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Optimal Control problems 

 CV focus on a “curve” 

 There is no plant dynamics 

 There is no manipulated variable 
 

Furthermore: 

 There is the need to consider (at least) Piecewise 𝐶1 functions (e. g., 

bang-bang control) 

Need for: 

 A new problem structuring (Optimal Control) 

 Another tool: Pontryagin’s Maximum Principle (1956). 
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Example:  Control approach to therapy design in cancer 
 

 

Compute the therapy along time that yields the best compromise between  

 maximizing the therapeutic effect (minimize tumor size) 

 minimizing a measure of toxic effects (minimize total treatment) 
  

"Disturbances"
Variables imposed
externally

"Output"
Observed reaction
(e. g. Tumour size)

"Manipulated
input"
Imposed actions
(e. g. drug dose)

Internal state
dynamics
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Controlled Gompertz model 

 

Associated control problem 

 

 
  



Calculus of Variations and Optimal Control  4 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

A detour: The state model 
 

Examplo: A simple magnetic suspension 

 

Newton’s law: 

 forcesapplied
dt

yd
m

2

2

         u
dt

yd


2

2

 

The model is described by a 2
nd

 order differential equation. 
  

u

y
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Take as state variables position and velocity 

)()(1 tytx         )()(2 tytx   

With these variables, the system is described by 2 first order differential 

equations (instead of 1 2
nd

 order differential equation) 













u
dt

dx

x
dt

dx

2

2
1

 

These equations form the state model of the magnetic suspension and 𝑥1 and 

𝑥2 are the state variables that define the state space. 
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The system 
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may be written in the equivalent matrix for 
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The vector 
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x

x  is the state vector of the system. 
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Definition of state 

The state of a system is a set of variables such that, if you know them at a 

time instant, and the inputs that act on the system from that instant on, then 

you can compute the state for all future instants. 
 

The state at an instance summarizes all relevant information to compute future 

states. There is no need to know how the state from which you star was 

attained. 
 

The set of the first order differential equations verified by the state vector (as a 

function of time) is the state model. 
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Standard form of the state equations (linear case) 

In the case of the magnetic suspension 

u
x

x

x

x



































1

0

00

10

2

1

2

1





         
  










2

1
01

x

x
y

 

Define the matrices 











00

10
A

     









1

0
B

      01C     0D  

The state model is written in the standard form as 

buAxx   

DuCxy   
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The state space of the magnetic suspension 

A major advantage of the state model is that we can imagine state evolution in 

geometrical terms in the space defined by 








2

1

x

x . 

 

This space is the state space. 
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When time passes, the evolution of the variables corresponds to a trajectory of 










2

1

x

x  on state-space. 

For instance, if the sphere is at point A in  

state-space, it will move according to the arrow 

(explain why). 

 

Exercise: Consider different initial states in each of the four quadrants. In each 

case, sketch the state trajectories. Plot the corresponding evolutions of 𝑥1 and 

𝑥2 against time. 
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Example: Electrical circuit 
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Define the matrices 
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Again, the standard form of the state model of the electrical circuit is  

DuCxy

BuAxx
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Still another example: Direct current motor model with armature control 

 

Motor torque 

)()(')( titKtT   

Since the magnetic flux   created by the armature is constant, 

)()( tKitT   

Electrical tension induced at the rotor terminals 

bKe   
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Circuit of the motor rotor: 

ueiR
dt

di
L       or      uKiR

dt

di
L b    

Movimento do rótor do motor: 




 )(tT
dt

d
J    or    


 Ki

dt

d
J  
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Take as state variables 
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State equations with output  : 
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Exercise: Modify this model to include as a state the angular position 𝜃. 
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State model (linear case) 

State equation (differential equation, relates the input u  with the state x ): 

)()()( tButAxtx   

State initial condition 

0)0( xx   

Output equation (algebraic equation, relates the state x  with the output y ): 

)()()( tDutCxty   

Dimensions: 

pmn RtyRtuRtx  )(,)(,)(            mpDnpCmnBnnA   

Usually 1,1,0  pmD . (scalar system with more poles than zeros) 

 



Calculus of Variations and Optimal Control  17 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Block diagram of the linear state model 

 
 

)()()( tButAxtx   

Exercise: Learn how to use SIMULINK and simulate the state models of the 

previous examples. In the case of the DC motor, add a proportional feedback 

controller to control the angular position. 
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Choice of the state variables 

The state variables are not unique. 

 Physical variables 

o Positions of the parts that move independently and their derivatives 

o Tensions across capacitors and currents across coils 

o Variables associated with energy storage, including entropy 

 Mathematical state (no physical meaning, see below). 

o Phase variables (the output and its n-1 derivatives for systems of order 

n without zeros). 

o … 
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Computing the transfer function from the state model 









)()(

)()()(

tCxty

tbutAxtx

 

Take the Laplace trsnform with zero initial conditions: 

)()(

)()()(

sCXsY

sbUsAXssX





         )()()()( uTLsUxTLsX   

From here 

)()()( sbUsXAsI           )()()( 1 sbUAsIsX   

or 

)()()( 1 sUbAsICsY   
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Transfer function from the state model 

bAsICsG 1)()(   

Since 

)det(

)(
)( 1

AsI

AsIadj
AsI




 

 

The transfer function is 

)det(

)(
)(

AsI

bAsIadjC
sG






 

The MATLAB function ss2tf solves this problem. 
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Note on Linear Algebra – Adjoint of a matrix 

The adjoint of a matrix  









ij

mM  is 

 TijMMadj )(  

where ijM  is the co-factor of the matrix entry ijm , that is, is the determinant of 

the matrix that results by eliminating from 𝑀 line i  and column j , multiplied 

by 
ji1 . 

Example:       
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Adjoint of a matrix – Example 
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To check this result, observe that 
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Reference: G. Strang, Linear Algebra and its Applications, 2ª ed., p 170. 
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System poles and zeros 

)det(

)(
)(

AsI

bAsIadjC
sG






 

The characteristic polynomial of matrix A is 

)det( AsI   

The poles are the roots of the characteristic polynomial of matrix A . 

The zeros are the roots of the polynomial 

bAsIadjC )(   
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Transfer function from the state model – Example 
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Getting a state model from the TF – Systems without zeros 

Given the transfer function without zeros 

32

2

1

3

0)(
asasas

b
sG




 

We want to compute a state model that represents it. 
 

This state model is not unique. 
 

State variables: For a system of order 𝑛, the output and its first 1n

derivatives. In this example, 3n . 
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From the transfer function 

32

2

1

3

0)(
asasas

b
sG




, 

start by obtaining the differential equation: 

)()()()()( 032

2

1

3 sUbsYassYasYsasYs   

From here we get the differential equation 

)()()()()( 0321 tubtyatyatyaty    
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)()()()()( 0321 tubtyatyatyaty    

State variables (output and its derivatives up to order 21n ): 

23

12

1

xyx

xyx

yx











 

From the differential equation 

)(01322313 tubxaxaxax   
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State model: 

21 xx   

32 xx   

)(01322313 tubxaxaxax   

In matrix notation: 

u

b

x

aaa

x







































0123

0

0

100

010


 

 xy 001  
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Systemas with zeros 

32

2

1

3

10)(
asasas

bsb
sG






 

The previous technique may not be applied with changes because it leads to a 

derivative of the input. 
 

One possibility (there are other!) is to “split” the transfer function into its zeros 

and poles, taking as state variables the output with poles and its first 𝑛 − 1 

derivatives  
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The equation of dynamic is the same as before. 

The output equation is changed: 

11201110 xbxbxbxby    

 xbby 001  
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Coordinate transform 

Consider the model 

)()()( tbutAxtx   

)()( tCxty   

Perform a coordinate transform 

)()( tTxtz   

where T is a square matrix that is invertible. 
 

What is the state model verified by vector )(tz ? 

Suggestion: Differentiate )()( tTxtz    
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)()( tTxtz   

Differentiate to get 

)()( txTtz    

Use the state model of )(tx : 

))()(()( tbutAxTtz   

Use the inverse transform: 

))()()( 1 tTbutzTATtz    

)()()( 1 txCTtCxty    
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Conclusion: Change of coordinates in the state model 

Given the state model 

)()()( tbutAxtx                   )()( tCxty   

we do a gtransfer of coordinates 

)()( tTxtz   

where T  is a square and invertible matrix. 

In the new coordinates, the state equations are 

)()()( tutztz            )()( tHxty   

1 TATE        
1 CTH  
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Orbits and time functions 

Example: 

                       

dx

dt
x

dx

dt
x x

1
2

2
1 22 2



    

With initial condition x x1 20 1 0 1( ) ( )  . The orbit (trajectory in state-space) 

that starts from this initial condition is obtained by eliminating the time from the 

two time functions 𝑥1(𝑡) and 𝑥2(𝑡). 

Exercise: Simulate this example in SIMULINK/MATLAB. Consider different 

initial equations and draw the orbits in state-space superimposed. 
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Time response of the state variables Corresponding orbit 
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We can add more orbits, 
corresponding to other initial 
conditions 
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The homogeneous equation and the orbits 

Homogeneous equation: 

)()( tAxtx   

Approximating the derivative by finite differences: 

h

khxhkx
tx

)())1((
)(




 

The state homogeneous equation may be approximated by the difference 

equation 

)()())1(( khAxhkhxhkx   
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)()())1(( khAxhkhxhkx   
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The vector field may be plotted in MATLAB using the function quiver. 
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At each point  of state 

space, the function  

defines a vector (vector 

field) that points the 

direction to be followed at 

that point by the orbit. 
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Starting at 0x , the solution 

advances locally in the 

direction 00 Axv  . 

At each point the orbit is 

tangent to the vector field. 
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If we start at another initial 

condition, we get another 

orbit. The figure shows two of 

such orbits. 
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Starting from different 

initial conditions (there 

are infinite ones!) we get 

the phase portrait. 
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Note on Linear Algebra: Eigenvalues and eigenvectors 

Given a square matrix A   nn , the eigenvectors iv  satisfy 

iii vAv   

where i  is the corresponding eigenvalue. 

 

At most, there are n linearly independ eigenvectors (but there can be less). 
 

The eigenvectors have also the name of mode vectors. 
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Computing eigenvalues and eigenvectors 

Since 

iii vAv   

The eigenvectors satisfy the set of algebraic equations 

0)(  ii vIA   

In order for this set to have non-trivial solutions 0iv , the eigenvalues i  

must satisfy the polynomial equation 

0)det(  IA i  
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To compute the eigenvalues and eigenvectors of a square matrix 𝐴, proceed 

thus as follows: 
 

a) Compute the eigenvalues by solving the polynomial equation 

0)det(  IA i  

b) For each eigenvalue i  obtain the corresponding eigenvector by solving the 

system of algebraic equations  

0)(  ii vIA   

Since this system is undetermined, its solution is obtained up to a normalizing 

constant, that is chosen in the most convenient way. 

MATLAB function: eig 
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Computing eigenvalues and eigenvectors 
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Chatacteristic polynomial: 

0)det(  IA   

)2)(1(210)3)(4(
32

54
2 










 

The eigenvalues are the roots of this polynomial: 

21 21    
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Eigenvectors: 

11        
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The solution is any multiple of  
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The solution is any multiple of   
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Matrix diagonalization 

Assumption: The matrix A  has n lineraly independent eigenvectors. 
 

Modal matrix (the columns are the eigenvectors of 𝐴): 

 nvvM 1
 

Diagonal matrix of eigenvalues 

),,( 1 ndiag    

 

Warning: Not all matrices verify this assumption. 
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Since, for each eigenvector 

iii vAv   

It is 

 MAM  

or: 

1 MMA  

Or else, multiplying at the right by M  and at the left by 
1M : 

AMM 1   
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Solving the homogeneous equation by diagonalization 

Valid when 𝐴 has n  linearly independent eigenvectors. 

)()( tAxtx        0)0( xx   

Change of coordinates associated to the modal matrix: 

xMz 1      ou     Mzx   

In the z  coordinates, the dynamics becomes 

zAMzMAxMxMz   111  

Thus, the components of z are decoupled, and the equations may be solved 

separately! 
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zz   

This matrix equation corresponds to the set of 1
st
 order differential equations 













nnn zz
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111

 

Since the equations are decoupled, they may be solved separately: 
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The ik  are constants that 

depend on the initial 

conditions. 
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Structure of the response in the x  coordinates: 
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Each of the terms 

t

i
iev


 

Is called a system mode. The response is thus a linear combination of the 

modes, in which the coefficients depend on the initial conditions. 
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Example 

The time response of the homogeneous system 

)()( tAxtx    

with 
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has the form: 
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Computing 1k  and 2k from the initial conditions: 

tt ekektx 2
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This system of algebraic equations may be written as 



























5

8

21

51

2

1

k

k

       1,3 21  kk  

  



Calculus of Variations and Optimal Control  54 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Exercise 

A)     B)      C) 

 

   D)     E) 
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Match the matrices with the 
phase portraits. 
 



Calculus of Variations and Optimal Control  55 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Peano-Baker series and the state transition matrix 

Axx         00)( xtx   

Has the solution 

)(),()( 00 txtttx   

The matrix ),( 0tt  is called the state transition matrix and for time invariant 

systems is given by the Peano-Baker series that defines the matrix 

exponential 


 3

0

32

0

2

0

)(

0 )(
!3

1
)(

!2

1
)(),( 0 ttAttAttAIett

ttA

 

This series is different for the time varying case. 
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Time invariant systems: Computing the state transition matrix with the 

Laplace transform 

Axx         0)0( xx   

Take the Laplace transform: 

AXxsX  0  

0

1)( xAsIX   

  0

11 )()( xAsITLtx    

Conclusion: 

 11

0 )(),(   AsITLtt  
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Example: Computing the state transition matrix with the Laplace transf. 

Consider 











14

11
A

 

Compute the state transition matrix using the Laplace transform. 

 

Solution:  

 11

0 )(),(   AsITLtt  
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End of example 
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Invertibility of the state transition matrix 

Abel-Jacobi-Liouville theorem (special case for time invariant systems): 

  trAttttA
ee

)()( 00det



 

Where the trace of A , denoted by trA , is the sum of the diagonal elements. 
 

This theorem allows to conclude that the state transition matrix is always 

invertible because the real exponential never vanishes. 

This property is also true in the time varying case. 
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Non-homogeneous (forced) systems 

)()()( tbutAxtx   

Solution 





t

t

tAttA
dbuexetx

0

0 )()( )(

0

)( 

 

 

Methods of proof: 

 Direct verification (se Leibniz’s rule to differentiate an integral) 

 Principle of superposition 

 Change of variable (justifies the name Variation of constants formula) 
  

Free regime Forced regime 
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Nonlinear systems. HIV-1 infection 

              

 

The HIV-1 virion (virus particle) structure 

includes: 

 The genome codified in the RNA. 

 Reverse transcriptase (enzime), that 

allows to transcribe the viris RNA that 

enters a cell in complementary DNA 

sequences. 

 Protease (enzime), that allows the 

prodution of new virions. 
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Infection of T-CD4 cells by HIV-1 

 

 

 

  

1 2 3 4 
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Production of HIV-1 virions by infected T-CD4 cells 

 

 

 

 

 

5 6 7 8 
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Dynamics of HIV-1 infection 

               





















vkTu
dt

dv

TTvu
dt

dT

TvudTs
dt

dT

1

*

2

*

21

*

1

)1(

)1(

)1(







 

T = Number of healthy T-CD4+ cells per unit volume  

*T = Number of infected T-CD4+ cells per unit volume  

v = Number of HIV-1 virion particles per unit volume 
  

Células sãs
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livres

  Células
infectadas



cd

s

k
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Time response of the nonlinear HIV-1 infection model 
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General form of the non-linear state model 

Model of dynamics:      
),,,,,,(

),,,,,,(

),,,,,,(

121

1212
2

1211
1

mnn
n

mn

mn

uuxxxf
dt

dx

uuxxxf
dt

dx

uuxxxf
dt

dx















 

Sensor (observations) Model:      
),,,(

),,,(

21

2111

nnn

n

xxxhy

xxxhy
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Nonlinear state model in vector form 

Model of dynamics:   
),( uxf

dt

dx


 

Initial conditions:     0)0( xx   

Observations model:    )(xhy   

x  = State vector ( dim(x)=n ) 

u = Manipulated variables vector ( dim(u)=m ) 

y = Output (observations) vector ( dim(y)=p ) 
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Existence and unicity of the solution 

A suficient condition for the solution 

dx

dt
f x x x ( ) ( )0 0  

to exist and be unique is that   




f

x     is continuous in a neighborouhood of x0 . 

    

In linear systems, the solution always exists and is unique (why?). 

For non-linear systems, it is possible to find examples in which 




f

x  is not 

unique at a point, through which two solutions pass (the theorem is not 

applicable). 
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An example of nonunicity of solution 

dx

dt
x x 

1
3 0 0( )

 

This initial value problem has two solutions: 

x t t( ) 










2

3

3
2

          and       x t( )  0  

Observe that 

 



f

dx x
x x 

 


 

1
3

2
3

1

3
 

Is not continuous at  x  0  and therefore the theorem may not be applicable. 

Hereafter, we assume that the vector field is such that the solution exists and 

is unique.  
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Equilibrium states 

An equilibrium state is a state such that, if the solution starts on it, it becomes 

constnt. The corresponding orbit reduces thus to a single point. 
 

Given the equation 

dx

dt
f x ( )

 

the equilibrium states are roots of the algebraic equation 

f x( )  0  

MATLAB functions fsolve (Optimization toolbox) or trim 
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The MATLAB fsolve function 

Aditional info: Help on Nonlinear Systems of Equations, Nonlinear Equations 

with Analytic Jacobian e fsolve. 
 

Example: Solve the nonlinear algebraic system of equations 

0)2(

0)2(

1

2

22

2

2

11





xxf

xxf

 

In the work directory create f.m with the content: 

function f=f(x); 

f(1)=((x(1)-2)^2)*x(2); 

f(2)=((x(2)-3)^2)*x(1); 

In MATLAB command line give the command fsolve(@f,[5 6]) 
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Equilibrium points of linear systems 

dx

dt
Ax

 

The equilibrium points are given by the roots of the linear, algebraic equation: 

Ax  0  

If the matrix 𝐴 is non-singular, there is only one equilibrium point x  0 . 

If the matrix 𝐴 is singular, there are infinite equilibrium points in a subspace 

that contains the origin. 

Opposite to non-linear systems, in linear systems there can be no multiple 

isolated equilibria. 
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x

x+   x

x1

x2

 

Linearization around an equilibrium point 

Let x  be an equilibrium of 

)(xfx   

We want  to approximate the dynamics of the 

increment x  around the equilibrium point by 

a linear model. 
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)(xfx                       
)()( xxfxx

dt

d


 

Expand in a Taylor series: 

x
dx

f
xfx

dt

d
x

dt

d
xx 


 )(

 

0x
dt

d

   and    0)( xf   (why?) 

x
dx

f
x

dt

d
xx 
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Conclusion 

The linearization of 

)(xfx   

Around the equilibrium state �̅� (solution of 0)( xf ) is given by 

xAx
dt

d


    with   







 xx

dx

f
A

 

where x  is the increment of 𝑥 around �̅�. 
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Linearization around an equilibrium point: Example 

dx

dt
x x

dx

dt
x x

1
1 2

2
1 21

 

   

The equilibrium points satisfy simultaneously x x2 1  and x x1 2 1 . 

They are (-1, -1) and (1,1). 
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dx

dt
x x

dx

dt
x x

1
1 2

2
1 21

 

   

Jacobian matrix 

 

 

f

dx

f

dx

f

dx

f

dx

x x

1

1

1

2

2

1

2

2

2 1

1 1






















 











 

This matrix must be computed at the equilibrium points. 
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Equilibrium point (-1,-1): 

 

 

f

dx

f

dx

f

dx

f

dx

x x

x

x

x

x
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2
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2
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Equilibrium point (1,1): 

 

 

f

dx

f

dx

f

dx

f

dx

x x

x

x

x

x

1

1

1

2

2

1

2

2
1

1

2 1
1

1
1

2

1

2

1 1 1 1
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These results may be obtained numerically with the MATLAB function linmod. 
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Inferring the stability of an equilibrium point of a non-linear system 

from the linearization 

dx

dt
f x ( )

 

Assume x  0  is an isolated equilibrium. 
 

 If all the eigenvalues of the linearized matrix have negative real part, then 

the equilibrium is asymptotically stable. 

 If there is at least one eigenvalue with positive real part, it is unstable. 

 If there is at least one eigenvalue over the imaginary axis and all the 

others have negative real part, nothing can be told about the stability of the 

equilibrium in the nonlinear system. 
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Example where nothing may be inferred 

A)   

dx

dt
x x x x

dx

dt
x x x x

1
2 1 1

2

2

2

2
1 2 1

2

2

2

   

  

( )

( )
                     B)   

dx

dt
x x x x

dx

dt
x x x x

1
2 1 1

2

2

2

2
1 2 1

2

2

2

   

  

( )

( )
 

A is unstable and B is stabe 
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However, they both have the same linearization around the origin, given by 

dx

dt
x

dx

dt
x

1
2

2
1

 

                        
-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

The eigenvalues of the matrix of the linearized system are pure imaginary 

numbers. 
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Back to the HIV-1 example: Equilibrium points 

Equilibrium are obtained equating the derivatives to zero: 
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Equilibrium states: 

No infection  (1)                       Infection (2) 
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Linearized dynamics 

Equilibrium state: 

 TvTT 0

*

00  

Linearized dynamics: 
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Numerical example 
  

t   (variable) Day 

d   0.02 per day 

k   100 per cell  

s   10 
3mm per day 

   35104.2  mm  per day 

1  
 2.4 per day 

2  
 0.24 per day 
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Equilibrium (1) – No infection 

Equilibrium point (1): 

   T
T

vTT 005000

*

00   

Dynamic matrix of the linearized system: 

























4.21000

012.024.00

012.0002.0

1A
 

This matrix has eigenvalues -0.02, 0.2183 and -2.8583. Since there is an 

eigenvalue with positive real part, this equilibrium is unstable. 
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Equilíbrio (2)– Infecção (fase assimptomática) 

Equilibrium point (2): 

   T
T

vTT 78.90267.2100.2400

*

00   

Linearized dynamics: 

























4.21000

0058.024.00217.0

0058.000417.0

2A
 

Eigenvalues: j6658.00199.0   and 6418.2 . Since all the eigenvalues have 

negative real part, the equilibrium is asymptotically stable. 
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HIV-1 phase portrait (tridimensional) 
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The above is not all on the state model (far, far, from it!). It is just a few drops that will help you in 

the sequel. You need to study linear and nonlinear dynamic optimization. If you didn’t follow 

courses before courses on linear and nonlinear dynamic systems, you may read chapter 4 of the 

classic book (probably the first course on Optimal Control and still a good one) [AF1966] M. 

Athans and P. L. Falb, Optimal Control, McGraw-Hill, 1966 (There is a Dover reprint) or the 

beautiful book D. G. Luenberger Introduction to Dynamic Systems, Wiley, 1979. 

 

Let’s go back to business on dynamic optimization 
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A basic class of optimal control problems 

(Fixed final time, no state constraints) 
 

Let 𝑥 be the state of a system with manipulated input 𝑢, that satisfies 

 Ttxxuxfx ,0)0(),( 0    T fixed  u t U( )   

 

Find the function u , defined in  0, T  that maximizes 

J u x T L x u dt

T

( ) ( ( )) ( , )  
0

 

𝐿 is the lagrangian or running cost 

Ψ is the terminal cost penalty 
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Pontriagyn’s Maximum Principle 

Along an optimal trajectory of 𝑥, 𝑢, and 𝜆, the following necessary conditions 

for the maximization of 𝐽 are verified: 

  ( , ) ( ) ,x f x u x x t T  0 00  u t U( )   

              ( ) ( ) , , t t f x t u t L x t u tx x  

    


 T xx x x T


( )  

At each 𝑡, the Hamiltonian function 𝐻 defined by 

),(),(),,( vxLvxfvxH    

Is maximum for 𝑣 = 𝑢 (the optimal control). 

  

Terminal condition 

on the co-state 
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Notation: 


 

x x x T

x x T n x x T
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The vector   is called co-state, 

and its equation is the adjoint 

equation. 
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Other optimal control problems 

 More general problems 

o Free terminal time and minimum time problems 

o Final state constraints 

o Other state constraints 

 Important special cases 

o Linear dynamics and quadratic constraints 

 Bang-bang control and singular arcs 
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Bibliographic references on OC for the impatient students 

 [L1979] Ch. 11, pp. 394 – 435. This a quick and beatiful introduction to the 

main points of optimal control and dynamic programming, with a 

justification using calculus of variations – like arguments of the version of 

the Pontryagin Principle presented above. The whole book is also a very 

good, easy to read, and sometimes exhilarant,  introduction to dynamic 

systems and control that is strongly suggested to the students with a lack 

of background on this subjects.  

 [R2015] An introduction to the correct formulation of optimal control 

problems and solving them with Pontryagin Principle. The emphasis is not 

on mathematical profs, but on developing skills to correctly formulate OC 
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problems in such a way that they can be solved with numerical packages 

such as DIDO, for which a free (limited) version is available. The author, I. 

M. Ross was one of the developers of a class of numerical methods to 

solve OC problems known as pseudo-spectral methods. 

 

[L1979] D. G. Luenberger. Introduction to dynamic Systems. Wiley, 1979. 

 

[R2015] I. M. Ross. A primer on Pontryagin’s Principle . in Optimal Control. 

Collegiate Publishers, 2015.  
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Exercise 2 (Just to warm up) 

Design a curve x t( )  that starts at x( )0 0 , with a maximum slope of 1 and 

that reaches the maximum height for Tt  . 
 

The problem may be formulated as an optimal control problem with dynamics 

( ) ( )x t u t     x( )0 0     U u u | 1  

and cost functional to be maximized 

J x T ( )  

Use Pontryagin’s Principle to find the optimal solution. 
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              ( ) ( ) , , t t f x t u t L x t u tx x        


 T xx x x T


( )  

Since 

f x ux ( , )  0      and       L x u( , )  0  

The adjoint equation is 

 ( ) t 0  

With terminal condition 

( )T  1     since    ( ( )) ( )x T x T  

Hence 

( )t t T  1 0  
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The Hamiltonian is 

H f L u u       

At each t the value of u that maximes H in the set U is thus 

u topt ( )  1 

x(t)

T t

x(T)

0

Curva óptima

Curvas possíveis

mas não óptimas
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Example: Minimum drag shape of a shell 
 

What is the shape of a shell that leads to a minimum drag? 

 

This problem was solved by Newton in 1686 (10 years before Johann 

Bernouilli’s challenge on the brachistochrone). Newton  was aiming an 

application to ship design but the model he used for the drag force was valid 

only for very low density atmosphere at a hipersonic velocity. 
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At hypersonic velocities the drag force D is 

approximatelly given by 

 D q C rdrp

x

x L

 




2
0

 
 

where q  is the dynamic pressure assumed 

to be constant and 
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Each shell shape correponds to a drag force. 

D

"Espaço" das formas possíveis

Dimensão infinita
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D g rdr
x

x L

 




2 2 2

0

 sin
      

Can be formulated as an Optimal Control problem: 

 Minimize: 

 
D

q
r L

ru

u
dx

L

4

1

2 1

2
3

2

0


 
( )

 

 Subject to the "dynamics" 

dr

dx
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The previous problem illustrates two significant issues: 

 A shape optimization problem of a planar curve may be transformed into 

an Optimal Control problem by using a dynamic equation that generates 

the family of curves considered. 

 The problem may be formulated as an Calculus of Variation problem. 

However, it is readily transformed into an Optimal Control problem by 

using the dynamic equation 

𝑑𝑦

𝑑𝑡
= 𝑢 

 where 𝑦 = 𝑟 in the shell problem and 𝑢 is the control variable. 

 This technique can be applied to transform a CV problem into an 

equivalent OC problem. 
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Exercise 3 – Push cart 

z=0

zu

 

Objective: find the function u t t T( ) 0   that maximizes  



T

dttuTxuJ
0

2

1 )(
2

1
)()(

,    (𝑥1: = 𝑧) 

sendo a dinâmica do carro dada por (condições iniciais nulas): 

d z

dt
u

2

2


    or   





x x

x u

1 2

2



          




( , )

x

x
f

x

x
u

1

2

1

2
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Solution: 

 

f x u

f x u

x

u

1

2

2( , )

( , )









 











 

f

f

x

f

x

f

x

f

x

x 













































1

1

1

2

2

1

2

2

0 1

0 0
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J u x T u t dt

T

( ) ( ) ( )  1

2

0

1

2  

  x T x T( ) ( ) 1   and hence     x x T( )  1 0  

L x u u t( , ) ( ) 
1

2

2

   and hence    L x ux ( , )  0 0  

The adjoint equation is       f Lx x  or 

     










    1 2 1 2

0 1

0 0      






 

1

2 1

0

 





            1 2 1 0( ) ( )T T   
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1

2 1

0

 





        1 2 1 0( ) ( )T T   

In this case, the adjoint equation can be solved independently of the state and 

optimal control. Usually it is not so. 
 

Since 

 ( )1 0t     we conclude that   1( )t Cte  

From the terminal condition 1 1( )T   it is concluded that 

1 1( )t   
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The equation for 2 ( )t  is 

 ( ) 2 1t    

Since 1 1( )t  , this equation becomes 

 ( )2 1t    

And hence 

2 ( )t C tte   

From the terminal condition 2 0( )T   we get 

2 ( )t T t   
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Hamiltonian: 

 H x u x u u  , ,   1 2 2

21

2  

In this case there are no control constraints (𝑢 may assume values everywhere 

on ℝ) and the maximum condition for the Hamiltonian is 





H

u
 0

   or    2 0 u   for each time 𝑡 

The optimal control is thus 

u t t T topt ( ) ( )  2  

  

 0

T

T t

u(t)
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Exercise 4 – Push cart with minimum fuel 

maximize   

T

dttuTxuJ
0

1 )()()(
 

s. t.      





x x

x u

1 2

2



     and     0 ≤ 𝑢 ≤ �̅� 

 

Assume 𝑇 > 1. 
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Solution 

The co-state is as before: 

𝜆1(𝑡) = 1,  𝜆2(𝑡) = 𝑇 − 𝑡 

The Hamiltonian is now 

𝐻 = [𝜆1 𝜆2] [
𝑥2
𝑢
] − 𝑢 = 𝜆1𝑥2 + (𝜆2 − 1)𝑢 

Since the Hamiltonian is linear in 𝑢, its maximum is attained at the boundary of 

the interval of the acceptable values for 𝑢. 
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H

u
0 u

u*

2 > 1 H

u
0 u

u*

2 < 1

T

T

1

2

t

t
T

u

u

ts

𝜆2(𝑡𝑠) − 1 = 0 

𝑇 − 𝑡𝑠 − 1 = 0 

𝑡𝑠 = 𝑇 − 1 


