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Basic Calculus of Variations Problem 

Among all 𝐶1 curves 𝑦: [𝑎, 𝑏] → ℝ that verify the given boundary conditions 

𝑦(𝑎) = 𝑦0,  𝑦(𝑏) = 𝑦1, 

Find the (local) minima of the cost function 

𝐽(𝑦) ≔ ∫ 𝐿(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
𝑏

𝑎

𝑑𝑥 

 

𝐿: ℝ × ℝ × ℝ → ℝ is the “lagrangian” or 

“runing cost”.  
 

Can be extended to 𝑦: [𝑎, 𝑏] → ℝ𝑛 
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Weak and strong extrema  [L2012] p. 33-44 

When considering the CV problem a norm on the functions 𝑦 must be defined, 

0-norm:                                     ‖𝑦‖0 ≔ |𝑦(𝑥)|𝑎≤𝑥≤𝑏
𝑚𝑎𝑥  

1-norm:                          ‖𝑦‖1 ≔ |𝑦(𝑥)|𝑎≤𝑥≤𝑏
𝑚𝑎𝑥 + |𝑦′(𝑥)|𝑎≤𝑥≤𝑏

𝑚𝑎𝑥  

 

Strong extrema 

 Neighborhoods defined using the 0-norm 
 

Weak extrema 

 Neighborhoods defined using the 1-norm 
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Exercise 1 Weak vs. strong extrema [L2012] p. 34 

See also [SL2012] p. 7,8 for  a quantitative discussion 
 

Consider the problem of minimizing the functional 

𝐽(𝑦) = ∫ 𝑦(𝑥)2(1 − (𝑦′(𝑥))
2

)𝑑𝑥
1

0

 

Subject to the boundary conditions 

𝑦(0) = 𝑦(1) = 0 

Show that 𝑦(𝑥) = 0 for 𝑥 ∈ [0,1] is a weak minimum but not a strong minimum. 
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Solution 

𝐽(𝑦) = ∫ 𝑦(𝑥)2(1 − (𝑦′(𝑥))
2

)𝑑𝑥
1

0

 

For 𝑦∗(𝑥) = 0, 𝐽(𝑦∗) = 0. 

If 𝑦 is slightly perturbed according to the 1-norm, |𝑦′| must be small and 𝐿 =

𝑦2(1 − (𝑦′)2) is positive. 

Hence, 𝐽(𝑦∗ + 𝜂), where 𝜂 is small according to the 1-norm, is positive, and 

thus 𝐽(𝑦∗ + 𝜂) > 𝐽(𝑦∗),  i. e., 𝑦∗(𝑥) = 0 is a minimum in the weak sense. 
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Consider now the 0-norm 

‖𝜂‖0 small does not imply that |𝑦′| is small. 

It is possible to find an 𝜂 such that ‖𝜂‖0 is arbitrarily small, but |𝜂′| is arbitrarily 

large. Example: 𝜂(𝑥) = 휀 sin (𝜔𝑥), with 휀 > 0 and 𝜔 > 0 constants. 

In this case, ‖𝜂‖0 = 휀  and  |𝜂′| = 휀𝜔|𝑐𝑜𝑠(𝜔𝑥)| 

It is thus possible to select 𝜔 sufficiently large such that 1 − (𝜂′)2 < 0  and 

𝐽(𝑦 = 0) > 𝐽(𝑦 = 𝜂) 

Thus, 𝑦(𝑥) = 0 is a weak minimum but not a strong minimum. 
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First-order necessary conditions for weak extrema 

Basic CV problem: 

Minimize 𝐽(𝑦) ≔ ∫ 𝐿(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
𝑏

𝑎
𝑑𝑥 

s. t.         𝑦(𝑎) = 𝑦0,  𝑦(𝑏) = 𝑦1, 

𝑦 ∈ 𝐶1([𝑎, 𝑏] → ℝ) 

 

Strategy to follow: Apply an admissible disturbance and impose that the first 

variation vanishes at an extremal. 
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Admissible variations 

Let 𝑦 a candidate to be an extremal 

Perturbation 𝜂: [𝑎, 𝑏] → ℝ, 𝐶1 

𝑦(𝑥) + 𝛼𝜂(𝑥)         𝛼 ∈ ℝ 

For 𝛼 close to 0 these perturbed curves are close to 𝑦 in the 1-norm. 

Since the boundary conditions must be satisfied, 

𝜂(𝑎) = 𝜂(𝑏) = 0 

Condition to impose (1st order necessary condition): 

𝛿𝐽|𝑦(𝜂) = 0 
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Computing the 1st variation 

Recall the definition of the 1st variation 

𝐽(𝑦 + 𝛼𝜂) = 𝐽(𝑦) + 𝛿𝐽|𝑦(𝜂)𝛼 + 𝑜(𝛼) 

Perturbed functional     𝐽(𝑦 + 𝛼𝜂) = ∫ 𝐿(𝑥, 𝑦 + 𝛼𝜂, 𝑦′ + 𝛼𝜂′)𝑑𝑥
𝑏

𝑎
 

Taylor expansion with respect to 𝛼 

𝐽(𝑦 + 𝛼𝜂) = ∫ 𝐿(𝑥, 𝑦, 𝑦′) + 𝐿𝑦(𝑥, 𝑦, 𝑦′)𝛼𝜂 + 𝐿𝑦′(𝑥, 𝑦. 𝑦′)𝛼𝜂′ + 𝑜(𝛼))𝑑𝑥
𝑏

𝑎

 

Match with the definition of the first variation 

𝛿𝐽|𝑦(𝜂) = ∫ 𝐿𝑦(𝑥, 𝑦, 𝑦′)𝜂 + 𝐿𝑦′(𝑥, 𝑦. 𝑦′)𝜂′𝑑𝑥
𝑏

𝑎
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Integration by parts 

𝑑

𝑑𝑥
(𝑧𝑤) = �̇�𝑤 + 𝑧�̇� 

�̇�𝑤 =
𝑑

𝑑𝑥
(𝑧𝑤) − 𝑧�̇� 

∫ �̇�𝑤𝑑𝑥 = 𝑧𝑤|𝑎
𝑏 − ∫ 𝑧�̇�𝑑𝑥

𝑏

𝑎

𝑏

𝑎
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∫ �̇�𝑤𝑑𝑥 = 𝑧𝑤|𝑎
𝑏 − ∫ 𝑧�̇�𝑑𝑥

𝑏

𝑎

𝑏

𝑎

 

∫ [𝐿𝑦′(𝑥, 𝑦, 𝑦′)𝜂′]𝑑𝑥
𝑏

𝑎

 

Eliminate the dependency on 𝜂′by integrating by parts 

𝑧 = 𝜂    𝑤 = 𝐿𝑦′ 

∫ [𝐿𝑦′(𝑥, 𝑦, 𝑦′)𝜂′]𝑑𝑥 = 𝐿𝑦′(𝑥, 𝑦, 𝑦′)𝜂(𝑥)|𝑎
𝑏 − ∫ (

𝑑

𝑑𝑥
𝐿𝑦′(𝑥, 𝑦, 𝑦′)) 𝜂(𝑥)𝑑𝑥

𝑏

𝑎

=
𝑏

𝑎

 

= − ∫ (
𝑑

𝑑𝑥
𝐿𝑦′(𝑥, 𝑦, 𝑦′)) 𝜂(𝑥)𝑑𝑥

𝑏

𝑎
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Recall 

𝛿𝐽|𝑦(𝜂) = ∫ 𝐿𝑦(𝑥, 𝑦, 𝑦′)𝜂 + 𝐿𝑦′(𝑥, 𝑦. 𝑦′)𝜂′𝑑𝑥
𝑏

𝑎

 

∫ [𝐿𝑦′(𝑥, 𝑦, 𝑦′)𝜂′]𝑑𝑥 = − ∫ (
𝑑

𝑑𝑥
𝐿𝑦′(𝑥, 𝑦, 𝑦′)) 𝜂(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎

 

Hence 

𝛿𝐽|𝑦(𝜂) = ∫ [𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′] 𝜂(𝑥)𝑑𝑥

𝑏

𝑎
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Fundamental lemma of CV 

If a continuous function 𝜉: [𝑎, 𝑏] → ℝ is such that 

∫ 𝜉(𝑥)𝜂(𝑥)𝑑𝑥 = 0
𝑏

𝑎

 

for all 𝐶1 functions 𝜂: [𝑎, 𝑏] → ℝ with  𝜂(𝑎) = 𝜂(𝑏) = 0, then 𝜉 ≡ 0. 

 

Remark: In general if ∫ 𝜑(𝑥)𝑑𝑥 = 0
𝑏

𝑎
 one may not infer that 𝜑(𝑥) = 0 for all 𝑥. 

Here, the situation is different because the integral is zero for all possible 

(admissible) perturbation functions 𝜂. 
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a b x



c dx

 

Proof 

The proof is made by contradiction. 

Assume that 𝜉(�̅�) ≠ 0 for some �̅� ∈ [𝑎, 𝑏]. 

Since 𝜉 is continuous, 𝜉 is nonzero and keeps the same sign on some 

subinterval [𝑐, 𝑑] that contains �̅�. 

Construct a function 𝜂 ∈ 𝐶1([𝑎, 𝑏], ℝ) that is positive on ]𝑐, 𝑑[ and 0 elsewhere. 

This construction yields 

∫ 𝜉(𝑥)𝜂(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝜉(𝑥)𝜂(𝑥)𝑑𝑥

𝑑

𝑐
> 0  

And we reach a contradiction. 

Hence, 𝜉 must be always zero on [𝑎, 𝑏].                                                   q.e.d. 
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Back to the necessary 1st order condition 

We have seen that, for any 𝐶1 functions 𝜂: [𝑎, 𝑏] → ℝ with  𝜂(𝑎) = 𝜂(𝑏) = 0 

𝛿𝐽|𝑦(𝜂) = ∫ [𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′] 𝜂(𝑥)𝑑𝑥

𝑏

𝑎

 

From the Fundamental Lemma of CV, for 𝛿𝐽|𝑦(𝜂) = 0 it must be 

𝐿𝑦 =
𝑑

𝑑𝑥
𝐿𝑦′ 
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Euler-Lagrange equation 

A necessary condition for a 𝐶1([𝑎, 𝑏], ℝ) function 𝑦 to be a weak extremum of 

the basic CV problem 

Minimize 𝐽(𝑦) ≔ ∫ 𝐿(𝑥, 𝑦(𝑥), 𝑦′(𝑥))
𝑏

𝑎
𝑑𝑥 

s. t.         𝑦(𝑎) = 𝑦0,  𝑦(𝑏) = 𝑦1 

is that it satisfies the Euler-Lagrange equation 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) 

 

Hereafter, unless explicitly state otherwise, “extremum” refers to “weak 

extremum”. 
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Leonhard Euler (1707-1783) was born in Basel, Switzerland, a son of 

a Reform Church pastor. He studied with Johann Bernouilli at the University of 

Basel and, in 1727, moved to S. Petersburg where he stayed until 1741, when 

he accepted a post at the Berlin Academy, offered by the king of Prussia 

Frederick the Great. In Berlin he met Maupertuis and participated on the 

controversy that involved the President of the Berlin Academy concerning the 

Principle of Least Action. After becoming blind of one eye, he returned to 

Russia in 1760 where he stayed until his death. Euler was one of the greatest and most prolific 

mathematicians of all times. He discovered the formula 𝑒𝑖𝜋 + 1 = 0 and found it so elegant that he 

asked it to be engraved in his tomb. In 1744 he published the magnificent The Method of Finding 

Plane Curves that Show some Property of Maximum or Minimum and coined the expression 

Calculus of Variations to designate the new research area. In this 1744 book, Euler set up a 

general procedure to write the E-L equation and enunciated the Principle of Least Action. 
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Joseph-Louis de Lagrange (1736-1813), despite the French 

name with which he has been registered in the History of Mathematics, was 

actually born in Turim, Italy, under the name of Giuseppe Ludovico 

Lagrangia. In 1755, the young Ludovico, then with 19 years, sent to Euler a 

letter with an appendix in which he explained how to replace the Euler 

method to solve variational problems, that was based on geometrical insight, 

by an analytical method. Although Euler did not reply to the letter, he wrote about this work of 

Lagrange: Even though the author of this [Euler] had meditated a long time and had revealead to 

friens his desire, yet the glory of first discovery was reserved to the very penetrating geometer of 

Turin La Grange, who having used analysis alone, has clearly attained the very same solution 

which the authorhad deduced by geometrical considerations. Later, Lagrange’s treaty mécanique 

Analitique, published in 1788, became a cornerstone for the development of mathematical 

physics. 

  



Calculus of Variations and Optimal Control  19 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Exercise 2 [K1970], Example 4.2.1, p128-130. 

a)  Find an extremal for the functional 

𝐽(𝑦) = ∫ [𝑦′2(𝑥) − 𝑦2(𝑥)]𝑑𝑥
𝜋/2

0

 

s. t.      𝑦(0) = 0,    𝑦(𝜋

2
) = 1. 

b)  Let 𝑦∗ be the extremal and consider the perturbed signal 

𝑦(𝑥) = 𝑦∗(𝑥) + 𝜂(𝑥) 

where 𝜂(𝑥) = 𝛼 sin (2𝑥). Compute 𝐽(𝑦∗) and 𝐽(𝑦). 

What can you say about 𝑦∗ being a maximum or a minimum? 

Help: EL equation  
𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) 
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Help: To solve the equation 𝑦 + 𝑦′′ = 0, assume that the solution is of the form 

𝑦(𝑥) = 𝑘𝑒𝛾𝑥 

for some 𝑘 and 𝛾. Replace this candidate solution in the equation and get an 

algebraic equation for the possible values 𝛾𝑖 of 𝛾. The general solution is thus 

𝑦(𝑥) = ∑ 𝑘𝑖𝑒𝛾𝑖𝑥

𝑖

 

Finally, use the boundary conditions to find the coefficients 𝑘𝑖. 

Other useful formulas: 

(cos 𝑥)2 =
1

2
(1 + cos(2𝑥))              (sin 𝑥)2 =

1

2
(1 − cos(2𝑥)) 
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Solution 

a) 

𝐿 = 𝑦′2(𝑥) − 𝑦2(𝑥) 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
)      

𝜕𝐿

𝜕𝑦
= −2𝑦      

𝜕𝐿

𝜕𝑦′
= 2𝑦′ The EL equation becomes 𝑦 + 𝑦′′ = 0 

Assume  𝑦 = 𝑘𝑒𝛾𝑥. Then 𝑦′′ = 𝑘𝛾2𝑒𝛾𝑥.  

  𝑦 + 𝑦′′ = 0   →  𝑘𝑒𝛾𝑥 +  𝑘𝛾2𝑒𝛾𝑥 = 0   →   1 + 𝛾2 = 0   →    𝛾 = ±𝑗 

The general solution is thus 

𝑦(𝑥) = 𝑘1𝑒𝑗𝑥 + 𝑘2𝑒−𝑗𝑥 

𝑦(𝑥) = 𝑘1(cos 𝑥 + 𝑗 sin 𝑥) + 𝑘2(cos 𝑥 − 𝑗 sin 𝑥) 

𝑦(𝑥) = (𝑘1 + 𝑘2) cos 𝑥 + 𝑗(𝑘1 − 𝑘2) sin 𝑥 
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𝑦(𝑥) = (𝑘1 + 𝑘2) cos 𝑥 + 𝑗(𝑘1 − 𝑘2) sin 𝑥 

Apply the boundary conditions 𝑦(0) = 0,    𝑦(𝜋

2
) = 1 

{
𝑘1 + 𝑘2 = 0

𝑗(𝑘1 − 𝑘2) = 1
  {

𝑘1 = −𝑗

2

𝑘2 = 𝑗

2

 

The extremal (solution of the EL equation) is thus 

𝑦∗(𝑥) = sin 𝑥 
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b) 𝑦∗(𝑥) = sin 𝑥     𝑦∗′(𝑥) = cos 𝑥 

𝐽(𝑦∗) = ∫ [𝑦∗′2
(𝑥) − 𝑦∗2(𝑥)] 𝑑𝑥

𝜋/2

0

= ∫ [(cos 𝑥)2 − (− sin 𝑥)2]𝑑𝑥
𝜋/2

0

= ∫ cos(2𝑥) 𝑑𝑥
𝜋/2

0

=
1

2
sin(2𝑥) |0

𝜋/2
= 0 

Furthermore 

𝑦(𝑥) = sin 𝑥 + 𝛼 sin(2𝑥) 

𝐽(𝑦) = ∫ [𝑦′2(𝑥) − 𝑦2(𝑥)]𝑑𝑥
𝜋/2

0

=
3

4
𝜋𝛼2 

Therefore 

𝐽(𝑦∗ + 𝜂) > 𝐽(𝑦∗)      for  𝛼 ≠ 0 
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Conclusions 

The extremal 𝑦∗ = sin 𝑥 may not be a maximum because we found an 

admissible perturbation that leads to a bigger value of the functional. 
 

Although it may not be concluded that it is a minimum (since the check was 

done for only a particular value of 𝜂), the test is compatible with this function 

being a minimum. 
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Exercise 3 

Find the extremal of the functional for the following fixed-end-points 

𝐽(𝑦) = ∫ (𝑦′2 + 2𝑦 sin 𝑥)𝑑𝑥
𝜋

0

 

s. t. 𝑦(0) = 𝑦(𝜋) = 0 

 

Hint: EL equation 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) 
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Solution 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
)            𝐿 = 𝑦′2 + 2𝑦 sin 𝑥 

𝜕𝐿

𝜕𝑦
= 2 sin 𝑥           

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) =

𝑑

𝑑𝑥
2𝑦′ = 2𝑦′′ 

The EL equation reduces to 𝑦′′ = sin 𝑥 

𝑦′(𝑥) = − cos 𝑥 + 𝛼        𝑦(𝑥) = − sin 𝑥 + 𝛼𝑥 + 𝛽     𝛼 and 𝛽 constants 

Apply the boundary conditions 

𝑦(0) = − sin(0) + 𝛼0 + 𝛽 = 𝛽  ⇒   𝛽 = 0 

𝑦(𝜋) = − sin(𝜋) + 𝛼𝜋 =  𝛼𝜋 = 0 ⇒  𝛼 = 0 

Therefore, the extremal curve is given by 

𝑦(𝑥) = −sin (𝑥) 
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b x

y

0

y0

y1

 

Exercise [L2012] p.38, example 2.2 

What is the curve with shortest length that 

connects the points (0, 𝑦0) and (𝑏, 𝑦1)? 

 

Minimize 𝐽(𝑥) = ∫ √1 + 𝑦′2𝑑𝑥
𝑏

0
 

    s. t.        𝑦(0) = 𝑦0,  𝑦(𝑏) = 𝑦1  
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Solution 

EL equation  
𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
)           𝐿 = √1 + 𝑦′2       𝐿𝑦 = 0       𝐿𝑦′ =

𝑦′

√1+𝑦′2
  

EL equation becomes 
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′
2
) = 0   or 

𝑦′

√1+𝑦′
2

= √𝑐1 

𝑦′2 = 𝑐1(1 + 𝑦′2)   →     𝑦′ = √
𝑐1

1−𝑐1
= 𝑐2   →     𝑦(𝑥) = 𝑐2𝑥 + 𝑐3 

Hence the solution is a straight line. 
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Multiple degrees of freedom 

If 𝑦 = [𝑦1 … 𝑦𝑛]𝑇 ∈ ℝ𝑛 the El is written componentwise 

𝜕𝐿

𝜕𝑦𝑖
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦𝑖′
) 
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Special cases of the EL equation 

General case 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) 

Special case 1 (“no 𝑦”) 

𝐿 = 𝐿(𝑥, 𝑦′) 

The EL becomes 

𝑑

𝑑𝑥
𝐿𝑦′ = 0      ⇒    𝐿𝑦′ = 𝑐    𝑐 a constant 

The quantity 𝐿𝑦′ is called momentum. 
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General case 

𝜕𝐿

𝜕𝑦
=

𝑑

𝑑𝑥
(

𝜕𝐿

𝜕𝑦′
) 

Special case 2 (“no 𝑥”) 

𝐿 = 𝐿(𝑦, 𝑦′) 

Then, 𝐿𝑦′𝑥 = 0, and the EL becomes 

𝐿𝑦 = 𝐿𝑦′𝑦𝑦′ + 𝐿𝑦′𝑦′𝑦′′ 

Multiply both sides by 𝑦′ 

𝐿𝑦′𝑦(𝑦′)2 + 𝐿𝑦′𝑦′𝑦
′′𝑦′ − 𝐿𝑦𝑦′ = 0 
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𝐿𝑦′𝑦(𝑦′)2 + 𝐿𝑦′𝑦′𝑦
′′𝑦′ − 𝐿𝑦𝑦′ = 0 

The next slide shows that this expression is equivalent to 

𝑑

𝑑𝑥
(𝐿𝑦′𝑦

′ − 𝐿) = 0 

Therefore 

𝐿𝑦′𝑦
′ − 𝐿 = 𝑐    𝑐 a constant 

The quantity 𝐿𝑦′𝑦
′ − 𝐿 is called the Hamiltonian function. 

 

In other words: When the Lagrangian does not depend on 𝑥, the Hamiltonian 

is constant with respect to 𝑥. 
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𝑑

𝑑𝑥
(𝐿𝑦′𝑦′ − 𝐿) = 

(𝐿𝑦′𝑦𝑦′ + 𝐿𝑦′𝑦′𝑦′′)𝑦′ + 𝐿𝑦′𝑦
′′ − 𝐿𝑦𝑦′ − 𝐿𝑦′𝑦′′ = 

= 𝐿𝑦′𝑦(𝑦′)2 + 𝐿𝑦′𝑦′𝑦′′𝑦′ − 𝐿𝑦𝑦′ 
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x

y

A (0, 0)

B (x , y )
2 2

P=mg

 

Exercise 4 (The Brachistochrone problem) 

What is the shape of a curve that connects points 𝐴 and 𝐵 and such that a 

mass point slides along it, without friction, acted only by the force of gravity 

and going from 𝐴 to 𝐵 in minimum time?  

Minimize 

 
J u gT

u x

y x
dx

x

( )
( )

( )
= =

+
2

1 2

0

2

 

Subject to 

y y x y( ) ( )0 0 2 2= =  
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A machine to demonstrate the brachistochrone 

Museu Pombalino de Física da Universidade de Coimbra 
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If y  verifies the EL equation, and L  does not explicitly depends on x  

d

dx
L y

L

y
−









 =






0

 

or 

L y
L

y
const− =


.



  

  



Calculus of Variations and Optimal Control  37 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

For the Brachistochrone problem 

( )
L y y

y

y
( , )


=

+1
2

    from which     ( )





L

y y y
y

 
= 

+




1 1

1

1

2
2

2  

The EL equation reduces thus to 

L y
L

y c
− =







1

 

or 

( ) ( )

( )( )
1

1

1
2 2

2

+
−

+

=
 



y

y

y

y y c  
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( ) ( )

( )( )
1

1

1
2 2

2

+
−

+

=
 



y

y

y

y y c  

In order to solve this equation, start by rewriting it.  

Multiply the 1st term of the lhs by 
( )

( )
1

1

1

2

2
=

+

+





y

y
 to get 

( ) ( )

( )( )
1

1

1
2 2

2

+ −

+

=
 



y y

y y c     or   ( )( )
1

1

1

2
+

=

y y c  
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( )( )
1

1

1

2
+

=

y y c  

This equation can be written as 

( )y y y c+ =
2 2

 

or 

y

c y
y

2
1

−
=
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The solution of the equation 

y

c y
y

2
1

−
=

            (*) 

Is given by 

( )x
c

c= − +
2

1
2

 sin
 

( )y
c

= −
2

2
1 cos

 

These equations define cycloids. Constants c , c1  and the maximum value of 

parameter   are selected such as to meet the boundary constraints. 
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Historical remark 

The equation  
y

c y
y

2
1

−
=  is found in the original work 

of Johann Bernouilli. This equation was obtained not 

from the Euler-Lagrange equation (that was unknown 

at the time), but instead through an ingenuous argument that uses an analogy 

with optics and Fermat Principle of Least Time. Bernouilli assumed that the 

velocity was constant along horizontal stretches and applied Snell’s law to 

compute the angles of incidence and refraction. The sketch above is eprinted 

from a treaty on Physics of the XVIII that is available at the library of 

Universidade de Coimbra. 
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Details of the solution of equation(*) 

Make the change of variable  = ( )x  such that ( )y
c

c= − =










2
2 2

2
1

2
cos sin


 . 

In this way, c y c c2 2 2 2 21
2 2

− = −


















 =









sin cos

 
  and   sin cos y c= 2

2 2

 
  where 

:


=
d

dx
 

Replacing in 
y

c y
y

2
1

−
= , one gets 

c

c

c

2 2

2 2

2 2 22

2

2 2
1

sin

cos

sin cos 





 






















 =  or, 

simplifying c2 2

2
1sin 

 =  or else ( )
c d

dx

2

2
1 1− =cos


 

Integrating, yields ( )
c

d x c
2

0

1
2

1− = − cos 


 from which the expression for x( ) is 

obtained. 
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Exercise 6 

Find the extremal for the following variational problem 

𝐽(𝑦) = ∫
𝑦′2

𝑥3
𝑑𝑥

2

1

 

𝑦(1) = 2,    𝑦(2) = 17 

Hint: Observe that this is special case 1, and hence the EL equation reduces 

to 

𝜕𝐿

𝜕𝑦′
= 𝑐 with 𝑐 a constant 
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Solution 

𝐿 =
𝑦′2

𝑥3        
𝜕𝐿

𝜕𝑦′
=

2𝑦′

𝑥3   

Since this is special case 1, the EL equation is just 
𝜕𝐿

𝜕𝑦′
=

2𝑦′

𝑥3 = 𝑐 or 𝑦′ =
1

2
𝑐𝑥3 

𝑦(𝑥) − 𝑦(0) =
𝑐

2
∫ 𝜎3𝑑𝜎

𝑥

𝑥0
    𝑦(𝑥) = 𝑦(0) +

𝑐

2
(

𝑥4

4
) |𝑥0

𝑥    𝑦(𝑥) = 𝑦(0) +
𝑐

8
(𝑥4 − 𝑥0

4) 

Apply the initial condition: 𝑦(𝑥) = 2 +
𝑐

8
(𝑥4 − 1) 

Apply the final condition: 17 = 2 +
𝑐

8
× 15   and    𝑐 = 8 

Solution: 

𝑦(𝑥) = 𝑥4 + 1 
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a b x

y

y
0

 

Free end-point problems [L2012]. P.42-44, [K1970] 

Find the extremals of 

𝐽(𝑦) = ∫ 𝐿(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑏

𝑎

 

s. t.      𝑦(𝑎) = 𝑦0,      𝑦(𝑏) free 
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Free end-point 

Admissible disturbances 𝜂 satisfy 

𝜂(𝑎) = 0,    𝜂(𝑏) free 

The first variation has now an extra term 

𝛿𝐽|𝑦(𝜂) = ∫ (𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′) 𝜂(𝑥)𝑑𝑥

𝑏

𝑎

+ 𝐿𝑦′(𝑏, 𝑦(𝑏), 𝑦´(𝑏))𝜂(𝑏) 

To impose 𝛿𝐽|𝑦(𝜂) = 0: 

𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′ = 0      𝐿𝑦′(𝑏, 𝑦(𝑏), 𝑦´(𝑏))𝜂(𝑏) = 0 

Since 𝜂(𝑏) is arbitrary, it must be 

𝐿𝑦′(𝑏, 𝑦(𝑏), 𝑦´(𝑏)) = 0 
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Necessary conditions for a weak minimum with free end point, fixed end time 

EL equation: 

𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′ = 0 

Condition that replaces the terminal condition: 

𝐿𝑦′(𝑏, 𝑦(𝑏), 𝑦´(𝑏)) = 0 
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5 x

y

1

0

Free

 

Exercise 8 

Find the smooth curve of smallest length that connects the 

point 𝑦(0) = 1 to the vertical line in the plane (𝑥, 𝑦) 

defined by 𝑥 = 5. 

 

Minimize 𝐽(𝑥) = ∫ √1 + 𝑦′2𝑑𝑥
5

0
 

    s. t.         𝑦(0) = 1 

 

Hint:           𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′ = 0            𝐿𝑦′(𝑏, 𝑦(𝑏), 𝑦´(𝑏)) = 0 

Observe that this is special case 1 (“no 𝑦”) of the EL equation. 
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Solution 

𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′ = 0     𝐿 = √1 + 𝑦′

2
      𝐿𝑦 = 0       𝐿𝑦′ =

𝑦′

√1+𝑦′
2
 

EL equation becomes 
𝑑

𝑑𝑥
(

𝑦′

√1+𝑦′
2
) = 0   or 

𝑦′

√1+𝑦′
2

= √𝑐1 

𝑦′2 = 𝑐1(1 + 𝑦′2)   →     𝑦′ = √
𝑐1

1−𝑐1
= 𝑐2   →     𝑦(𝑥) = 𝑐2𝑥 + 𝑐3 

The solution is a straight line! Apply now the initial condition and the 

condition that replaces the terminal condition to obtain 𝑐2 and 𝑐3 
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𝑦(𝑥) = 𝑐2𝑥 + 𝑐3  

Initial condition: 𝑦(0) = 𝑐3   ⇒    𝑐3 = 1 

Condition that replaces the terminal condition 

𝐿𝑦′(𝑏, 𝑦(𝑏), 𝑦´(𝑏)) = 0    →     𝐿𝑦′|𝑥=5 =
𝑦′(5)

√1+(𝑦′(5))2
= 0   →     𝑦′(5) = 0 

𝑦′(𝑥) = 𝑐2   →   𝑐2 = 0 

Conclusion: The extremal curve is the horizontal line defined by 𝑦(𝑥) = 1, 

0 ≤ 𝑥 ≤ 5. 
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Exercise 10 

Consider the following modification of exercise 8: 

Show that the curve with shortest length that connects the point (0, 𝑦0) and the 

vertical line 𝑥 = 𝑏 has a tangent at 𝑥 = 𝑏 (when the curve touches the vertical 

line) that is orthogonal to the vertical line. 

Minimize 𝐽(𝑥) = ∫ √1 + 𝑦′2𝑑𝑥
𝑏

0
 

    s. t.        𝑦(0) = 𝑦0 
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𝐿 = √1 + 𝑦′2  

The modified terminal condition is 

𝐿𝑦′|𝑥=𝑏 = 0 

𝐿𝑦′|𝑥=𝑏 =
𝑦′(𝑏)

√1+(𝑦′(𝑏))2
= 0   →     𝑦′(𝑏) = 0 

Hence, for 𝑥 = 𝑏, the tangent to 𝑦 is horizontal and hence 𝑦 at 𝑥 = 𝑏 is 

orthogonal to the vertical line. 
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a x

y

y
0

x
f

y(x)

(x
f)=y(xf)

 

1st-order necessary conditions for free end time 

Find a curve 𝑦(𝑥) that links the point (𝑎, 𝑦0) in the (𝑥, 𝑦) plane with the curve 

(𝑥𝑓 , 𝜑(𝑥𝑓)), with 𝑥𝑓 free and 𝜑 a 𝐶1 function, 𝜑: ℝ → ℝ, and is an extremal of 

𝐽(𝑦) = ∫ 𝐿(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥𝑓

𝑎

 

𝑎 fixed 

𝑥𝑓 unspecified 
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a

y

y
0

x
f

x
f+x

 

Let 𝑦: [𝑎, 𝑥𝑓] → ℝ be an optimal curve. 

Perturbed curve 

𝑦 + 𝛼𝜂 

Since the terminal point is not fixed, let the 

terminal point of the perturbed curve be 

perturbed as well, being 

𝑥𝑓 + 𝛼∆𝑥 

𝑥𝑓 is free, but 𝑦(𝑥𝑓) and 𝑥𝑓 are bound by 𝜑. 

The same applies to the perturbed curve.  
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Cost of the perturbed curve 

𝐽(𝑦 + 𝛼𝜂; 𝑥𝑓 + 𝛼Δ𝑥) = ∫ 𝐿(𝑥, 𝑦(𝑥) + 𝛼𝜂(𝑥), 𝑦′(𝑥) + 𝛼𝜂′(𝑥))𝑑𝑥
𝑥𝑓+𝛼Δ𝑥

𝑎

 

The first variation is the derivative with respect to 𝛼 for 𝛼 = 0. 

Leibniz’s rule for the differentiation of an integral with respect to a parameter: 

𝑑

𝑑𝜃
(∫ 𝑓(𝑥, 𝜃)𝑑𝑥

𝑏(𝜃)

𝑎(𝜃)

) = ∫
𝜕𝑓

𝜕𝜃
𝑑𝑥

𝑏(𝜃)

𝑎(𝜃)

+ 𝑓(𝑏(𝜃), 𝜃) ∙ 𝑏′(𝜃) − 𝑓(𝑎(𝜃), 𝜃) ∙ 𝑎′(𝜃) 

Using Leibniz’s rule: 

𝛿𝐽|𝑦(𝜂) = ∫ (𝐿𝑦𝜂 + 𝐿𝑦′𝜂′)𝑑𝑥
𝑥𝑓

𝑎

+ 𝐿 (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) ∆𝑥 
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𝛿𝐽|𝑦(𝜂) = ∫ (𝐿𝑦𝜂 + 𝐿𝑦′𝜂′)𝑑𝑥
𝑥𝑓

𝑎

+ 𝐿 (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) ∆𝑥 

Integrate by parts to eliminate the dependency on 𝜂′: 

𝛿𝐽|𝑦(𝜂) = ∫ (𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′) 𝜂𝑑𝑥 + 𝐿𝑦′𝜂|𝑎

𝑥𝑓 +
𝑥𝑓

𝑎

𝐿 (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) ∆𝑥 

Since perturbations 𝜂 while ∆𝑥 = 0 are allowed, the integral is zero and the EL 

equations holds. 

Furthermore, because the initial condition is fixed, 𝜂(𝑎) = 0. 

Therefore, we are left with 

𝛿𝐽|𝑦(𝜂) = 𝐿𝑦′ (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) 𝜂(𝑥𝑓) + 𝐿 (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) ∆𝑥 = 0 
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a

y

y
0

x
f

x
f+x

y(x
f+x)+

+(xf+x)

 

𝛿𝐽|𝑦(𝜂) = 𝐿𝑦′ (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) 𝜂(𝑥𝑓) + 𝐿 (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) ∆𝑥 = 0 

But 𝜂(𝑥𝑓) and ∆𝑥 are related, because the terminal point of the perturbed 

curve must still be on the curve 𝑦 = 𝜑(𝑥𝑓): 

𝑦(𝑥𝑓 + 𝛼∆𝑥) + 𝛼𝜂(𝑥𝑓 + 𝛼∆𝑥) = 𝜑(𝑥𝑓 + 𝛼∆𝑥) 
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𝑦(𝑥𝑓 + 𝛼∆𝑥) + 𝛼𝜂(𝑥𝑓 + 𝛼∆𝑥) = 𝜑(𝑥𝑓 + 𝛼∆𝑥) 

Differentiate with respect to 𝛼 

𝑦′(𝑥𝑓 + 𝛼∆𝑥)∆𝑥 + 𝜂(𝑥𝑓 + 𝛼∆𝑥) + 𝛼𝜂′(𝑥𝑓 + 𝛼∆𝑥)∆𝑥 = 𝜑′(𝑥𝑓 + 𝛼∆𝑥)∆𝑥 

and set 𝛼 = 0 

𝑦′(𝑥𝑓)∆𝑥 + 𝜂(𝑥𝑓) = 𝜑′(𝑥𝑓)∆𝑥 

𝜂(𝑥𝑓) = (𝜑′(𝑥𝑓) − 𝑦′(𝑥𝑓)) ∆𝑥 
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𝜂(𝑥𝑓) = (𝜑′(𝑥𝑓) − 𝑦′(𝑥𝑓)) ∆𝑥 

Plug this expression in the expression for 𝛿𝐽|𝑦(𝜂): 

𝛿𝐽|𝑦(𝜂) = 𝐿𝑦′ (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) 𝜂(𝑥𝑓) + 𝐿 (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) ∆𝑥 = 0 

and get 

[𝐿𝑦′ (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) (𝜑′(𝑥𝑓) − 𝑦′(𝑥𝑓)) + 𝐿 (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓))] ∆𝑥 = 0 

Since the equality to 0 must hold for any ∆𝑥, we conclude that the so-called 

transversality condition must hold: 

𝐿 (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) + 𝐿𝑦′ (𝑥𝑓 , 𝑦(𝑥𝑓), 𝑦′(𝑥𝑓)) (𝜑′(𝑥𝑓) − 𝑦′(𝑥𝑓)) = 0 
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1st-order necessary conditions for extremal in the free final “time” case 

1)  EL equation 

𝐿𝑦 =
𝑑

𝑑𝑥
(𝐿𝑦′) 

2)  Initial condition 

𝑦(𝑎) = 𝑦1 

3)  Transversality condition 

𝐿|𝑥𝑓,𝑦𝑓,𝑦′𝑓
+ 𝐿𝑦′|𝑥𝑓,𝑦𝑓,𝑦′𝑓

(𝜑′(𝑥𝑓) − 𝑦′(𝑥𝑓)) = 0 

4)  Condition that defines the arrival manifold 

𝑦(𝑥𝑓) = 𝜑(𝑥𝑓) 
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Exercise 11 

Write the conditions that define the curve that links the point (𝑎, 𝑦1) with the 

curve (𝑥𝑓 , 𝜑(𝑥𝑓)), with 𝑥𝑓 free, and 𝜑 a 𝐶1 function 𝜑: ℝ → ℝ, and such that the 

curve (𝑥, 𝑦), 𝑎 ≤ 𝑥 ≤ 𝑥𝑓, is an extremal to the functional defined by its length, 

𝐽(𝑦) = ∫ √1 + 𝑦′(𝑥)2𝑑𝑥
𝑥𝑓

𝑎

 

 

Hint: Write the EL equation and solve it observing that it is special case 1 to 

obtain the shape of the extremal. Then, apply the initial condition, the 

transversality condition and use the shape of 𝜑 to obtain conditions for the 

constants that define the extremal curve 𝑦 and 𝑥𝑓. 
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Solution 

𝐿 = √1 + 𝑦′(𝑥)2      𝐿𝑦 = 0     𝐿𝑦′ =
𝑦′

√1+𝑦′(𝑥)2
= 0 

EL equation:     
𝑑

𝑑𝑥

𝑦′

√1+𝑦′(𝑥)2
= 0   hence   

𝑦′

√1+𝑦′(𝑥)2
= 𝑐    with 𝑐 a constant. 

𝑦′ =
𝑐

√1 − 𝑐2
≔ 𝑐1 

Hence, the extremal is a straight line, defined by 

𝑦(𝑥) = 𝑐1𝑥 + 𝑐2 

𝑐1, 𝑐2, and 𝑥𝑓 are obtained from the initial condition, the transversality condition 

and the shape of the curve (𝑥𝑓 , 𝜑(𝑥𝑓)).  
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From the initial condition: 𝑦1 = 𝑐1𝑎 + 𝑐2         Furthermore:   𝑦′ = 𝑐1 

From the transversality condition 

𝐿|𝑥𝑓,𝑦𝑓,𝑦′𝑓
+ 𝐿𝑦′|𝑥𝑓,𝑦𝑓,𝑦′𝑓

(𝜑′(𝑥𝑓) − 𝑦′(𝑥𝑓)) = 0 

√1 + 𝑐1
2 +

𝑐1

√1 + 𝑐1
2

(𝜑′(𝑥𝑓) − 𝑐1) = 0 

Multiply by √1 + 𝑐1
2 and simplify to get    1 + 𝑐1𝜑′(𝑥𝑓) = 0 

From the terminal condition 𝑦(𝑥𝑓) = 𝜑(𝑥𝑓)   or   𝑐1𝑥𝑓 + 𝑐2 = 𝜑(𝑥𝑓). 

Conclusion, 𝑐1, 𝑐2, and 𝑥𝑓 satisfy   {

 𝑦1 = 𝑐1𝑎 + 𝑐2

1 + 𝑐1𝜑′(𝑥𝑓) = 0

𝑐1𝑥𝑓 + 𝑐2 = 𝜑(𝑥𝑓)
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x

(x) '(x)



 

Tangent vector to a curve 

Any vector [
∆

𝜑′(𝑥)∆
] is tangent to the curve [

𝑥
𝜑(𝑥)] at 𝑥. 

In particular, for ∆= 1, [
1

𝜑′(𝑥)
] is a tangent vector. 
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f

(x)'(x)

1
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Starting
point
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Geometrical interpretation of the transversality condition for the length 

functional 

In exercise 10 it is shown that 

1 + 𝑐1𝜑′(𝑥𝑓) = 0 

But in this case 𝑦′(𝑥𝑓) = 𝑐1 and thus 

1 + 𝑦′(𝑥𝑓)𝜑′(𝑥𝑓) = [1 𝑦′(𝑥𝑓)] [
1

𝜑′(𝑥𝑓)] = 0 

Thus, the tangent vectors to the curve 𝑦(𝑥) and 𝜑(𝑥)are orthogonal at 𝑥𝑓. 
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y(xf)

0 1

1

y

x

 

Exercise 12 

Find the shortest line between the point (1,0) and the curve 𝜑(𝑥) = 𝑒𝑥. 

Minimize 

𝐽 = ∫ √1 + 𝑦′2𝑑𝑥
𝑥𝑓

1

 

Compute the distance between the point (1,0) 

and the curve 𝜑(𝑥) = 𝑒𝑥. 

Hints:  

𝐿𝑦 =
𝑑

𝑑𝑥
(𝐿𝑦′),       𝐿|𝑥𝑓,𝑦𝑓,𝑦′𝑓

+ 𝐿𝑦′|𝑥𝑓,𝑦𝑓,𝑦′𝑓
(𝜑′(𝑥𝑓) − 𝑦′(𝑥𝑓)) = 0 
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Solution 

𝐿 = √1 + 𝑦′2    𝐿𝑦 = 0      𝐿𝑦 =
𝑑

𝑑𝑥
(𝐿𝑦′) becomes   

𝑑

𝑑𝑥
(𝐿𝑦′) = 0  hence 𝐿𝑦′ = 𝑐 

𝑦′

√1+𝑦′2
= 𝑐      ⇒     𝑦′ =

𝑐

√1−𝑐2
≔ 𝑐1 

Hence, the extremal is a straight line, defined by 

𝑦(𝑥) = 𝑐1𝑥 + 𝑐2 

Boundary conditions 

𝑦(1) = 0 ⇒    𝑐1 + 𝑐2 = 0 

  



Calculus of Variations and Optimal Control  68 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Transversality condition 

𝐿|𝑥𝑓,𝑦𝑓,𝑦′𝑓
+ 𝐿𝑦′|𝑥𝑓,𝑦𝑓,𝑦′𝑓

(𝜑′(𝑥𝑓) − 𝑦′(𝑥𝑓)) = 0 

𝜑′(𝑥𝑓) = 𝑒𝑥𝑓     𝑦′ = 𝑐1 

𝐿|𝑥𝑓,𝑦𝑓
= √1 + 𝑐1

2      𝐿𝑦′|𝑥𝑓,𝑦𝑓
=

𝑐1

√1+𝑐1
2
 

The transversality condition becomes thus 

√1 + 𝑐1
2 +

𝑐1

√1 + 𝑐1
2

(𝑒𝑥𝑓 − 𝑐1) 

Multiply by √1 + 𝑐1
2 and simplify to get 1 + 𝑐1𝑒𝑥𝑓 = 0. 

Final constraint: 𝑦𝑓 = 𝑒𝑥𝑓    →    𝑐1𝑥𝑓 + 𝑐2 = 𝑒𝑥𝑓 
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1

y=1-xf

x
f

y=e2xf

 

The conditions to satisfy in order to find 𝑐1, 𝑐2, and 𝑥𝑓 are thus 

 {

𝑐1 + 𝑐2 = 0

1 + 𝑐1𝑒𝑥𝑓 = 0

𝑐1𝑥𝑓 + 𝑐2 = 𝑒𝑥𝑓

 

{
𝑐1𝑥𝑓 − 𝑐1 = 𝑒𝑥𝑓

𝑐1 = −
1

𝑒
𝑥𝑓

     →     −
𝑥𝑓

𝑒
𝑥𝑓

+
1

𝑒
𝑥𝑓

= 𝑒𝑥𝑓    →     1 − 𝑥𝑓 = (𝑒𝑥𝑓)2    →   𝑥𝑓 = 0  

𝑐1 = −1,   𝑐2 = 1 

The extremal solution is 𝑦(𝑥) = 1 − 𝑥,   0 ≤ 𝑥 ≤ 1 

The corresponding extremal “distance is 

𝐽∗ = ∫ √2
0

1

𝑑𝑥 = −√2 
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Hamilton’s canonical equations 

Hamilton’s formalism (Hamilton 1835) 

An alternative formulation of the results of Euler and Lagrange. 

Of great significance in the context of optimal control. 

 

[L2012] pp. 44-46. 
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William Rowan Hamilton (1805-1865) was born in Dublin, 

Ireland, and made important contributions to classical 

mechanics, optics, and algebra. His best known contribution 

to mathematical physics is the reformulation of Newtonian 

mechanics, now called Hamiltonian mechanics. This work 

has proven central to the modern study of classical field 

theories such as electromagnetism, as well as to the 

development of quantum mechanics and optimal control. In pure mathematics, 

he is best known as the inventor of quaternions.  
  

https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Optics
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Newtonian_mechanics
https://en.wikipedia.org/wiki/Newtonian_mechanics
https://en.wikipedia.org/wiki/Hamiltonian_mechanics
https://en.wikipedia.org/wiki/Electromagnetism
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quaternion
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Important new concepts: 

Momentum 

𝑝 ≔ 𝐿𝑦′(𝑥, 𝑦, 𝑦′) 

 

Hamiltonian 

𝐻(𝑥, 𝑦, 𝑦′, 𝑝) ≔ 𝑝 ∙ 𝑦′ − 𝐿(𝑥, 𝑦, 𝑦′) 

A general function of 4 variables. 

Also a function of 𝑥 alone when evaluated along a curve. 

 

Canonical variables 

𝑦 and 𝑝 
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Hamilton’s canonical equations 

𝑦 an extremal (satisfies the EL equation). 

Since 

𝐻 = 𝑝𝑦′ − 𝐿, 

it follows that (equation for 𝑦): 

𝑑𝑦

𝑑𝑥
=

𝜕𝐻

𝜕𝑝
 

Furthermore, for 𝑝: 

𝑑𝑝

𝑑𝑥
=

𝑑

𝑑𝑥
(𝐿𝑦′) = 𝐿𝑦 = −

𝜕𝐻

𝜕𝑦
 

where the 1st equality follows by definition of 𝑝 and the 2nd by the EL eq. 
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Hamilton’s canonical equations 

𝑑𝑦

𝑑𝑥
=

𝜕𝐻

𝜕𝑝
,     

𝑑𝑝

𝑑𝑥
= −

𝜕𝐻

𝜕𝑦
 

In general, 𝑝 and 𝐻 need not be constant along extremals. 

However, there are situations in which they are constant. The following 

exercise clarifies this point. 
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Exercise 17    [L2012], p. 45, exercise 2.7 

Show that 

a)  When 𝐿 does not depend explicitly on 𝑦, 𝑝 is constant along extremals. 

b)  When 𝐿 does not depend explicitly on 𝑥, 𝐻 is constant along extremals. 

Make the proof in two different ways 

1. Using the EL equation 

2. Using Hamilton equations 

𝑑𝑦

𝑑𝑥
=

𝜕𝐻

𝜕𝑝
,     

𝑑𝑝

𝑑𝑥
= −

𝜕𝐻

𝜕𝑦
 

In both cases, use the definition of 𝑝, and 𝐻: 

𝑝 ≔ 𝐿𝑦′(𝑥, 𝑦, 𝑦′)      𝐻 = 𝑝𝑦′ − 𝐿, 
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Solution 

1. EL: 𝐿𝑦 =
𝑑

𝑑𝑥
𝐿𝑦′ 

a) “No 𝑦”. The EL eq. reduces to 
𝑑

𝑑𝑥
𝐿𝑦′ = 0  ⇒   𝐿𝑦′ = 𝑐 

By definition of 𝑝,  𝑝 ≔ 𝐿𝑦′, it follows that 𝑝 = 𝑐 with 𝑐 a constant. 
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b) “No 𝑥”. By the chain rule 

Then, 𝐿𝑦′𝑥 = 0, and the EL becomes 

𝐿𝑦 = 𝐿𝑦′𝑦𝑦′ + 𝐿𝑦′𝑦′𝑦′′ 

Multiply both sides by 𝑦′ 

𝐿𝑦′𝑦(𝑦′)2 + 𝐿𝑦′𝑦′𝑦
′′𝑦′ − 𝐿𝑦𝑦′ = 0 

𝑑

𝑑𝑥
(𝐿𝑦′𝑦

′ − 𝐿) = 0 

Therefore 

𝐿𝑦′𝑦
′ − 𝐿 = 𝑐    or   𝑝𝑦′ − 𝐿 = 𝑐    or   𝐻 = 𝑐. 
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2.Proof using Hamilton equations 

a)  𝐻 = 𝑝𝑦′ − 𝐿   
𝜕𝐻

𝜕𝑦
= −

𝜕𝐿

𝜕𝑦
= 0  

Hence, since  
𝑑𝑝

𝑑𝑥
= −

𝜕𝐻

𝜕𝑦
   →   

𝑑𝑝

𝑑𝑥
= 0 and 𝑝 is constant. 
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2.Proof using Hamilton equations 
 

b) 
𝑑𝐻

𝑑𝑥
= 𝐻𝑦𝑦′ + 𝐻𝑦′𝑦′′ + 𝐻𝑝𝑝′ 

Use The definition of 𝐻: = 𝑝𝑦′ − 𝐿 and 𝑝 ≔ 𝐿𝑦′ and the Hamilton equation 

𝑑𝑦

𝑑𝑥
=

𝜕𝐻

𝜕𝑝
         

𝑑𝑝

𝑑𝑥
= −

𝜕𝐻

𝜕𝑦
    to observe that 

𝐻𝑦′ =
𝜕

𝜕𝑦′
(𝑝𝑦′ − 𝐿) = 𝑝 − 𝐿𝑦′ 

𝑑𝐻

𝑑𝑥
= 𝐻𝑦𝑦′ + 𝐻𝑦′𝑦

′′ + 𝐻𝑝𝑝′ 

𝑑𝐻

𝑑𝑥
= −𝑝′𝑦′ + (𝑝 − 𝐿𝑦′)𝑦′′ + 𝑦′𝑝′ = (𝑝 − 𝐿𝑦′)𝑦′′ = (𝑝 − 𝑝)𝑦′′ = 0. 
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The Hamiltonian as a stationary point  [L2012] p.46 

𝐻(𝑥, 𝑦, 𝑦′, 𝑝) = 𝑝 ∙ 𝑦′ − 𝐿(𝑥, 𝑦, 𝑦′) 

Arbitrary 𝑥 ∈ [𝑎, 𝑏];  𝑦 the corresponding 𝑦(𝑥) of the optimal curve 

𝑝 = 𝑝(𝑥) = 𝐿𝑦′(𝑥, 𝑦, 𝑦′) the corresponding value of the momentum 

Keep 𝑦′ as a free variable denote it as 𝑧 to define the function 

𝐻∗(𝑧) ≔ 𝑝 ∙ 𝑧 − 𝐿(𝑥, 𝑦(𝑥), 𝑧) 

For 𝑧 = 𝑦′(𝑥) 

𝑑𝐻∗

𝑑𝑧
|𝑧=𝑦′(𝑥) = 𝐿𝑦′(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) − 𝐿𝑦′(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) = 0 

𝑑𝐻∗

𝑑𝑧
|𝑧=𝑦′(𝑥) = 0 
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Conclusion: Along an extremal curve, the Hamiltonian is stationary with 

respect to 𝑦′. 
 

Remark: Actually, it can be shown that 𝐻 is maximum with respect to 𝑦′, even 

when 𝐻 is not differentiable, or when 𝑦′ takes a value in a set with a boundary 

and 𝐻𝑦′ ≠ 0 on this boundary. 

 

These issues will become clearer when considering the maximum principle for 

optimal control. 
  



Calculus of Variations and Optimal Control  82 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Exercise 2 (Cont.) 

Consider the problem 

Minimize    𝐽(𝑦) = ∫ [𝑦′2(𝑥) − 𝑦2(𝑥)]𝑑𝑥
𝜋/2

0
 

       s. t.      𝑦(0) = 0,    𝑦(𝜋

2
) = 1. 

In Exercise 2 we found that the extremal is 𝑦(𝑥) = sin (𝑥). Compute: 

a)  𝑝(𝑥) = 𝐿𝑦′ 

b)  𝐻∗(𝑧) ≔ 𝑝 ∙ 𝑧 − 𝐿(𝑥, 𝑦(𝑥), 𝑧) 

Make a sketch of this function for various values of 𝑥. 

c)  𝐻∗(𝑧)|𝑧=𝑝′(𝑥). Is this in accordance with what you expect? 
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x

H

1

z
y(x)=sin(x)

y'(x)=cos(x)

 

Solution     𝐿 = 𝑦′2(𝑥) − 𝑦2(𝑥) 

a)  The extremal is 𝑦(𝑥) = sin(𝑥). Hence 𝑦′(𝑥) = cos(𝑥) 

𝑝(𝑥) = 𝐿𝑦′ = 2𝑦′ = 2cos (𝑥)  

b)  𝐻∗(𝑧) ≔ 𝑝 ∙ 𝑧 − 𝐿(𝑥, 𝑦(𝑥), 𝑧) = 𝑝𝑧 − 𝑧2 + 𝑦2 = 2 cos(𝑥)𝑧 − 𝑧2 + 𝑠𝑖𝑛2(𝑥)  

c)  For 𝑧 = 𝑦′ = cos (𝑥), 𝐻∗ = 2 cos2(𝑥) − cos2(𝑥) + 1 − cos2(𝑥) = 1, and 

hence, along an optimal trajectory, 𝐻 is constant. 

Furthermore, for 𝑧 = 𝑦′ (the optimal 𝑝), 𝐻∗(𝑧) is 

maximum with respect to 𝑧.  
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Legendre transform 

[L2012] pp. 46-48 

[H2014] pp. 93-95, 97-100. 

 

[H2014] P. Hamill (2014). A student’s guide to Lagrangians and Hamiltonians. 

Cambridge University Press. 

 

A function 𝑓: ℝ → ℝ with argument 𝜉 

 

A function 𝑓∗ with argument 𝑝 ∈  ℝ 
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f()

(p)

f*(p)
Slope

 p

 

Defining the Legendre Transform 

For a given 𝑝: 

Draw a line of slope 𝑝 through the origin. 

𝜉(𝑝) ≔ arg max
𝜉

{𝑝𝜉 − 𝑓(𝜉)} 

𝜉(𝑝) corresponds to the point at which the 

vertical line distance from 𝑓 to this line is maximized: 

𝑓∗(𝑝) ≔ 𝑝𝜉(𝑝) − 𝑓(𝜉(𝑝)) = max
𝜉

{𝑝𝜉 − 𝑓(𝜉)} 

Furthermore 

𝑓∗(𝑝) + 𝑓(𝜉(𝑝)) = 𝑝𝜉 
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f()

(p)

f*(p)
Slope

 p

 

𝑓∗(𝑝) = max
𝜉

{𝑝𝜉 − 𝑓(𝜉)} 

When 𝑓 is differentiable 

𝑝 − 𝑓′(𝜉) = 0 

Geometrically: the tangent line must be parallel  

to the straight line of slope 𝑝. 

For convex functions, both definitions are 

equivalent.  
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Properties of the Legendre Transform     [L2012], p. 47 

𝑓∗ is a convex function even if 𝑓 is not convex. 

 

The Legendre transform is involutive: If 𝑓 is convex, 𝑓∗∗ = 𝑓. 
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The Legendre transform and the Hamiltonian 

The Hamiltonian 𝐻 can be obtained by applying the Legendre transform to the 

Lagrangian 𝐿 

𝐿 → 𝐻 

Consider 𝐿(𝑥, 𝑦, 𝑦′) as a function of 𝜉 = 𝑦′ 

The relation 

𝑝 − 𝑓′(𝜉(𝑝)) = 0 

Becomes 

𝑝 − 𝐿𝑦′(𝑥, 𝑦, 𝑦′(𝑝)) = 0 

that corresponds to the definition of the momentum 𝑝. 
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Consider now the general definition of the Legendre transform 

𝑓∗(𝑝) = 𝑝 𝜉(𝑝) − 𝑓(𝜉(𝑝)) 

Apply it to 𝐿, to yield 

𝐿∗(𝑥, 𝑦, 𝑝) = 𝑝𝑦′(𝑝) − 𝐿(𝑥, 𝑦, 𝑦′(𝑝)) 

that is the definition of the Hamiltonian. 
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Variational problems with constraints 

Integral constraints 

[L2012] pp. 52-55 

Heuristic discussion 

𝐶(𝑦) = ∫ 𝑀(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑏

𝑎

= 𝐶0 

𝑦 an extremal 

Perturbed curves 𝑦 + 𝛼𝜂 

To be admissible, 𝜂 must preserve the constraint 

𝐶(𝑦 + 𝛼𝜂) = 𝐶0   ∀𝛼 close to 0 

𝛿𝐶|𝑦(𝜂) = 0 
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Consequence (1st-order necessary condition for constrained optimality) 

∃𝜆∗ (Lagrange multiplier) and 𝜆0 such that 

𝜆0 (𝐿𝑦 −
𝑑

𝑑𝑥
𝐿𝑦′) + 𝜆∗ (𝑀𝑦 −

𝑑

𝑑𝑥
𝑀𝑦′) = 0 

Rearranging terms 

(𝜆0𝐿 + 𝜆∗𝑀)𝑦 =
𝑑

𝑑𝑥
(𝜆0𝐿 + 𝜆∗𝑀)𝑦′ 

That amount to say that the Euler Lagrange equation holds for the augmented 

Lagrangian 

𝜆0𝐿 + 𝜆∗𝑀 

𝜆0 is usually 1 and is called the abnormal multiplier. 
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From constrained to unconstrained optimization 

Constrained problem: 

min
𝑦

𝐽(𝑦) = ∫ 𝐿𝑑𝑥
𝑏

𝑎

 

s.t. 𝐶(𝑦) = ∫ 𝑀𝑑𝑥
𝑏

𝑎
= 𝐶0 

↓ 

Unconstrained problem 

min
𝑦

max
𝜆

∫ 𝐿𝑑𝑥
𝑏

𝑎

+ 𝜆 (∫ 𝑀𝑑𝑥
𝑏

𝑎

− 𝐶0) 

For curves that satisfy the constraint, the values of the two functionals 

coincide. 
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Procedure to solve problems with integral constraints 

1. Solve the Euler-Lagrange equation considering the augmented Lagrangian  

𝜆0𝐿 + 𝜆𝑀 

2. Obtain a solution 𝑦(𝑥, 𝜆) that depends on 𝜆. 

3.  Plug the solution 𝑦(𝑥, 𝜆) in the integral constraint to obtain an equation on 

𝜆, and solve it to obtain 𝜆. 

4. Eliminate 𝜆 from 𝑦(𝑥, 𝜆). 
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Exercise 20 

Minimize   ∫ 𝑦′2𝑑𝑥
1

0
    s. t. 𝑦(0) = 2, 𝑦(1) = 4 and the integral constraint 

∫ 𝑦𝑑𝑥
1

0

= 1 

 

Hints: 

(𝐿 + 𝜆∗𝑀)𝑦 =
𝑑

𝑑𝑥
(𝜆0𝐿 + 𝜆∗𝑀)𝑦′ 

Solve EL with constraint as a function of 𝜆. 

Use the integral constraint to find 𝜆∗. 
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Solution 

𝐿 = 𝑦′2        𝑀 = 𝑦 

ℒ = 𝐿 + 𝜆𝑀 = 𝑦′2 + 𝜆𝑦            ℒ𝑦 =
𝑑

𝑑𝑥
ℒ𝑦′ 

ℒ𝑦 = 𝜆         ℒ𝑦′ = 2𝑦′ 

The EL for ℒ becomes  𝜆 = 2𝑦′′   →    𝑦(𝑥) =
𝜆

4
𝑥2 + 𝑐1𝑥 + 𝑐2 

𝑦(0) = 2   →    𝑐2 = 2           𝑦(1) = 4     →      𝑐1 = 2 −
𝜆

4
 

→    𝑦(𝑥) =
𝜆

4
𝑥2 + (2 −

𝜆

4
) 𝑥 + 2 

Use now the integral constraint to find 𝜆: 

∫ (
𝜆

4
𝑥2 + (2 −

𝜆

4
) 𝑥 + 2) 𝑑𝑥 = 1

1

0
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∫ (
𝜆

4
𝑥2 + (2 −

𝜆

4
) 𝑥 + 2) 𝑑𝑥 = 1

1

0

 

[
𝜆

12
𝑥3 + (1 −

𝜆

8
) 𝑥2 + 2𝑥]

0

1
= 1     →     

𝜆

12
+ (1 −

𝜆

8
) + 2 = 1   →     𝜆∗ = 48 

𝑦(𝑥) =
𝜆

4
𝑥2 + (2 −

𝜆

4
) 𝑥 + 2 

𝑦(𝑥) = 12𝑥2 − 10𝑥 + 2 
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Exercise 22 

Find the extremals of     𝐽(𝑦) = ∫ 𝑦′2𝑑𝑥
𝜋

0
   s. t. 𝑦(0) = 𝑦(𝜋) = 0 and 

𝐶(𝑦) = ∫ 𝑦2𝑑𝑥
𝜋

0

=
𝜋

2
 

Show that there is an infinite set of extremals. Evaluate the functional on a 

typical extremal. 
 

Hints: 

1. Look for solutions of the EL equation with 𝜆 < 0. 

2. Useful trigonometric formulas 

𝑠𝑖𝑛2(𝜃) =
1

2
(1 − cos (2𝜃))       𝑐𝑜𝑠2(𝜃) =

1

2
(1 + cos (2𝜃)) 
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Solution 

𝐿 = 𝑦′2             𝑀 = 𝑦2 

ℒ = 𝐿 + 𝜆𝑀 = 𝑦′2 + 𝜆𝑦2            ℒ𝑦 =
𝑑

𝑑𝑥
ℒ𝑦′ 

ℒ𝑦 = 2𝜆𝑦         ℒ𝑦′ = 2𝑦′ 

The EL becomes    𝜆𝑦 =  𝑦′′ 

Assume 𝑦(𝑥) = 𝑒𝛾𝑥 

The EL yields the characteristic equation:   𝛾2 = 𝜆     →    𝛾 = ±𝑗√−𝜆 

𝑦(𝑥) = 𝑘1𝑒𝑗√−𝜆𝑥 + 𝑘2𝑒−𝑗√−𝜆𝑥 

𝑦(𝑥) = 𝑘1 (cos(√−𝜆𝑥) + 𝑗𝑠𝑖𝑛(√−𝜆𝑥)) + 𝑘2 (cos(√−𝜆𝑥) − 𝑗𝑠𝑖𝑛(√−𝜆𝑥)) 
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𝑦(𝑥) = 𝑘1 (cos(√−𝜆𝑥) + 𝑗𝑠𝑖𝑛(√−𝜆𝑥)) + 𝑘2 (cos(√−𝜆𝑥) − 𝑗𝑠𝑖𝑛(√−𝜆𝑥)) 

Boundary conditions 

𝑦(𝑜) = 0     →      𝑘1 + 𝑘2 = 0    →       𝑘2 = −𝑘1   →      𝑦(𝑥) = 2𝑗𝑘1 𝑠𝑖𝑛(√−𝜆𝑥) 

Consider now 𝑦(𝜋) = 0 

We seek a solution for 𝑘1 ≠ 0. Thus,    √−𝜆 = 𝑛,   𝑛 ∈ ℤ 

𝑦(𝑥) = 2𝑗𝑘1 𝑠𝑖𝑛(𝑛𝑥) 

Use now the integral constraint to compute 𝑘1: 

∫ 𝑦2𝑑𝑥
𝜋

0
=

𝜋

2
      →      −4𝑘1

2 ∫ 𝑠𝑖𝑛2(𝑛𝑥)𝑑𝑥
𝜋

0
=

𝜋

2
 

𝑘1
2 = −

𝜋

8
∙

1

∫ 𝑠𝑖𝑛2(𝑛𝑥)𝑑𝑥
𝜋

0
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∫ 𝑠𝑖𝑛2(𝑛𝑥)𝑑𝑥
𝜋

0

=
1

2
∫ [1 − cos (2𝑛𝑥)]𝑑𝑥

𝜋

0

=
1

2
(𝜋 −

1

2𝑛
sin (2𝑛𝜋)) =

𝜋

2
 

𝑘1
2 = −

𝜋

8
∙

1

∫ 𝑠𝑖𝑛2(𝑛𝑥)𝑑𝑥
𝜋

0

=
−

𝜋

8
𝜋

2

= −
1

4
      →      𝑘1 = ±

1

2
𝑗 

Therefore, the solution for the extremals is 

𝑦∗(𝑥) = sin (𝑛𝑥) 

Value of the functional: 

𝐽(𝑦) = ∫ 𝑦′2
𝑑𝑥

𝜋

0

= ∫ 𝑛2𝑐𝑜𝑠2(𝑛𝑥)𝑑𝑥
𝜋

0

=
𝑛2

2
∫ (1 + cos (2𝑛𝑥))𝑑𝑥

𝜋

0

= 

=
𝑛2

2
(𝜋 +

1

2𝑛
sin (2𝑛𝑥)|0

𝜋) =
𝑛2𝜋

2
                𝐽(𝑦) =

𝑛2𝜋

2
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a b x

y

J

 

Exercise 24 (Dido’s isoperimetric problem)  [L2012] p. 55. Ex. 2.10 a)) 

Let 𝑦: [𝑎, 𝑏] ⊂ ℝ → ℝ be a 𝐶1 function with argument 𝑥. 

Show that the function that solves the variational problem 

Minimize 𝐽 = ∫ 𝑦(𝑥)𝑑𝑥
𝑏

𝑎
 

 Subject to 

  ∫ √1 + (𝑦′(𝑥))2𝑑𝑥
𝑏

𝑎
= 𝐶0, 

with 𝐶0 ∈ ℝ+ a constant, is an arc of circle.  
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Hints: 

1) After writing the EL equation with constraint, integrated both sides with 

respect to 𝑥. 

2) Solve the resulting equation with respect to 𝑦. 

3) Show that the primitive (indefinite integral) of 

𝑥+𝑐

√𝜆2−(𝑥+𝑐)2
      𝜆, 𝑐 constants 

is 

−√𝜆2 − (𝑥 + 𝑐)2 + 𝑑      𝑑 a constant 

  



Calculus of Variations and Optimal Control  103 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Solution (Dido’s isoperimetric problem) 

ℒ(𝑦, 𝜆) = 𝑦 + 𝜆√1 + (𝑦′(𝑥))2             
𝜕ℒ

𝜕𝑦
= 1            

𝜕ℒ

𝜕𝑦′
= 𝜆

1

2
∙

2𝑦′

√1+(𝑦′(𝑥))2
 

EL equation 

𝜕ℒ

𝜕𝑦
=

𝑑

𝑑𝑥
∙

𝜕ℒ

𝜕𝑦′
        →      1 =

𝑑

𝑑𝑥
(𝜆

𝑦′

√1+(𝑦′(𝑥))2
) 

Integrate both sides with respect to 𝑦: 

𝜆
𝑦′

√1+(𝑦′(𝑥))2
= 𝑥 + 𝑐          𝑐 a constant 

Solve with respect to 𝑦′: 

𝜆2(𝑦′)2

1+(𝑦′(𝑥))2 = (𝑥 + 𝑐)2    →      𝜆2(𝑦′)2 = (𝑥 + 𝑐)2(1 + (𝑦′(𝑥))2) 

(𝜆2 − (𝑥 + 𝑐)2)(𝑦′(𝑥))2 = (𝑥 + 𝑐)2 
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(𝜆2 − (𝑥 + 𝑐)2)(𝑦′(𝑥))2 = (𝑥 + 𝑐)2 

𝑦′ = ±
𝑥+𝑐

√𝜆2−(𝑥+𝑐)2
        (*) 

The primitive is 

𝑦 = ±√𝜆2 − (𝑥 + 𝑐)2 + 𝑑          (**) 

This expression for the primitive of (*) can be readily checked by differentiating 

(**) with respect to 𝑥 to obtain (*). 

Eq. (**) can be written as 

(𝑦 − 𝑑)2 + (𝑥 + 𝑐)2 = 𝜆2 

That shows that the solution of the EL equation is a segment of circle with 

center at (−𝑐, 𝑑) and radius 𝜆. 
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Exercise 25 (The catenary) 

Consider the problem of finding 𝑦 ∈ 𝐶1([𝑎, 𝑏] → ℝ) such that 𝑦(𝑎) = 𝑦(𝑏) = 𝑦0 

and that  

 Minimize  

𝐽 = ∫ 𝑦(𝑥)√1 + (𝑦′(𝑥))2𝑑𝑥
𝑏

𝑎

 

 Subject to 

∫ √1 + (𝑦′(𝑥))2𝑑𝑥
𝑏

𝑎
= 𝐶0, 

with 𝐶0 ∈ ℝ+ a constant. 

Show that the solution is given by 𝑦(𝑥) = 𝑐𝑜𝑠ℎ (
𝑥

𝐶
), 𝑐 > 0, modulo a translation 

along 𝑥. 
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Hints 

Use the special case of the EL equation in which the Lagrangian does not 

depend on 𝑥, that amounts to state that the Hamiltonian is constant, i.e. 

𝜕ℒ

𝜕𝑦′
∙ 𝑦′ − ℒ = 𝑐 

with ℒ the lagrangian augmented with the Lagrange multiplier and 𝑐 a 

constant. Solve this condition with respect to 𝑦′ =
𝑑𝑦

𝑑𝑥
. 

Use the fact that 

∫
1

√(𝑦 + 𝜆)2
𝑑𝑦 = 𝑐𝑜𝑠ℎ−1 (

𝑦 + 𝜆

𝑐
) 
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Solution 

𝜕ℒ

𝜕𝑦′
∙ 𝑦′ − ℒ = 𝑐 

ℒ =  𝑦(𝑥)√1 + (𝑦′(𝑥))
2

+  𝜆√1 + (𝑦′(𝑥))2 

𝜕ℒ

𝜕𝑦′
=

1

2
∙

2𝑦𝑦′

√1 + (𝑦′)2
+

1

2
∙

2𝜆𝑦′

√1 + (𝑦′)2
 

The EL becomes 

(𝑦 + 𝜆)
(𝑦′)2

√1 + (𝑦′)2
− (𝑦 + 𝜆)√1 + (𝑦′)2 = 𝑐 
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(𝑦 + 𝜆)
(𝑦′)2

√1 + (𝑦′)2
− (𝑦 + 𝜆)√1 + (𝑦′)2 = 𝑐 

(𝑦 + 𝜆)
(𝑦′)

2
−(1+(𝑦′)

2
)

√1+(𝑦′)2
= 𝑐       →         (𝑦 + 𝜆)

1

√1+(𝑦′)2
= 𝑐 

(𝑦 + 𝜆) = 𝑐√1 + (𝑦′)2              (𝑦′)2 =
(𝑦+𝜆)2

𝑐2 − 1              
𝑑𝑦

𝑑𝑥
=

√(𝑦+𝜆)2−𝑐2

𝑐
 

∫
1

√(𝑦 + 𝜆)2 − 𝑐2
𝑑𝑦 = ∫

1

𝑐
𝑑𝑥 

𝑐𝑜𝑠ℎ−1 (
𝑦+𝜆

𝑐
) =

1

𝑐
(𝑥 + 𝑑)       𝑑  a constant 

𝑦 = 𝑐 ∙ 𝑐𝑜𝑠ℎ (
𝑥 + 𝑑

𝑐
) − 𝜆 
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Exercise 26 (The Principle of Maximum Entropy) 

Consider a gas-filled box in the idealized situation in which the box is 

unidimensional and lays along the 𝑥 coordinate, between 𝑥 = 0 and 𝑥 = 𝐿. 

Let 𝑝(𝑥) be the probability density function of the number of molecules of gas. 

That is to say, the number of molecules between 𝑥 and 𝑥 + 𝑑𝑥, with 𝑑𝑥 small is 

approximately 𝑝(𝑥)𝑑𝑥 multiplied by the total number of molecules inside the 

box. Clearly, 𝑝(𝑥) = 0 for 𝑥 < 0 and 𝑥 > 𝐿. What is 𝑝(𝑥), 0 ≤ 𝑥 ≤ 𝐿 in the 

situation of maximal disorder? 

According to the Principle of Maximum Entropy, the answer is given by the 

solution of the following variational problem. 
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Solve the following variational problem 

min
𝑝

𝐽(𝑝) = ∫ 𝑝(𝑥) log(𝑝(𝑥)) 𝑑𝑥
∞

−∞

 

Subject to      ∫ 𝑝(𝑥)𝑑𝑥 = 1
∞

−∞
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Solution 

ℒ(𝑝, 𝜆) = 𝑝 log 𝑝 + 𝜆𝑝 

ℒ𝑝 =
𝑑

𝑑𝑥
ℒ𝑝′      ℒ𝑝′ = 0    →    ℒ𝑝 = 0 

ℒ𝑝 = log 𝑝 + 𝑝 ∙
1

𝑝
+ 𝜆 = log 𝑝 + 1 + 𝜆 = 0    →     𝑝(𝑥) = 𝑐     𝑐 a constant 

From the constraint, it follows that 

𝑝(𝑥) =
1

𝐿
              0 ≤ 𝑥 ≤ 𝐿 
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2nd order conditions 

[L2012] pp. 26-36.      [B2004] pp. 221-253, Chap. 10. 

Analysis based on the 2nd order expansion 

𝐽(𝑦 + 𝛼𝜂) = 𝐽(𝑦) + 𝛿𝐽|𝑦(𝜂)𝛼 + 𝛿2𝐽|𝑦(𝜂)𝛼2 + 𝑜(𝛼2) 

that defines the quadratic form 𝛿2𝐽|𝑦(𝜂) called the second variation. 

Issues: 

• 2nd order necessary condition: 𝛿2𝐽|𝑦(𝜂) ≥ 0 

• Sufficient conditions for a weak minimum. It is not enough to ask 

𝛿2𝐽|𝑦(𝜂) > 0 

This condition must be strengthened to ensure that the 2nd order term 

dominates the higher order terms 𝑜(𝛼2). 
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Legendre’s necessary condition for a weak minimum 

[L2012] p. 59-62 

Compute 𝛿2𝐽|𝑦(𝜂) 

Perturbed functional 

𝐽(𝑦 + 𝛼𝜂) = ∫ 𝐿(𝑥, 𝑦 + 𝛼𝜂, 𝑦′ + 𝛼𝜂′)𝑑𝑥
𝑏

𝑎

 

2nd order Taylor expansion with respect to 𝛼 

𝐽(𝑦 + 𝛼𝜂) = ∫ 𝐿(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑏

𝑎

+ 𝛼 ∫ [𝐿𝑦(𝑥, 𝑦, 𝑦′)𝜂 + 𝐿𝑦′(𝑥, 𝑦, 𝑦′)𝜂′]𝑑𝑥
𝑏

𝑎

+ 

+
𝛼2

2
∫ [𝐿𝑦𝑦𝜂2 + 2𝐿𝑦𝑦′𝜂𝜂′ + 𝐿𝑦′𝑦′𝜂′2]𝑑𝑥

𝑏

𝑎
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𝐽(𝑦 + 𝛼𝜂) = ∫ 𝐿(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑏

𝑎

+ 𝛼 ∫ [𝐿𝑦(𝑥, 𝑦, 𝑦′)𝜂 + 𝐿𝑦′(𝑥, 𝑦, 𝑦′)𝜂′]𝑑𝑥
𝑏

𝑎

+ 

+
𝛼2

2
∫ [𝐿𝑦𝑦𝜂2 + 2𝐿𝑦𝑦′𝜂𝜂′ + 𝐿𝑦′𝑦′𝜂′2]𝑑𝑥

𝑏

𝑎

 

Compare with 

𝐽(𝑦 + 𝛼𝜂) = 𝐽(𝑦) + 𝛿𝐽|𝑦(𝜂)𝛼 + 𝛿2𝐽|𝑦(𝜂)𝛼2 + 𝑜(𝛼2) 

2nd variation 

𝛿2𝐽|𝑦(𝜂) =
1

2
∫ [𝐿𝑦𝑦𝜂2 + 2𝐿𝑦𝑦′𝜂𝜂′ + 𝐿𝑦′𝑦′𝜂′2]𝑑𝑥

𝑏

𝑎

 

The integrand is evaluated along (𝑥, 𝑦(𝑥), 𝑦′(𝑥)). 
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Eliminate the term on 𝜂𝜂′ using integration by parts 

∫ 2𝐿𝑦𝑦′𝜂𝜂′𝑑𝑥
𝑏

𝑎

= ∫ 𝐿𝑦𝑦′

𝑑

𝑑𝑥
(𝜂2)𝑑𝑥

𝑏

𝑎

= 𝐿𝑦𝑦′𝜂
2|𝑎

𝑏 − ∫
𝑑

𝑑𝑥
(𝐿𝑦𝑦′)𝜂2𝑑𝑥

𝑏

𝑎

 

Since 𝐿𝑦𝑦′𝜂
2|𝑎

𝑏 = 0 by the boundary conditions, it follows that 

𝛿2𝐽|𝑦(𝜂) =
1

2
∫ 𝐿𝑦′𝑦′𝜂′2 + [𝐿𝑦𝑦 −

𝑑

𝑑𝑥
(𝐿𝑦𝑦′)] 𝜂2𝑑𝑥

𝑏

𝑎
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𝛿2𝐽|𝑦(𝜂) =
1

2
∫ 𝐿𝑦′𝑦′𝜂′2 + [𝐿𝑦𝑦 −

𝑑

𝑑𝑥
(𝐿𝑦𝑦′)] 𝜂2𝑑𝑥

𝑏

𝑎

 

Define 

𝑃(𝑥) ≔
1

2
𝐿𝑦′𝑦′            𝑄(𝑥) ≔

1

2
[𝐿𝑦𝑦 −

𝑑

𝑑𝑥
(𝐿𝑦𝑦′)] 

The 2nd variation is written 

𝛿2𝐽|𝑦(𝜂) = ∫ [𝑃(𝑥)𝜂′2
+ 𝑄(𝑥)𝜂2]𝑑𝑥

𝑏

𝑎

 

We know that if 𝑦 is a minimum for all 𝐶1 perturbations 𝜂, 𝜂(𝑎) = 𝜂(𝑏) = 0, 

then 𝛿2𝐽|𝑦(𝜂) ≥ 0 or ∫ [𝑃(𝑥)𝜂′2
+ 𝑄(𝑥)𝜂2]𝑑𝑥

𝑏

𝑎
≥ 0. 

Now, we want to restate this condition in terms of 𝑃 and 𝑄 only. 

  



Calculus of Variations and Optimal Control  117 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Consider a family of perturbations parameterized by small 휀 > 0 

 

Bound on 𝑄 

|∫ 𝑄(𝑥)𝜂𝜀
2(𝑥)𝑑𝑥

𝑏

𝑎

| ≤ ∫ |𝑄(𝑥)|𝑑𝑥
𝑏

𝑎

 

This bound is uniform over 휀. 

  

a b xc d d+c+

1



a b xc d d+c+

1


.
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Bound on 𝑃 

Because of the “peaks” of order 1

𝜀
, 

∫ 𝑃(𝑥)𝜂𝜀
′2(𝑥)𝑑𝑥

𝑏

𝑎

 

Does not stay bounded when 휀 → 0. 

If 𝑃(�̅�) < −𝛿 for some �̅�, 𝛿 > 0, then 𝑃(𝑥) < 0 in some interval around �̅� 

⇒ 

It is possible to build a disturbance 𝜂𝜀 such that  

∫ 𝑃(𝑥)𝜂𝜀
′2(𝑥)𝑑𝑥

𝑏

𝑎
≤ −

𝛾

𝜀
                 with  𝛾 > 0 a constant. 
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∫ 𝑃(𝑥)𝜂𝜀
′2(𝑥)𝑑𝑥

𝑏

𝑎

≤ −
𝛾

휀
 

By making 휀 ⟶ 0, 

∫ 𝑃(𝑥)𝜂𝜀
′2(𝑥)𝑑𝑥

𝑏

𝑎

 

Can be made arbitrarily negative and dominate 

∫ 𝑄(𝑥)𝜂𝜀
2(𝑥)𝑑𝑥

𝑏

𝑎
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Conclusion  

If 𝑃(𝑥) takes a negative value for some 𝑥, we can chose a perturbation 𝜂 such 

that 

𝛿2𝐽|𝑦(𝜂) = ∫ [𝑃(𝑥)𝜂′2
+ 𝑄(𝑥)𝜂2]𝑑𝑥

𝑏

𝑎

< 0 

and 𝑦 cannot be a minimum. 

 

Thus, for 𝑦 to be a minimum, it must be 

𝑃(𝑥) ≥ 0       ∀𝑥 ∈ [𝑎, 𝑏] 

This is Legendre’s condition, stated in the next slide. 

Recall that 𝑃(𝑥) = 𝐿𝑦′𝑦′ 
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Legendre’s condition – 2nd order necessary condition for optimality 

Legendre, 1786. 

𝐿𝑦′𝑦′(𝑥, 𝑦(𝑥), 𝑦′(𝑥)) ≥ 0             ∀𝑥 ∈ [𝑎, 𝑏] 

This result also holds in the multivariable case, where 𝐿𝑦′𝑦′ is a symmetric 

matrix that must be positive semidefinite for all 𝑥. 
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Legendre’s condition and the Hamiltonian 

Hamiltonian: 

𝐻(𝑥, 𝑦, 𝑦′, 𝑝) = 𝑝𝑦′ − 𝐿(𝑥, 𝑦, 𝑦′) 

The function 𝐻∗ (the Hamiltonian computed along an optimal curve), when 

taken as a function of 𝑧 = 𝑦′, has a stationary point for 𝑧 = 𝑦∗′ (the derivative 

of the optimal curve). 

Furthermore, 

𝐻𝑦′𝑦′ = −𝐿𝑦′𝑦′ 

From the Legendre condition, along an optimal trajectory 

𝐻𝑦′𝑦′ ≤ 0 
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Adrien-Marie Legendre (1752-1833) 

French mathematician who did important contributions to 

statistics, number theory and mathematical analysis, and has 

left is name connected to topics like the Legendre polynomials, 

the Legendre transformation (already mentioned in this course), 

and the Legendre necessary condition in the Calculus of Variations. He was 

the first to publish the method of least squares to estimate parameters in linear 

models, a fact that caused a controversy with Gauss who conceived this 

method many years before, but did not publish it. 
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Sufficient conditions for a weak minimum 

Conjecture (not enough!) 

𝛿2𝐽|𝑦(𝜂) > 0     ⇒     𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 

Actually, in addition, we need an extra global condition to dominate 𝑜(𝛼2). 
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Implication of 𝛿2𝐽|𝑦(𝜂) > 0 on 𝑃 

For every differentiable function 𝑤 = 𝑤(𝑥) 

0 = 𝑤𝜂2|𝑎
𝑏 = ∫

𝑑

𝑑𝑥
(𝑤𝜂2)𝑑𝑥

𝑏

𝑎

= ∫ [𝑤′𝜂2 + 2𝑤𝜂𝜂′]𝑑𝑥
𝑏

𝑎

 

Use this formula to rewrite the second variation as 

𝛿2𝐽|𝑦(𝜂) = ∫ [𝑃(𝑥)𝜂′2
+ 𝑄(𝑥)𝜂2]𝑑𝑥

𝑏

𝑎

= 

= ∫ [𝑃(𝑥)𝜂′2
+ 𝑄(𝑥)𝜂2]𝑑𝑥

𝑏

𝑎
+ ∫ [𝑤′𝜂2 + 2𝑤𝜂𝜂′]𝑑𝑥

𝑏

𝑎
= 

= ∫ [𝑃(𝑥)𝜂′2
+ 2𝑤𝜂𝜂′ + (𝑄 + 𝑤′)𝜂2]𝑑𝑥

𝑏

𝑎
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𝛿2𝐽|𝑦(𝜂) = ∫ [𝑃(𝑥)𝜂′2
+ 2𝑤𝜂𝜂′ + (𝑄 + 𝑤′)𝜂2]𝑑𝑥

𝑏

𝑎

 

Objective: Find 𝑤 that makes the integrand a perfect square. 

Select 𝑤 to satisfy the Riccati type differential equation 

𝑃(𝑄 + 𝑤′) = 𝑤2 
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𝑃(𝑄 + 𝑤′) = 𝑤2 

Assume 𝑃 > 0 and that 𝑤 exists. 

Since 

𝑄 + 𝑤′ =
𝑤2

𝑃
 

it follows that 

𝛿2𝐽|𝑦(𝜂) = ∫ [𝑃(𝑥)𝜂′2
+ 2𝑤𝜂𝜂′ + (𝑄 + 𝑤′)𝜂2]𝑑𝑥

𝑏

𝑎

= 

= ∫ 𝑃 [𝜂′2
+ 2𝜂′

𝑤𝜂

𝑃
+ (

𝑤𝜂

𝑃
)

2

] 𝑑𝑥 = ∫ 𝑃 (𝜂′ +
𝑤𝜂

𝑃
)

2

𝑑𝑥
𝑏

𝑎

𝑏

𝑎
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𝛿2𝐽|𝑦(𝜂) = ∫ 𝑃 (𝜂′ +
𝑤𝜂

𝑃
)

2

𝑑𝑥
𝑏

𝑎

 

We now prove that, for an arbitrary 𝜂, this integral is strictly positive. 

If the integral is 0, then 

𝜂′ +
𝑤𝜂

𝑃
= 0 

This is a linear ODE that, together with the initial condition 

𝜂(𝑎) = 0 

Implies that  𝜂(𝑥) = 0, ∀𝑥 ∈ [𝑎, 𝑏]. 
 

(See the detour in the next page) 
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       A detour: Homogeneous linear ODE’s 

The solution of 

𝑦′ + 𝑝(𝑥)𝑦 = 0,     𝑦(0) given 

is given by 

𝑦(𝑥) = 𝑒− ∫ 𝑝(𝜎)𝑑𝜎
𝑥

0 𝑦(0) 

Proof:                        𝑦(0) = 𝑒− ∫ 𝑝(𝜎)𝑑𝜎
0

0 𝑦(0) = 𝑒0𝑦(0) = 𝑦(0) 

And hence it verifies the initial condition. Furthermore 

𝑦′(𝑥) = −𝑝(𝑥)𝑒− ∫ 𝑝(𝜎)𝑑𝜎
𝑥

0 𝑦(0) = −𝑝(𝑥)𝑦(𝑥) 

And hence the proposed solution verifies the ODE. 
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Conclusion 

If the solution of the Riccati equation 

𝑃(𝑄 + 𝑤′) = 𝑤2 

exists, then 

𝑃 = 𝐿𝑦′𝑦′ > 0 

and 

𝛿2𝐽|𝑦(𝜂) > 0 

For all admissible perturbations. 
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Caveat: 

The Riccati ODE may have a finite escape time, i. e., the solution may not 

exist on the whole interval [𝑎, 𝑏]. 

 

This issue was raised by Lagrange in 1797. 
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Conjugate points    [L2012], pp. 64,65 

Issue to address: Existence of solution to the Riccati equation on the entire 

interval [𝑎, 𝑏]. 
 

Jacobi, 1837. 
 

Idea: Make a change of variable to reduce the quadratic Riccati equation 

𝑃(𝑄 + 𝑤′) = 𝑤2 

To a linear equation on 𝑣, using 

𝑤 = −
𝑃𝑣′

𝑣
,            𝑣 ≠ 0 
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Riccati equation 

𝑃 (𝑄 −
𝑑

𝑑𝑥
(𝑃𝑣′)𝑣−𝑃𝑣′2

𝑣2
) =

𝑃2𝑣′2

𝑣2
 

Multiply by 𝑣 (𝑣 ≠ 0) and divide by 𝑃 (𝑃 > 0) 

𝑄𝑣 −
𝑑

𝑑𝑥
(𝑃𝑣′) + 𝑃

𝑣′2

𝑣
= 𝑃

𝑣′2

𝑣
 

𝑄𝑣 =
𝑑

𝑑𝑥
(𝑃𝑣′) 
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Jacobi equation 

𝑄𝑣 =
𝑑

𝑑𝑥
(𝑃𝑣′) 

Since it is of 2nd order, the solution of this ODE is defined by the initial 

conditions 𝑣(𝑎) and 𝑣′(𝑎). 

Since if 𝑣 is a solution, then 𝛾𝑣 is also a solution, we may assume without loss 

of generality 

𝑣(𝑎) = 0, 𝑣′(𝑎) = 1 

A point 𝑐 is conjugate to 𝑎 if 𝑣(𝑐) = 0. 

 

See [SL2012] pp. 37-48 for properties of conjugate points. 
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The initial condition 𝑣(𝑎) = 0 is inadequate because it yields 𝑤 = ∞. 

We may however take 𝑣(𝑎) = 휀 with 휀 vanishingly small. 

(see [L2012] p.65, Exercise 2.13, on this issue) 

In the interval [𝑎, 𝑐], with 𝑐 conjugate to 𝑎, we have shown that 

𝛿2𝐽|𝑦(𝜂) > 0 

for any 𝜂  not identically zero. 

It can be proved ([L2012] p. 67) that 𝛿2𝐽|𝑦(𝜂) actually dominates the higher-

order term 𝑜(𝛼2). 
  



Calculus of Variations and Optimal Control  136 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

2nd order sufficient conditions for optimality 

An extremal 𝑦(. ) is a strict local minimum in the weak sense if 

𝐿𝑦′𝑦′(𝑥, 𝑦, 𝑦′) > 0    ∀𝑥 ∈ [𝑎, 𝑏] 

and the interval [𝑎, 𝑏] does not contain any point conjugate to 𝑎. 

  



Calculus of Variations and Optimal Control  137 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

Exercise 27 – Sufficient conditions of minimum 

[P1993] p. 39 ex. 3.1 and p. 46 

Consider the problem of finding the curve that minimizes 

𝐽(𝑦) = ∫ 𝑦′2
2

1

𝑥3𝑑𝑥 

with 𝑦(1) = 0, 𝑦(2) = 3. 

a) Find the extremal 𝑦∗. 

b) Compute ∆𝐽 = 𝐽(𝑦) − 𝐽(𝑦∗), where 𝑦 = 𝑦∗ + 𝜂, with 𝜂 𝐶1 curve such that 

𝜂(1) = 𝜂(2) = 0, and conclude that 𝑦∗ is actually a minimum. 

c) Show that 𝐿𝑦′𝑦′ > 0 along 𝑦 and that there are no conjugate points in the 

interval [1,2]. For this sake write the Jacobi equation. 
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Solution 

a)  𝐿 = 𝑦′2𝑥3   From which    𝐿𝑦 = 0,     𝐿𝑦′ = 2𝑦′𝑥3 

The EL equation 𝐿𝑦 =
𝑑

𝑑𝑥
𝐿𝑦′ becomes   

𝑑

𝑑𝑥
(2𝑦′𝑥3) = 0   or   2𝑦′𝑥3

= 𝑐1 

𝑦′ =
𝑐1

2𝑥3    ⇒     𝑦(𝑥) = −
𝑐1

4𝑥2 + 𝑐2 

 𝑦(1) = 0   ⇒    𝑐2 =
𝑐1

4
 

𝑦(𝑥) =
𝑐1

4
(1 −

1

𝑥2)      𝑦(2) = 3    ⇒     
𝑐1

4
(1 −

1

4
) = 3      ⇒    𝑐1 = 16 

𝑦(𝑥) = 4(1 −
1

𝑥2)  

  



Calculus of Variations and Optimal Control  139 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

b)  𝑦′ =
8

𝑥3 

∆𝐽 = ∫ (
8

𝑥3
+ 𝜂′)2𝑥3𝑑𝑥

2

1

− ∫ (
8

𝑥3
)

2

𝑥3𝑑𝑥
2

1

= 

= ∫ 16𝜂′𝑑𝑥
2

1

+ ∫ 𝜂′𝑥3𝑑𝑥
2

1

= 16𝜂(𝑥)|1
2 + ∫ 𝜂′𝑥3𝑑𝑥

2

1

= 

= ∫ 𝜂′𝑥3𝑑𝑥
2

1
> 0   for    𝜂(𝑥) ≠ 0 in ]1,2[ 

Hence, 𝐽(𝑦) > 𝐽(𝑦∗) for any admissible 𝜂 (𝐶1, satisfying the boundary 

conditions 𝜂(1) = 𝜂(2) = 0), and 𝑦∗ is a minimum. 

In general, the direct computational computation of ∆𝐽 is impossible to perform 

due to its complexity. 
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c)    𝐿𝑦′ = 2𝑦′𝑥3,        𝐿𝑦′𝑦′ = 2𝑥3 and hence, for 𝑥 ∈ [1,2],  𝐿𝑦′𝑦′ > 0. 

Study of the conjugate points: 

𝑃 =
1

2
𝐿𝑦′𝑦′ = 𝑥3             𝑄 =

1

2
(𝐿𝑦𝑦 −

𝑑

𝑑𝑥
𝐿𝑦𝑦′) = 0 

Jacobi equation 

𝑄𝑣 =
𝑑

𝑑𝑥
(𝑃𝑣′)  Reduces to  

𝑑

𝑑𝑥
(𝑃𝑣′) = 0   or  𝑃𝑣′ = 𝑐1,   𝑣′ =

𝑐1

𝑥3,  𝑣 =
𝑐1

2𝑥2 + 𝑐2 

Initial conditions: 𝑣(1) = 0,   𝑣′(1) = 1    ⇒    𝑐1 = −1,     𝑐2 =
1

2
 

The solution of the Jacobi equation is thus 

𝑣(𝑥) =
1

2
(1 −

1

𝑥2
) 
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𝑣(𝑥) =
1

2
(1 −

1

𝑥2
) 

For 𝑥 > 1, 1 −
1

𝑥2 > 0   ∀𝑥 and hence there are no conjugate points (zeros of 

the Jacobi equation) for 𝑥 ∈ [1,2]. 

This fact together with 𝐿𝑦′𝑦′ > 0 means that the sufficient condition for a weak 

local minimum is verified by the extremal obtained in a). 
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Hamilton’s Principle 

Also known as the Principle of Least Action. 

 

Action  𝑆 = ∫ 𝐿(𝑡, 𝑦, 𝑦′)𝑑𝑡
𝑡𝑓

0
  𝐿 = 𝑇 − 𝑈  𝑇 = kinetic energy,  𝑈= Potential 

energy 

The action is an extremal. 
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Exercise 28 

Consider a particle of mass 𝑚 that moves in a straight line along a coordinate 

𝑦, with kinetic energy 𝑇 =
1

2
𝑚𝑦′2 and potential energy 𝑈 =

1

2
𝑘𝑦2 (a mass 

connected to a spring). Justify the term “Principle of Least Action” by showing 

that the extremals of the action integral are actually minima on sufficiently 

small time intervals.1 

𝐿 =
1

2
𝑚𝑦′2 −

1

2
𝑘𝑦2 
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𝐿 =
1

2
𝑚𝑦′2 −

1

2
𝑘𝑦2          𝐿𝑦′ = 𝑚𝑦     𝐿𝑦′𝑦′ = 𝑚 > 0 

Study of the conjugate points: 

𝑃 =
1

2
𝐿𝑦′𝑦′ =

1

2
𝑚                    𝑄 =

1

2
(𝐿𝑦𝑦 −

𝑑

𝑑𝑥
𝐿𝑦𝑦′) = −

1

2
𝑘 

Jacobi equation  

𝑄𝑣 =
𝑑

𝑑𝑥
(𝑃𝑣′)    →      −

1

2
𝑘𝑣 =

1

2
𝑚

𝑑

𝑑𝑥
𝑣′    →    −𝑘𝑣 = 𝑚𝑣′′   →   𝑣′′ +

𝑘

𝑚
𝑣 = 0 

Assume solutions of the form 𝑣(𝑥) = 𝑒𝜆𝑥. 

Characteristic equation:  𝜆2 +
𝑘

𝑚
= 0   →    𝜆1,2 = ±𝑗√

𝑘

𝑚
     𝜔 = √

𝑘

𝑚
 

𝑣(𝑥) = 𝑘1𝑒𝑗𝜔𝑥 + 𝑘2𝑒−𝑗𝜔𝑥 

  



Calculus of Variations and Optimal Control  145 

J. Miranda Lemos  IST-DEEC, Sci. Area of Systems, Decision and Control 

 

𝑣(𝑥) = 𝑘1𝑒𝑗𝜔𝑥 + 𝑘2𝑒−𝑗𝜔𝑥 

𝑣(𝑥) = (𝑘1 + 𝑘2) cos(𝜔𝑥) + 𝑗 (𝑘1 − 𝑘2) sin(𝜔𝑥) 

Initial conditions 𝑣(0) = 0, 𝑣′(0) = 1: 

𝑘1 + 𝑘2 = 0,     𝑗(𝑘1 − 𝑘2)𝜔 = 1       𝑘1 = −𝑘2 = −𝑗
1

𝜔
 

𝑣(𝑥) =
1

𝜔
sin 𝜔𝑥 

There is a conjugate point at 
𝜋

𝜔
. 

 


