saying that he was a spy and when they arrested 

him they found the undisputable evidence: His notebook was covered with 

symbols that no one could understand, for sure code messages to be sent to 

the obscure powers that he was serving. When the story came to the hears of 

the President of the French Republic, Carnot, himself a scientist, he was 

released from prison. As a comment, Lie said the time spent in prison was 

very good for mathematical research. They were treating him well, feeding him 

and nothing deviated himself from work. 
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Groups 

A group 𝐺 is a set of elements equipped with a map 𝑉 × 𝑉 → 𝑉 that for any two 

elements 𝑥, 𝑦 ∈ 𝐺 associates an element denoted 𝑥 ⊗ 𝑦, such that the 

“operation” ⊗ has the following properties 

1. The operation is “associative”: ∀𝑎,𝑏,𝑐∈𝐺 , (𝑎 ⊗ 𝑏) ⊗ 𝑐 = 𝑎 ⊗ (𝑏 ⊗ 𝑐) 

2. There is an element 𝑒 ∈ 𝐺 called “identity” : ∀𝑎∈𝐺, 𝑎 ⊗ 𝑒 = 𝑒 ⊗ 𝑎 = 𝑎 

3. For each 𝑎 ∈ 𝐺 there is an element 𝑎−1 ∈ 𝐺 such that  

𝑎 ⊗ 𝑎−1 = 𝑎−1 ⊗ 𝑎 = 𝑒 

Which ones are groups: (ℕ,+), (ℕ,×), (ℤ, +), (ℤ,×), : (ℚ,+), (ℚ,×), (ℝ,+), 

(𝑅,×), Vectors on ℝ2 with the parallelogram addition rule. 
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Fields 

A field 𝐾 is a set equipped with two operations called “addition” + and 

“multiplication” ×, with identify elements called “0” and “1”, such tat 

1. (𝐾,+) is a commutative group, ∀𝑎,𝑏∈𝐾 𝑎 + 𝑏 = 𝑏 + 𝑎 

2. (𝐾\{0},×) is a commutative group, ∀𝑎,𝑏∈𝐾 𝑎 × 𝑏 = 𝑏 × 𝑎 

3. ∀𝑎∈𝐾 𝑎 × 0 = 0,  ∀𝑎∈𝐾 𝑎 × 1 = 𝑎 

4.  1 ≠ 0 

5.  Distributivity: ∀𝑎,𝑏,𝑐∈𝐾 , 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 and 

 (𝑏 + 𝑐) × 𝑎 = 𝑏 × 𝑎 + 𝑐 × 𝑎 

Examples of fields: ℚ, ℝ, ℂ, with the “usual” addition and multiplication. 
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Vector spaces 

A vector space (or linear space) 𝑉 over a field 𝐾 is a nonempty set of elements 

𝑥, 𝑦, 𝑧, …, called vectors, with the operations 

• Vector addition → commutative group 

• Multiplication of vectors by scalars (𝛼, 𝛽,…  ∈ 𝐾)), such that 

1.  𝛼(𝛽𝑥) = (𝛼𝛽)𝑥 

2.   1𝑥 = 𝑥 

3.   𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛽𝑦 

4.   (𝛼 + 𝛽)𝑥 = 𝛼𝑥 + 𝛽𝑥 

Hereafter we will take 𝐾 = ℝ. 
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Exercise 

Prove that 

1.  0𝑥 = 0̅ 

2.  𝛼0̅ = 0̅ 

3.  (−1)𝑥 = −𝑥 
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Norms 

𝑉 a vector space. 

𝑉 is a normed space if there is a function 𝑉 → ℝ0
+ 

𝑦 ∈ 𝑉 → ‖𝑦‖ ∈  ℝ0
+ 

such that 

1.  ∀𝑦∈𝑉 , ‖𝑦‖ ≥ 0,     ‖𝑦‖ = 0 ⇒ 𝑦 = 0 

2.  ∀𝑦∈𝑉 , ∀𝜆∈ℝ  ‖𝜆𝑦‖ = |𝜆| ∙ ‖𝑦‖ 

3.  Triangle inequality: ∀𝑥,𝑦,𝑧∈𝑉 , ‖𝑦 + 𝑧‖ ≤ ‖𝑦‖ + ‖𝑧‖ 
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Distance induced by a norm 

𝑉 is a normed space. 

The norm induces a distance 𝑑: 𝑉 × 𝑉 → ℝ0
+ by 

𝑑(𝑦, 𝑧) = ‖𝑦 − 𝑧‖ 

 

Exercise 

Prove that 𝑑 as defined above satisfies the conditions to be a distance. 
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Examples of normed spaces    [L2012] p.18 

Space 𝐶0([𝑎, 𝑏], ℝ𝑛) 

‖𝑦‖0 ≔ ‖𝑦(𝑥)‖𝑎≤𝑥≤𝑏
𝑚𝑎𝑥  

Where ‖∙‖ without any index denotes the standard Euclidean norm. 

The above norm is also known as the 𝐿∞ norm. 

 

Space 𝐶1([𝑎, 𝑏], ℝ𝑛) 

‖𝑦‖1 ≔ ‖𝑦(𝑥)‖𝑎≤𝑥≤𝑏
𝑚𝑎𝑥 + ‖𝑦′(𝑥)‖𝑎≤𝑥≤𝑏

𝑚𝑎𝑥  

 

𝐿𝑝 norm:                         ‖𝑦‖𝐿𝑝
≔ (∫ ‖𝑦(𝑥)‖𝑝𝑑𝑥

𝑏

𝑎
)
1/𝑝
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Local minima of a functional [L2012] p. 19 

𝑉 is a vector space of functions equipped with a norm ‖∙‖. 

𝐴 ⊂ 𝑉 

𝐽 a real valued function defined on 𝐴 (a functional) 

 

Definition: A function 𝑦∗ ∈ 𝐴 is a local minimum of 𝐽 over 𝐴 if 

∃ >0: ∀𝑦∈𝐴: ‖𝑦 − 𝑦∗‖ < 휀 , then 𝐽(𝑦∗) ≤ 𝐽(𝑦)  

 

The notions of strict local minima, global minimum, and the corresponding 

notions for maxima are defined in a similar way. 
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First variation 

𝑉 a function space, 𝐽 → ℝ. 

Definition: A linear functional 𝛿𝐽|𝑦: 𝑉 → ℝ is called the first variation of 𝐽 at 𝑦 if 

∀𝜂∈𝑉 , ∀𝛼∈ℝ, 𝐽(𝑦 + 𝛼𝜂) = 𝐽(𝑦) + 𝛿𝐽|𝑦(𝜂)𝛼 + 𝑜(𝛼) 

where 𝑜(𝛼) satisfies:    lim
𝛼→0

𝑜(𝛼)

𝛼
= 0 

 

Requirement that 𝛿𝐽|𝑦 is linear: 

𝛿𝐽|𝑦(𝛼1𝜂1 + 𝛼2𝜂2) = 𝛼1𝛿𝐽|𝑦(𝜂1) + 𝛼2𝛿𝐽|𝑦(𝜂2) 

∀𝜂1,𝜂2∈𝑉 , ∀𝛼1,𝛼2∈ℝ 
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Gateaux derivative 

The Gateaux derivative is defined as 

𝐺(𝑦, 𝜂) ≔ lim
𝛼→0

𝐽(𝑦 + 𝛼𝜂) − 𝐽(𝑗)

𝛼
 

The Gateaux derivative is equal to the first variation 

𝛿𝐽|𝑦(𝜂) =  𝐺(𝑦, 𝜂) 

Defining                                      𝑔(𝛼) ≔ 𝐽(𝑦 + 𝛼𝜂) 

Then                                             𝛿𝐽|𝑦(𝜂) = 𝑔′(0) 

 

A related concept is the Fréchet derivative, that will not be used here. 
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René Gateaux (1889-1914), A young and promising French 

mathematician  that died prematurely at the beginning of World 

War I. 
 

Maurice Fréchet (1878–1973) was a French mathematician who 

made major contributions to the topology of point sets and 

introduced the concept of metric spaces. He also made 

important pioneering contributions to functional analysis in 

relation to compactness and the representation theorem. 

  

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Metric_space
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Exercise 18 (Example 5-6 of [ATHANS2007], p. 239) 

[ATHANS2007] M. Athans and P. Falb. Optimal Control. MacGraw-Hill, 1966. Dover reprint, 2007. 

Consider the space 𝑉 = 𝐶0([0,1], ℝ) 

Let 𝜑:ℝ → ℝ be a 𝐶1 function 

Let 𝐽: 𝑉 → ℝ,      𝐽(𝑦) ≔ ∫ 𝜑(𝑦(𝑥))𝑑𝑥
1

0
 

Compute the first variation of 𝐽, 𝛿𝐽|𝑦(𝜂). 

 

Hints: Consider the function 𝜑(𝑦(𝑥) + 𝛼𝜂) and expand it in a Taylor series in 𝛼. 

Use the definition of first variation 𝐽(𝑦 + 𝛼𝜂) = 𝐽(𝑦) + 𝛿𝐽|𝑦(𝜂)𝛼 + 𝑜(𝛼) 

Assume that you can interchange the limit and the integral. 
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Solution 

𝐽(𝑦 + 𝛼𝜂) = ∫𝜑(𝑦(𝑥) + 𝛼𝜂(𝑥))𝑑𝑥

1

0

= ∫𝜑(𝑦(𝑥)) + 𝛼𝜑′(𝑦(𝑥))𝜂(𝑥) + 𝑜(𝛼))𝑑𝑥

1

0

= 

= 𝐽(𝑦) + 𝛼 ∫𝜑′(𝑦(𝑥))

1

0

𝜂(𝑥)𝑑𝑥 + 𝑜(𝛼) 

Remark that     lim
𝛼→0

∫ 𝑜(𝛼)𝑑𝛼
1
0

𝛼
= ∫ lim

𝛼→0

𝑜(𝛼)

𝛼

1

0
𝑑𝑥 = ∫ 0𝑑𝑥

1

0
= 0 

From the definition of first variation it follows that 

𝛿𝐽|𝑦(𝜂) = ∫ 𝜑′(𝑦(𝑥))
1

0
𝜂(𝑥)𝑑𝑥. 
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First order necessary condition for optimality 

Let 𝑦∗ be a local minimum of 𝐽 over a subset 𝐴 ⊂ 𝑉. 

A perturbation 𝜂 ∈ 𝑉 is admissible if 𝑦∗ + 𝛼𝜂 ∈ 𝐴 for all 𝛼 sufficiently close to 

zero. 

As a function of 𝛼,  𝐽(𝑦∗ + 𝛼𝜂) has a local minimum at 𝛼 = 0 for each 

admissible perturbation 𝜂. 

 

Necessary condition for optimality 

𝛿𝐽|𝑦(𝜂) = 0  for all admissible 𝜂 
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Bilinear functionals and quadratic functionals 

A real valued functional 𝐵 on 𝑉 × 𝑉 is called bilinear if it is linear in each 

argument (when the other one is fixed). 

Setting 𝑄(𝑦) ≔ 𝐵(𝑦, 𝑦) we then obtain a quadratic functional or quadratic form 

on 𝑉. 
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Second variation 

A quadratic form 𝛿2𝐽|𝑦(𝜂): 𝑉 → ℝ is called the second variation of 𝐽 at 𝑦 if 

∀𝜂∈𝑉 , ∀𝛼∈ℝ, 𝐽(𝑦 + 𝛼𝜂) = 𝐽(𝑦) + 𝛿𝐽|𝑦(𝜂)𝛼 + 𝛿2𝐽|𝑦(𝜂)𝛼2 + 𝑜(𝛼2) 

 
Example (continuation of exercise 18) 

Let 𝐽: 𝑉 → ℝ,      𝐽(𝑦) ≔ ∫ 𝜑(𝑦(𝑥))𝑑𝑥
1

0
  but assume now that 𝜑 is 𝐶2. 

Since 

𝐽(𝑦 + 𝛼𝜂) = 𝐽(𝑦) + 𝛼 ∫ 𝜑′(𝑦(𝑥))
1

0
𝜂(𝑥)𝑑𝑥 + 1

2
𝛼2 ∫ 𝜑′′(𝑦(𝑥))𝜂(𝑥)𝑑𝑥

1

0
+ 𝑜(𝛼2), 

the second variation is 

𝛿2𝐽|𝑦(𝜂) = 1

2
∫ 𝜑′′(𝑦(𝑥))𝜂(𝑥)𝑑𝑥

1

0
.  
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Second-order necessary condition for optimality 

 If 𝑦∗ is a local minimum of 𝐽 over 𝐴 ⊂ 𝑉, then, for all admissible perturbations 

𝜂 we have 

𝛿2𝐽|𝑦(𝜂) ≥ 0 

 

In other words, the second variation of 𝐽 at 𝑦∗ must be positive semidefinite on 

the space of admissible perturbations. 
 

The proof follows the same arguments of the one given in the finite 

dimensional case. 
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Sufficient condition for optimality 

Based on a superficial comparison with the finite dimensional case, one might 

be tempted to state that a sufficient for optimality is 𝛿𝐽|𝑦(𝜂) = 0  and 

𝛿2𝐽|𝑦(𝜂) > 0 

Actually, this is not true. Further discussion will be made afterwards. 

 


