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Inference with Hidden Variables
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Summary

• EM Method

• Estimation of Gaussian mixtures

• Identification of Multiple Dynamic Systems
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Challenge

We extract n pairs of balls, each pair from one box (we don't know which). 

Each box is randomly selected with equal probability.

Is it possible to guess the color content of each box ?
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1st Try 

Variables:

•k=k1, ..., kn sequence of chosen boxes

•x=x1, ..., xn sequence of 1st balls

•y=y1, ..., yn sequence 2nd balls

•Bij probability of extracting ball j from box i

The ML method can be used to estimate B.

Log likelihood function:
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The optimization of this function is difficult. Alternative methods ?
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EM Method

The EM method is used when there is incomplete observations:

• y observed variables

• x hidden variables (missing)

• q vector of parameters to estimate 

and a probabilistic model p(x,y|q) is known.

The estimation of q can be solved using the ML method i.e., 

maximizing the likelihood function

 dxyxpyp )|,()|( qq

This task is unfeasible in many problems.
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EM Method

The ML estimate of q , knowing x and y is

)|,(logmaxargˆ qq
q
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If x is unknown the EM method replaces the log likelihood function of x,y

by the expected value, using the conditional distribution of x 

),|( oldyxp q

The auxiliary function

dxyxpyxpyyxpEU oldoldold ),|()|,(log},|)|,({log),( qqqqqq 

is then optimized with respect to q.
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EM Method

The EM (Expectation-Maximization) method is an iterative method based on 

two steps:

E step:

M step: ),(maxarg 1


tt U qqq
q

The E step computes the conditional distribution of the hidden variables,

knowing the available information y and the best estimate of the unknown 

parameters: p(x|y,qt-1).

• the likelihood function does not decrease in each iteration

• if the algorithm converges, it converges to a local maximum of the 

likelihood function.

(Dempster, Laird, Rubin, 1977)
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Proof
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log 𝑝(𝑦|𝜃) = log 𝑝(𝑥, 𝑦|𝜃) − log 𝑝(𝑥|𝑦, 𝜃)

Taking the expected value assuming that

log 𝑝(𝑦|𝜃) = න𝑞 𝑥 log 𝑝(𝑥, 𝑦|𝜃) 𝑑𝑥 − නq x log 𝑝(𝑥|𝑦, 𝜃) 𝑑𝑥

log 𝑝(𝑦|𝜃) = U 𝜃, 𝜃𝑜𝑙𝑑 + H 𝜃, 𝜃𝑜𝑙𝑑

𝑥~𝑞 𝑥 = 𝑝(𝑥|𝑦, 𝜃𝑜𝑙𝑑)

It can be shown that H 𝜃, 𝜃𝑜𝑙𝑑 ≥ H 𝜃𝑜𝑙𝑑 , 𝜃𝑜𝑙𝑑

log 𝑝(𝑦|𝜃) − log 𝑝 𝑦 𝜃𝑜𝑙𝑑 ≥ 𝑈(𝜃, 𝜃𝑜𝑙𝑑)− 𝑈(𝜃𝑜𝑙𝑑 , 𝜃𝑜𝑙𝑑)

Therefore, maximizing U wrt q improves the likelihood function.
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Challenge (revisited)
x,y observed variables

k         sequence of boxes (hidden)

B        parameters to estimate.

Total log-likelihood function
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Results

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

)1(t

)1(t

t

t

11B̂

12B̂

22B̂

21B̂

11B̂

21B̂ 12B̂

22B̂



© Jorge Salvador Marques, 2000

Result
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Mixtures

Mixture of distributions
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K is a discrete hidden variable with 

distribution P{k=i}=ci; k selects which 

distribution pk generates y.  Only y is 

observed.
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Estimation of Gaussian Mixtures

Given n observations y1,..., yn, generated by a mixture of Gaussian 

distributions, we wish to estimate the mixture parameters: mixture 

coefficients, mean vectors and covariance matrices. 
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In this case,

Log likelihood function :
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The optimization of l is difficult.
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Mixture Estimation

E step – compute the distribution of the hidden variables

jiiiiiij cRyNyjkPw ˆ)ˆ,ˆ;(},/{ q 

M step – parameter update

a – normalization factor
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The mean vectors can be initialized with the first m observations.
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Example
Estimation of a mixture of Gaussians with the EM algorith; iterations 0, 1, 5, 10, 15 
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k-Means

The last problem is a clustering problem if we associate a cluster to each 

mixture mode.

The EM method is related to the k-means algorithm which performs a hard 

classification of the data y, replacing the unknown variables k by its most 

probable values.

k-means algorithm

1. Initialize the mean vectors

2. repeat until convergence is achieved:

- classify data patterns y in the class with closest mean vector

- update the mean vectors using the patterns classified in each class

Note: the k-means algorithm assumes that the covariance matrices are all equal to the identity I.



© Jorge Salvador Marques, 2000

Example
Clustering with the k-means algorithm; iterations 0, 1, 5, 10



© Jorge Salvador Marques, 2000

Multi-Predictors

Sometimes a signal is described by several models. A single predictor is 

not enough to cope with this situation.

Example: Let us consider two predictors:

1,2,...k      ' i  i
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How can we estimate the parameters of multiple predictors ?

The difficulty lies in the fact that we do not know which predictor is valid at 

each instant of time since k1 ,..., kn are unknown.
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Learning Multi-Preditors

Learning multi-preditors parameters can be done using the EM method.

E step – distribution of hidden variables
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M step – parameter update
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Robust Estimation

Many real signals contain outliers (data points which are not described 

by the model).

The estimation methods based on Gaussian distribution assumptions 

have a poor performances in the presence of outliers (outliers have a 

strong influence in the estimates).

One way to avoid this problem consists of using outlier models to 

describe invalid data  (p.ex., using a Gaussian distributions with large 

covariance matrix).

The distribution of the data with outliers is a mixture of both distributions.

F. Girosi, Models of Noise and Robust Estimates, MIT AI Memo 1287, 1991



Variational EM
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The EM method is still too difficult to be applied in many complex 

problems.

A more general framework consists of approximating the a posteriori 

distribution of the unknown parameters by a simpler distribution q(x).

Auxiliary function: 𝐹 q, θ = 𝑞׬ 𝑥 log
𝑝(𝑥,𝑦|𝜃)

𝑞(𝑥)
dx

Iteração: passo E:  

maximizar F(q,qold) em ordem a q(x)

passo M: 

maximizar F(qold,q) em ordem a q



Proof
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log 𝑝 𝑦 𝜃 = 𝐹 𝑞, 𝜃 + 𝐷𝐾𝐿(𝑞||𝑝)

where

𝐹 𝑞, 𝜃 = න𝑝 𝑥 log
𝑝(𝑥, 𝑦|𝜃)

𝑞(𝑥)
𝑑𝑥 𝐷(𝑞||𝑝) = −න𝑝 𝑥 log

𝑝(𝑥|𝑦, 𝜃)

𝑞(𝑥)
𝑑𝑥

q – auxiliary distribution

Since DKL(q,p)≥0, then log 𝑝 𝑦 𝜃 ≥ 𝐹 𝑞, 𝜃

Idea: iteratively optimize F(q,q) wrt probability distribution q(x) and parameter q.



Choice of auxiliary distribution
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1. Unconstrained q(x): the minimization of F(q,q) w.r.t. q(x) leads to

𝑞 𝑥 = 𝑝(𝑥|𝑦, 𝜃)

the a posteriori distribution of the hidden variables. 

This is the choice of classic EM method and it leads to integrals that may 

not be analytically evaluated.

2. Constrained q(x): choose a parametric model for q trying to simplify 

the calculation of F(q,q).
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Exercises

1. Derive the EM algorithm for the estimation of a mixture of Gaussians .

2. Derive an algorithm to approximate 3D data points by two vertical 

planes. Make appropriate hypothesis about the observation noise.

3. The flow of a river has two different regimes, depending on a nearby

factory being active or not

ttt
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

 xt – flow, wt ~N(0,1) random perturbation

We know the flow at several consecutive days but we don't know which 

model is active. Define an algorithm to identify the system parameters 

and to detect which model is active.
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Computer work

1. Consider a process generated by yt=.9yt-1+wt, wt, N~(0,1). Suppose 

the output signal is given by:



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
.05y probabilit     with )100,0(~v

.95y probabilit    with                   

t N

y
z

t
t

Apply the EM method to estimate the parameters of the model from 

the sensor measurements and experimentally evaluate the algorithm .

2. Apply the EM method to estimate a straight line from experimental data,

assuming that  % of all observations are outliers. Evaluate the algorithm 

performance for different values of .


