Non linear and Kalman Filtering

Challenges

Properties:

- observations are sequences
- dynamic problems

Sequence Estimation

Problem: given $Y^{t}=\left\{y_{1}, \ldots, y_{t}\right\}$ estimate x_{t}

Examples:

$$
\begin{aligned}
& x_{t} \in R^{n}, y_{t} \in R^{m} \quad \text { NL, Wiener, anc } \\
& x_{t} \in\{1, \ldots, n\}, y_{t} \in\{1, \ldots, m\} \text { or } y_{t} \in R^{m} \quad \mathrm{HMM}
\end{aligned}
$$

Geometric Interpretation

hidden sequence

(to be estimated)
observed sequence

Moving target (I)

Newton law

$$
m \ddot{\rho}=F \quad p=\left(p_{1}, p_{2}\right) \text { is the body position and } F \text { the applied force }
$$

Hipothesis: F is white Gaussian noise.

State model (continuous)

$$
\left[\begin{array}{c}
\dot{p}_{1} \\
p_{2} \\
\dot{p}_{1} \\
\dot{p}_{2}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
p_{2} \\
\dot{p}_{1} \\
\dot{p}_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
w_{3} \\
w_{4}
\end{array}\right] \quad w_{3}, w_{4} \sim N(0, q)
$$

Moving target(II)

After a first order discretization

$$
\begin{array}{lll}
x_{t}=\left[\begin{array}{cc}
0 & \Delta l \\
0 & 0
\end{array}\right] x_{t-1}-w_{t} & w_{t} \sim N(0, Q) & Q=\left[\begin{array}{cc}
0 & 0 \\
0 & q l
\end{array}\right] \\
y_{t}=\left[\begin{array}{ll}
0 & I
\end{array}\right] x_{t}+v_{t} & v_{t} \sim N(0, R) & R=r l
\end{array}
$$

Uncertainty propagation

Example

before the observation at time t

after the observation at time t
time t-1
time t

Uncertainty propagation

Prediction

$$
p\left(x_{t} \mid Y^{t-1}\right)=\int p\left(x_{t} \mid x_{t-1}\right) p\left(x_{t-1} \mid Y^{t-1}\right) d x_{t-1}
$$

Filtering

$$
p\left(x_{t} \mid Y^{t-1}\right)=k p\left(y_{t} \mid x_{t}\right) p\left(x_{t} \mid Y^{t-1}\right)
$$

(Bayes law)

Difficulty: the analytic solution can only be computed in special cases.

Point Mass Filter

state vector discretization: $\quad x_{t}, \in\left\{x_{1}, \ldots, x_{n}\right\}$

Prediction: $\quad \pi_{t}^{-}=A^{T} \pi_{t-1}$
Filtering: $\quad \pi_{t}=k D_{y_{t}} \pi_{t}^{-}$
A, D are $n \times n$ matrices

$$
\begin{aligned}
A_{k l} & =p\left(x_{l} \mid x_{k}\right) \\
D_{y_{t}} & =\operatorname{diag}\left(p\left(y_{t} \mid x_{1}\right), \ldots, p\left(y_{t} \mid x_{n}\right)\right)
\end{aligned}
$$

Particle Filter

The distribution is represented by a set of realizations of the random variable (particles) x^{1}, \ldots, x^{N} updated according to the following algorithm.

Initialization: generate N particles x^{1}, \ldots, x^{N} with initial distribution $p\left(x_{1}\right)$ and assign a probability $\quad P\left(x^{i}\right)=1 / N$

Ciclo (increment t)
Prediction: randomly select N particles, according to the distribution P . Replace each of them by a new particle generated according to the distribution $p\left(x_{t} \mid x_{t-1}=x^{i}\right)$
Filtering: update the particle probabilities multiplying each of them by the likelihood function

$$
P\left(x^{i}\right) \leftarrow p\left(y_{t} / x_{t}=x^{i}\right) P\left(x^{i}\right)
$$

end of cycle

Example - Particle Filter

System:

$$
\begin{array}{ll}
x_{t}=x_{t-1}+w_{t} & \mathrm{w}_{\mathrm{t}} \sim N(0, Q) \\
y_{t}=\left[\begin{array}{c}
\cos x_{t} \\
\sin x_{t}
\end{array}\right]+v_{t} & v_{\mathrm{t}} \sim N(0, R)
\end{array}
$$

Problem: estimate phase from the quadrature components.

$$
\mathrm{Q}=0.04, \mathrm{R}=0.1
$$

Matlab Program

```
T=100; Q=.04; x=[0 cumsum(sqrt(Q)*randn(1,T-1))];
R=.1; y=[cos(x);sin(x)]+sqrt(R)*}\mp@subsup{}{}{*}\operatorname{randn}(2,T)
```

```
% particle filter
```

% particle filter
N=100;
N=100;
xp=x(:,1)*ones(1,N); P=ones(N,1)/N;
xp=x(:,1)*ones(1,N); P=ones(N,1)/N;
for t=2:T,
for t=2:T,
k=sum(ones(N,1)*rand(1,N)>cumsum(P)*ones(1,N))+1;
k=sum(ones(N,1)*rand(1,N)>cumsum(P)*ones(1,N))+1;
xp=xp(k)+sqrt(Q)*randn(1,N); yp=[cos(xp);sin(xp)];
xp=xp(k)+sqrt(Q)*randn(1,N); yp=[cos(xp);sin(xp)];
P=P(k).*exp(-0.5*sum((y(:,t)*ones(1,N)-yp).^2)/R)';
P=P(k).*exp(-0.5*sum((y(:,t)*ones(1,N)-yp).^2)/R)';
P=P/sum(P);
P=P/sum(P);
xav(t)=sum(P'.*xp);
xav(t)=sum(P'.*xp);
end
end
plot(1:T,x,1:T,xav)

```
plot(1:T,x,1:T,xav)
```


Linear Dynamic Systems

How to characterize $p\left(x_{t}\right), p\left(x_{t} \mid x_{t-1}\right), p\left(y_{t} \mid x_{t}\right)$?
One approach is based on stochastic linear systems:

$$
\begin{aligned}
& x_{t}=A x_{t-1}+B u_{t}+w_{t} \quad x_{1} \sim N(\bar{x}, \bar{P}) \\
& y_{t}=C x_{t}+v_{t}
\end{aligned}
$$

where:

$$
\begin{aligned}
& x_{t} \in R^{n_{x}} \text { state vector } \\
& u_{t} \in R^{n_{u}} \text { input vector } \\
& y_{t} \in R^{n_{u} y} \text { output vector } \\
& w_{t} \in R^{n_{x}}, v_{t} \in R^{n_{y}}, w_{t} \sim N\left(0, Q_{t}\right), v_{t} \sim N\left(0, R_{t}\right) \quad \text { white noise }
\end{aligned}
$$

(w_{t}, v_{t} independent r.v. and independent with respect to x_{t})

Filtro de Kalman

If x_{t}, y_{t} are generated by a LDS, the conditional distribution of the hidden variables, given the observations, is normal !

$$
p\left(x_{t} \mid y^{t}\right)=N\left(\hat{x}_{t}, P_{t}\right)
$$

\hat{x}_{t}, P_{t} are updated by the Kalman filter.

Kalman Filter

Inicialization: $\quad \hat{x}_{1}^{-}=\bar{x} \quad P_{1}^{-}=\bar{P}, t=1$
Cicle: $\quad t=1,2, \ldots, n$
Filtering

$$
\begin{array}{ll}
\hat{x}_{t}=\hat{x}_{t}^{-}+K\left(y_{t}-C \hat{x}_{t}^{-}\right) \\
K_{t}=P_{t}^{-} C^{\prime} S^{-1} & S=C P_{t}^{-} C^{\prime}+R \\
P_{t}=(I-K C) P_{t}^{-} & \rho_{t}=N\left(y_{t}-C \hat{x}_{t}^{-} ; 0, S\right)
\end{array}
$$

$$
\text { end cycle } \quad(t \leftarrow t+1)
$$

likelihood function:

$$
I=\log p\left(y^{t}\right)=\sum_{\tau=1}^{t} \log \rho_{t}
$$

Demonstração

Prediction

Since the density $p\left(x_{t+1} \mid y^{t}\right)$ is Gaussian, only the mean and covariance have to be specified

$$
\begin{aligned}
& \hat{x}_{t}^{-}=E\left\{x_{t} \mid y^{t-1}\right\}=A E\left\{\hat{x}_{t-1} \mid y^{t-1}\right\}+B u_{t-1}=A \hat{x}_{t-1} \\
& P_{t}^{-}=\operatorname{Cov}\left\{A x_{t-1}+B u_{t}+w_{t-1}\right\}=A P_{t-1} A^{\prime}+Q_{t}
\end{aligned}
$$

Filtering
Filtering equations were proved before.

Kalman Smoother

Let x_{1}, \ldots, x_{n}, e y_{1}, \ldots, y_{n}, be sequences generated by a LDS. The output sequence is known.

We wish to estimate $y_{t}(\mathrm{t}<\mathrm{n})$. This is known as the smoothing problem.

In this case $p\left(x_{t} \mid y^{n}\right)=N(\hat{x}, \hat{P}) \quad$ with mean and covariance updated by the Kalman smoother.

Kalman Smoother

Step 1: apply the Kalman filter to the data sequence.Denote the estimate obtained by x_{t}, P_{t}.

Passo 2: (backward step)
initialization $\hat{x}_{n}=x_{n} \quad \hat{P}_{n}=P_{n}$
cycle $\mathrm{t}=\mathrm{n}-1, \ldots, 1$

$$
\begin{aligned}
& P^{-}=A P_{t} A^{\prime}+Q \\
& J=P_{t} A^{\prime}\left(P^{-}\right)^{-1} \\
& \hat{x}_{t}=x_{t}+\mathrm{J}\left(\hat{\mathrm{x}}_{\mathrm{t}+1}-\mathrm{Ax}_{\mathrm{t}}\right) \quad \hat{P}_{t}=P_{t}+J\left(\hat{P}_{t+1}-P^{-}\right) J^{\prime}
\end{aligned}
$$

end of cycle

Computer Work

We wish to develop a self-localization system for a mobile robot. Suppose the initial position of the robot is unknown and the robot has sonar sensors which detect obstacles closer than 40 cm in the directions NESW.

Simulate the robot and the sensors in a computer.
Develop a self-localization algorithm and compute the uncertainty ofeach admissible position.

Test the algorithm by showing the correct position as well as the uncertainty associate to all admissible positions.
environment (known)

Exercícios

Let x, y be sequences of discrete random variables generated by the model:

$$
\begin{array}{ll}
x_{t}=x_{t-1}+w_{t} & w_{t}= \pm 1, \quad P\left\{w_{t}=1\right\}=P\left\{w_{t}=-1\right\}=0.5 \\
y_{t}=x_{t}+v_{t} & v_{t}= \pm 2, \quad P\left\{v_{t}=2\right\}=P\left\{v_{t}=-2\right\}=0.5
\end{array} \quad P\left(x_{1}\right)=\left\{\begin{array}{cc}
0.2 & \forall x \in\{-2,-1,0,1,2\} \\
0 & \text { c.c. }
\end{array}\right.
$$

w, v are independent processes.
Given a the output sequence $y=(01-2-1-2)$ propagate the distribution of the state variable x_{t} for $t \in$ $\{1,2,3,4,5\}$ and determine the MAP estimate of x_{t}.

Solve the previous problem assuming that processes x, y, w, v are continuous and $w_{t} \sim N(0,1)$, $v_{t} \sim N(0,4), x_{1} \sim N(0,1)$.

