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Syllabus 

1. Examples of problems addressed by the course. 

2. Background on finite and infinite dimensional optimization. 

3. Calculus of variations 

4. Pontryagin’s Principle 

5. The Hamilton-Jacobi-Bellman equation 

6. The Linear Quadratic problem 

7. Optimal Control Problems in Discrete time 

8. Numerical Methods 
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1.Examples of problems addressed by the course 

 

Objective: Introduce a novel class of optimization problems, that are solved 

with respect to infinite dimensional variables – Problems of Calculus of 

Variations and Optimal Control. 

 

Refs: [L2012], 26-31. 
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A classical problem: The brachistochrone curve 
 

What is the shape of the curve that connects points A and B such data a point 

mass, under the force of gravity alone, slides (frictionless) from A to B in 

minimum time? 

 

  

x

y

A (0, 0)

B (x , y )
2 2

P=mg

Which function y(x) 

minimizes the 

travel time between 

A and B? 
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Computing the travel time assuming y x x x( ) 0 2   known 

Without friction, the increase of kinetic energy is equal to the loss of potential 

energy, and 
1

2

2mv mgy  or 

v x gy x( ) ( ) 2  

Let 𝑠 be the arclength. From Pythagoras theorem we get the kinematics 

relation 

  v x
ds

dt

dx dy

dt

dy

dx

dx

dt
y x

dx

dt
( ) . . 


 









   

2 2 2
2

1 1
 

  



Calculus of Variations and Optimal Control  6 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Energy balance: 

v x gy x( ) ( ) 2  

Kynematics: 

  v x y x
dx

dt
( ) .  1

2

 

Eliminate 𝑣 by equating the r.h.s.: 

  2 1
2

gy x y x
dx

dt
( ) .  
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  2 1
2

gy x y x
dx

dt
( ) .  

 

or 

  
 

dt

dx

y x

gy x


 1

2

2

 

Traveling time is obtained by integration 

  
T

y x

gy x
dx

x


 


1

2

2

0

2

( )  
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If we know the function 𝑦(𝑥), we can compute the travel time  

  
T

y x

gy x
dx

x


 


1

2

2

0

2

( )  
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For instance, if the path to follow is a straight line between A and B, 

y x x( )    with  
y

x
2

2
 

 

 

 

 

The travel time for the rectilinear path is 

  
T

y x

gy x
dx

g
x dx

g
x

x x


 







 
1

2

1

2

1

2
2

2
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If we want to compare the travel time for the rectilinear path with the one of 

another curve (for instance an arc of circle), we can do it, and decide which 

one leads to the pastest path. 
 

However, the point is that we don’t know the shape of the optimal curve. 

 

We want to optimize with respect to the curve and this is an infinite 

dimensional problem, because it depends on the position of the points on the 

curve (that are infinitely many). 
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The expression 

  
T

y x

gy x
dx

x


 


1

2

2

0

2

( )  

defines the functional to minimize. 

To each differentiable function y x( ) defined 

on  0 2,x  that satisfies the boundary 

conditions y( )0 0  and y x y( )2 2  

if associates a real number (the 

travel time).  

 
  

 

x

y

J(y)=T R

A

B
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The Brachistochrone problem was published in 1 January 

1667 by Johann Bernouilli, as a challenge to the scientific 

community: Nothing is more attractive to intelligent persons 

than an honest problem that challenges them and which 

solution brings fame and stays as a lasting monument.  

60 years before, Galileo new already that the minimum time 

trajectory could not be a straight line, although he thought, 

erroneously, that it was a circumference arc. 

 

This challenge was tackled by six of the most brilliant minds of the time: His elder 

broither Jacob, Leibniz, Tschirnhaus, l'Hopital and Newton (who published his solution 

anonymously). 
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An historical perspective (with technical content) of the Brachistochrone 

problem and of its relations with Optimal Control may be seen in 
 

Sussmann, H. J. e J. C. Willems (1997). 300 Years of Optimal Control: From 

the Brachystochrone to the Maximum Principle. IEEE Control Systems, 

17(3):32-44. 
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A machine to exemplify the 

brachistochrone, Museu Pombalino 

de Física da Universida de Coimbra, 

Portugal. 

The challenge of J. Bernouilli as 

published in Acta Eroditorum 
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What is the relation between ancient Rome poetry, the Phoenicians and 

Control and Estimation theory?  
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Queen Dido and the foundation of Charthage 

       
  

According to an ancient roman poem, 

the Phoenician Dido was allowed to 

found the city of Carthage in the land 

she could embrace with a cow skin. 

She sliced the skin to form a long rope 

and disposed it in a shape that 

maximizes as much land as possible. 

This was probably the first variational 

problem ever considered (although 

her majesty the queen Dido was 

never enrolled in CVOC!). 
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Dido’s isoperimetric problem 

 

What is the shape of 𝑦 such that the area under it between 𝑎 and 

𝑏 is maximum, under the constraint that the length of the graph of 

𝑦 is a given constant? 

[L2012] p.26, 27.  

a b x

y

J
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Get a formula to the length of the graph: 

 

Divide the line into strips 

∆𝑠 = √∆𝑥2 + ∆𝑦2    or   ∆𝑠 = √1 + (
∆𝑦

∆𝑥
)

2
∆𝑥 

Total length:    𝑠𝑡𝑜𝑡 = ∑ √1 + (
∆𝑦

∆𝑥
)

2
∆𝑥   (sum over all elements) 

  

a b x

y

x

y
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𝑠𝑡𝑜𝑡 = ∑ √1 + (
∆𝑦

∆𝑥
)

2
∆𝑥   

In the limit when ∆𝑥 → 0 

𝑆𝑡𝑜𝑡 = ∫ √1 + (
𝑑𝑦

𝑑𝑥
)

2

𝑑𝑥
𝑏

𝑎

 

This expression for the arc-length assumes that 𝑦 is 𝐶1([𝑎, 𝑏] → ℝ). 

 

Remember the above expression for arc-length. 

 

A function  [𝑎, 𝑏] → ℝ is of class 𝐶0 if it is continuous. It is of class 𝐶𝑛, 𝑛 ≥ 1 if it 

is continuous and its first 𝑛 derivatives are continuous.  
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Formulation of DIDO’s isoperimetric problem 

Find 𝑦 ∈ 𝐶1([𝑎, 𝑏] → ℝ) that 

 Minimize 𝐽 = ∫ 𝑦(𝑥)𝑑𝑥
𝑏

𝑎
 

 Subject to 

  ∫ √1 + (𝑦′(𝑥))2𝑑𝑥
𝑏

𝑎
= 𝐶0, 

with 𝐶0 ∈ ℝ+ a constant. 

 

The solution is an arc of circle. 
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a b x

y

y
0

 

The catenary    [L2012] p.29 

Find the shape of a rope of a given length 𝐶0, with uniform mass density that is 

suspended freely between two fixed points 𝑦(𝑎) = 𝑦0 and 𝑦(𝑏) = 𝑦1. 

 

It is assumed that the rope takes the shape that 

minimizes its potential energy. 

Consider the case in which 𝑦0 = 𝑦1 and the rope does 

not touch the ground. 

  



Calculus of Variations and Optimal Control  22 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Rope potential energy 

An element of rope between 𝑥 and 𝑥 + 𝑑𝑥 has a mass 𝑚 = 𝛾√(∆𝑥)2 + (∆𝑦)2 

where 𝛾 is the rope specific mass. 

Since the elemnt of mass is at an eight 𝑦(𝑥), it has a potential energy 

𝑚𝑔𝑦 = 𝛾𝑔𝑦√(∆𝑥)2 + (∆𝑦)2 = 𝛾𝑔𝑦√1 + (
∆𝑦

∆𝑥
)

2

∆𝑥 

Potential energy of all the elements = 𝛾𝑔 ∑ 𝑦(𝑥)√1 (
∆𝑦

∆𝑥
)

2
∆𝑥  

Making ∆𝑥 → 0, the potential energy is seen to be 

𝐽 = 𝛾𝑔 ∫ 𝑦(𝑥)√1 + (𝑦′(𝑥))2𝑑𝑥
𝑏

𝑎
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Formulation of the catenary problem 

Find 𝑦 ∈ 𝐶1([𝑎, 𝑏] → ℝ) such that 𝑦(𝑎) = 𝑦(𝑏) = 𝑦0 and that  

 Minimize  

𝐽 = ∫ 𝑦(𝑥)√1 + (𝑦′(𝑥))2𝑑𝑥
𝑏

𝑎

 

 Subject to 

∫ √1 + (𝑦′(𝑥))2𝑑𝑥
𝑏

𝑎
= 𝐶0, 

with 𝐶0 ∈ ℝ+ a constant. 

The solution is given by 𝑦(𝑥) = 𝑐𝑜𝑠ℎ (
𝑥

𝐶
), 𝑐 > 0, modulo a translation along 𝑥. 
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a b x

y

y
0

y
1

x

 

Basic Calculus of Variations Problem 

Among all 𝐶1 curves 𝑦: [𝑎, 𝑏] → ℝ that the given boundary conditions 

𝑦(𝑎) = 𝑦0,  𝑦(𝑏) = 𝑦1, 

Find the (local) minima of the cost function 

𝐽(𝑦) ≔ ∫ 𝐿(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
𝑏

𝑎

𝑑𝑥 

 

𝐿: ℝ × ℝ × ℝ → ℝ is the “lagrangian” or 

“running cost”.  

 

Can be extended to 𝑦: [𝑎, 𝑏] → ℝ𝑛 
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Solution of the basic CV problem 

A necessary condition for a 𝐶1([𝑎, 𝑏] → ℝ) function 𝑦 to be an extremum 

(maximum or minimum) of the CV basic problem 

Minimize  𝐽(𝑦) ≔ ∫ 𝐿(𝑥, 𝑦(𝑥), 𝑦′(𝑥)
𝑏

𝑎
𝑑𝑥 

s. t. 𝑦(𝑎) = 𝑦0,  𝑦(𝑏) = 𝑦1  

is that it satisfies the Euler-Lagrange equation 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) 

 
We need to develop new tools to solve these infinite dimensional problems, 
that generalize the method of “equating the derivative to zero”. 
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Exercise 1 – A simple CV problem 

Use the EL equation 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) 

to find the extremal for the following fixed end-points problem: 

 minimize 𝐽(𝑦) = ∫ ((𝑦′)2 + 2𝑦 𝑠𝑖𝑛 𝑥)𝑑𝑥
𝜋

0
 

 s. t. 𝑦(0) = 𝑦(𝜋) = 0 
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Solution: 

𝐿 = (𝑦′)2 + 2𝑦 sin 𝑥 

𝜕𝐿

𝜕𝑦
= 2 sin 𝑥    

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) =

𝑑

𝑑𝑥
2𝑦′ = 2�̈� 

Thus, the EL eq. is in this case 

𝑦′′ = sin 𝑥 

𝑦′ = − cos 𝑥 + 𝛼,    𝑦 = − sin 𝑥 +  𝛼𝑥 + 𝛽 

Apply the boundary conditions: 

𝑦(0) = − sin(0) + 𝛼0 + 𝛽 = 𝛽 ⇒  𝛽 = 0,  𝑦(𝜋) = − sin(𝜋) + 𝛼𝜋 = 𝛼𝜋 ⇒  𝛼 = 0 

The solution is thus 

𝑦 = − sin 𝑥 
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Extensions of the basic CV problem 

 The isoperimetric problem and integral constraints 

o Lagrange multipliers 

 Free terminal “time” 

o Requires extra conditions 

 Final value constrained to lay on a given line (or surface) 

o Requires extra conditions (transversality conditions) 
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CV problems with integral constraints 

Among all 𝐶1 curves 𝑦: [𝑎, 𝑏] → ℝ that the given boundary conditions 

𝑦(𝑎) = 𝑦0,  𝑦(𝑏) = 𝑦1, 

Find the (local) minima of the cost function 

𝐽(𝑦) ≔ ∫ 𝐿(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
𝑏

𝑎

𝑑𝑥 

Subject to the integral constraint 

∫ 𝑀(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
𝑏

𝑎

𝑑𝑥 = 𝐶0 

Approach: Solve the EL equation with the extended lagrangian 𝐿 + 𝜆∗𝑀, where 

𝜆∗ is a Lagrange multiplier. 
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The Principle of Maximum Entropy 

General problem: Find an unknown function given an incomplete set of facts 

that concern its properties. 

 

PME: Look for a function that complies with the known data, while maximizing 

the entropy. 
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Entropy and Information 

 If Jorge Jesus says: “I lost, but I am the best” 

o He says this all the time. The information content is 

very low 

 If Jorge Jesus says: “I lost because the other coach was 

better” 

o This is quite rare. The information content is very high. 

 

The information carried by the observation of an event is inversely proportional 

to the probability of the event. 

 
 

Source: Getty Images 
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Entropy and information: Discrete processes 

An event with 𝑛 possible outcomes with probabilities 𝑝𝑘, 𝑘 = 1, ⋯ , 𝑛 

The information gained by observing one particular outcome is 

𝐼𝑘 = log ( 
1

𝑝𝑘
) 

The smaller 𝑝𝑘, (the rarer the event), the larger the information gained. 

Logarithm makes the information gained by two independent events additive. 

Entropy = the total uncertainty represented by an ensemble of random events: 

𝐻 = ∑ 𝑝𝑘 log (
1

𝑝𝑘
)

𝑘

= − ∑ 𝑝𝑘 log(𝑝𝑘)

𝑘

 

Weighted sum of individual uncertainties. 
  



Calculus of Variations and Optimal Control  34 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Entropy for continuous distributions 

𝐻(𝑝) = − ∫ 𝑝(𝑥) log 𝑝(𝑥) 𝑑𝑥
Ω

 

 

𝑝 a pdf associated to the r. v. 𝑥 
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Example: Boltzmann’s kinetic theory of gas 

A gas fills a “rectangular” (one dimensional) box of length 𝐿 

A)  The probability of finding a molecule between 𝑥 and 𝑥 + 𝑑𝑥 is 

≅ 𝑝(𝑥)𝑑𝑥 

Find 𝑝 that maximizes 𝐻(𝑝) under the constraints 

(C1)      ∫ 𝑝(𝑥)𝑑𝑥 = 1
𝐿

0
 

(C2)      𝑝(𝑥) = 0 for 𝑥 < 0 or 𝑥 > 𝐿 

 

This is a variational problem with an isoperimetric constraint. 

Using the EL equation it may be shown that the solution is a uniform pdf. 

(problem to tackle in detail later in the course). 
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B)  Find the pdf 𝑝 of the energy of the molecules of the gas that 

maximizes 𝐻(𝑝) subject to 

(C1)      ∫ 𝑝(𝐸)𝑑𝐸 = 1
∞

0
 

(C2)     ∫ 𝐸𝑝(𝐸)𝑑𝐸 = �̅�
∞

0
   Given average energy of the gas 

(C3)      𝑝(𝐸) = 0 for 𝐸 < 0 

From the EL equation: 

𝜕

𝜕𝑝
(−𝑝 𝑙𝑜𝑔 𝑝 − 𝜆𝐸𝑝 − 𝛾𝑝) = 0     𝑝 = 𝑒𝑥𝑝(−1 − 𝛾 − 𝜆𝐸) 

The Lagrange multipliers 𝛾 and 𝜆 are found by imposing the constraints. 

Result (Boltzmann distribution): 

𝑝(𝐸) =
1

�̅�
𝑒−𝐸

�̅� 
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C) Find the pdf of the velocities 𝑣 of the molecules that form the gas, by 

maximizing 𝐻(𝑝) subject to the constraints 

(C1)      ∫ 𝑝(𝑣)𝑑𝑣 = 1
∞

−∞
 

(C2)     ∫ 𝑣𝑝(𝑣)𝑑𝑣 = 0
∞

−∞
   Zero mean 

(C3)      ∫ 𝑣2𝑝(𝑣)𝑑𝑣 = 𝜎2∞

−∞
   given variance 

 

Solution: Gaussian distribution. 
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A major application of the PME: High resolution spectral estimation (Burg) 
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More general CV problems 

Not addressed, but use the ideas explained in this course. 

See e.g. p. 81 [C2013] K. W. Cassel. Variational Methods, Cambridge Univ. 

Press, 2013. 

Example: For the lagrangian 

𝐿 = 𝐿(𝑥, 𝑦, 𝑦′, 𝑦′′) 

The EL equation is 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) −

𝑑2

𝑑𝑥2
(

𝜕𝐿

𝜕𝑦′′
) 

With suitable boundary conditions. 
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Other types of conditions for CV problems 

The EL equation provides a first order necessary condition for 𝐶1 functions 

(weak extrema). 

 Second order necessary conditions (Legendre condition) 

 Sufficient conditions 

 Piecewise 𝐶1 functions (strong extrema). 

o Crucial in Optimal Control (e. g. bang-bang control). 

o In this course, addressed in the context of Optimal Control only.  
 


