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Non linear and Kalman Filtering
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Challenges

self-localizationmoving target

Properties:

• observations are sequences

• dynamic problems
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Geometric Interpretation

tx

(to be estimated)

hidden sequence observed sequence



© Jorge Salvador Marques, 2000

Moving target (I)

Newton law

Fpm  p=(p1, p2) is the body position and F the applied force

Hipothesis: F is white Gaussian noise.

State model (continuous)
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Moving target(II)

After a first order discretization
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Uncertainty propagation
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Example

before the observation at time t

after the observation at time t

x

time t-1 time t

time t-1 time t
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Uncertainty propagation

Prediction

Filtering
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t YxpxypkYxp (Bayes law)

Difficulty: the analytic solution can only be computed in special cases.
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Point Mass Filter

state vector discretization: },...,{, 1 nt xxx 

Prediction: 1
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Particle Filter

The distribution is represented by a set of realizations of the random
Nxx ,...,1 updated according to the following algorithm.

Initialization: generate N particles with initial distribution

variable (particles)

)( 1xp

Ciclo (increment t)

and assign a probability NxP i /1)( 

Prediction: randomly select N particles, according to the distribution P.

Replace each of them by a new particle generated 

according to the distribution )|( 1
i

tt xxxp 

Filtering:  update the particle probabilities multiplying each of them

by the likelihood function

)()/()( ii
tt

i xPxxypxP 
end of cycle

Nxx ,...,1
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Example – Particle Filter

System:
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Problem: estimate phase from the 

quadrature components.

original
estimated

Q=0.04, R=0.1
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Matlab Program

T=100; Q=.04; x=[0 cumsum(sqrt(Q)*randn(1,T-1))];

R=.1; y=[cos(x);sin(x)]+sqrt(R)*randn(2,T);

% particle filter

N=100;

xp=x(:,1)*ones(1,N); P=ones(N,1)/N;

for t=2:T,

k=sum(ones(N,1)*rand(1,N)>cumsum(P)*ones(1,N))+1;

xp=xp(k)+sqrt(Q)*randn(1,N);  yp=[cos(xp);sin(xp)];

P=P(k).*exp(-0.5*sum((y(:,t)*ones(1,N)-yp).^2)/R)'; 

P=P/sum(P);

xav(t)=sum(P'.*xp);

end

plot(1:T,x,1:T,xav)
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Linear Dynamic Systems

How to characterize p(xt), p(xt|xt-1), p(yt |xt) ?

One approach is based on stochastic linear systems:
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where:
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input vector

output vector

white noise

(wt, vt independent r.v. and independent with respect to xt )
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Filtro de Kalman

are updated by the Kalman filter.
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If xt, yt are generated by a LDS, the conditional distribution of the 

hidden variables, given the observations, is normal !



© Jorge Salvador Marques, 2000

Kalman Filter

QAAPP

BuxAx

T
tt

ttt











1

11  ˆˆ

PredictionFiltering

),0;ˆ(     )(

'         '

)ˆ(ˆˆ

1

SxCyNPKCIP

RCCPSSCPK

xCyKxx

ttttt

ttt

tttt















Inicialization: 1,   ˆ 11   tPPxx

likelihood function: t

t
typl 



log)(log
1




Cicle:     t=1,2,...,n

end cycle )1(  tt
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Demonstração

Since the density p(xt+1|y
t) is Gaussian, only the mean and 

covariance have to be specified

Prediction
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Filtering

Filtering equations were proved before.



© Jorge Salvador Marques, 2000

Kalman Smoother
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Let x1,..., xn, e  y1,..., yn, be sequences generated by a LDS. The 

output sequence is known. 

We wish to estimate yt (t<n). This is known as the smoothing 

problem.

In this case                                     with mean and covariance 

updated by the Kalman smoother.
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Kalman Smoother

Step 1: apply the Kalman filter to the data sequence.Denote the 

estimate obtained by xt, Pt.

Passo 2: (backward step)

nnnn PPxx  ˆ   ˆinitialization

cycle t=n-1, ..., 1
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end of cycle
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Computer Work

We wish to develop a self-localization system for a mobile robot. Suppose 

the initial position of the robot is unknown and the robot has sonar sensors 

which detect obstacles closer than 40cm in the directions NESW.

Simulate the robot and the sensors in a computer.

Develop a self-localization algorithm and compute the uncertainty ofeach 

admissible position.

Test the algorithm by showing the correct position as well as the uncertainty 

associate to all admissible positions.

environment (known)
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Exercícios

Let x,y be sequences of discrete random variables generated by the model: 
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w, v are independent processes.

Solve the previous problem assuming that processes x, y, w, v are continuous and wt~N(0,1), 

vt~N(0,4), x1~N(0,1).


