Non linear and Kalman Filtering
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Challenges
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moving target

Properties:
 Observations are sequences
« dynamic problems
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self-localization




Sequence Estimation
» ® W

Problem: given Y= {Y1,--, Yt} estimate X;

Examples:

x; eR",y; eR™ NL, Wiener, and Kalman filters

X € {1...,n},y; € {...,m}ory; eR™ HMM
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Geometric Interpretation
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(to be estimated)
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Moving target (I)

Newton law

mp =F pP=(p,, P,) IS the body position and F the applied force

Hipothesis: F is white Gaussian noise.

State model (continuous)

p,] fo 0 1 ofpy] [O
O 0 0 1 0)

PZ = 92 + w3,W,4 ~N(0,q)

Pr| |0 O 0O O)py| |W3

P2 [0 O O Ofpo| |Wyu,
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Moving target(ll)

After a first order discretization

x—_O AIx w; Wy ~N(0,Q) Q—O 0
t__o o 1M t , “lo g
ye =0 1]x; +vq vi ~N(O,R) R =rl
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Uncertainty propagation

p(x¢ 1Y)
filtering
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Example

before the observation at time t
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Uncertainty propagation

Prediction

pOxe 1YY = plxe | Xeo1) PO [ YT dxe g

Filtering

pOx¢ [Y' ™y =k plye | %) p(x; YT (Bayes law)

Difficulty: the analytic solution can only be computed in special cases.
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Point Mass Filter

state vector discretization:  X¢,€ {Xg,..-, Xp}

Prediction:  7; = A"z,

Filtering: y =KDy, ¢

A,D are n X n matrices

A = P(X) [ X )
Dy, =diag(p(yt | 1), Pyt [ Xn))
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Particle Filter

The distribution is represented by a set of realizations of the random
variable (particles) x!,...,x" updated according to the following algorithm.

Initialization: generate N particles x5, X"\ with initial distribution P(X1)
and assign a probability P(x')=1/N
Ciclo (increment t)

Prediction: randomly select N particles, according to the distribution P.
Replace each of them by a new particle generated
according to the distribution p(X; | X;_1 = x")

Filtering: update the particle probabilities multiplying each of them
by the likelihood function
P(X") <= p(y¢ /% = X" )P(X')
end of cycle
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Example — Particle Filter

System:
X = X¢_q +W w, ~N(0,Q) Problem: estimate phase from the
quadrature components.
COS X
Yt =| _. +Vi - Vi ~N(O,R)
Sin Xy

0.5

Q=0.04, R=0.1

X Toriginal
estimated

0 20 40 60 80 100
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Matlab Program

T=100; Q=.04; x=[0 cumsum(sqrt(Q)*randn(1,T-1))];
R=.1; y=[cos(X);sin(X)]+sqgrt(R)*randn(2,T);

% particle filter

N=100;

xp=x(:,1)*ones(1,N); P=ones(N,1)/N;

for t=2:T,
k=sum(ones(N,1)*rand(1,N)>cumsum(P)*ones(1,N))+1;
xp=xp(k)+sqrt(Q)*randn(1,N); yp=[cos(xp);sin(xp)];
P=P(K).*exp(-0.5*sum((y(:,t)*ones(1,N)-yp)."2)/R)";
P=P/sum(P);
xav(t)=sum(P'.*xp);

end

plot(1:T,x,1:T,xav)
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Linear Dynamic Systems

How to characterize p(x,), p(X/X..), p(y.|X) ?

One approach is based on stochastic linear systems:

Xt =AXt_1—I—But +Wt Xl""N()?,F_))
yt =CXt +Vt
where:

x; € R"x state vector
u, e R™ input vector
V= RMuY output vector

w; e R™ v, € R Ww; ~N(0,Q;),vi ~N(O,R;) White noise

(w:, vt independent r.v. and independent with respect to x: )
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Filtro de Kalman

W  ® ¥

If X,, y, are generated by a LDS, the conditional distribution of the
hidden variables, given the observations, is normal !

p(x |Y") =N(X,Py)

Xt,P; are updated by the Kalman filter.
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Kalman Filter

Inicialization: % =x B =P,t=1

Cicle: t=1,2,....n

Filtering Prediction
R =R +K(yy —C% ) R = A% _1 + Buy_4
Ki=P C'S™ S=CP C+R P =AP_;A" +Q

R=0-KC)R o =N(y; —C%:0,3)
end cycle (t < t+1)

t
likelihood function: | =logp(y') = 3 log p
=1
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Demonstracao

Prediction

Since the density p(x.,]y!) is Gaussian, only the mean and
covariance have to be specified

A— -1 ~ -1 A
X =E{x |y 7 = AE{X_1 |y T} +Bury = ARy
Pt_ — COV {Axt_l + But +Wt_1} — APt_lA"l’Qt

Filtering

Filtering equations were proved before.
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Kalman Smoother
W @ o

Let X,,..., X, € Y;,..., ¥, be sequences generated by a LDS. The
output sequence is known.

We wish to estimate y, (t<n). This is known as the smoothing
problem.

In this case p(X; ly") = N(>2,I5) with mean and covariance
updated by the Kalman smoother.

© Jorge Salvador Marques, 2000



Kalman Smoother

Step 1: apply the Kalman filter to the data sequence.Denote the
estimate obtained by x,, P,.

Passo 2: (backward step)

initialization %, =x, P, =P,

cyclet=n-1, ..., 1
P~ = AR A+Q

J=RA(P)™
Re =X +I(Xi1-AXy) B =R +J(Py—-P)JY

end of cycle
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Computer Work

We wish to develop a self-localization system for a mobile robot. Suppose
the initial position of the robot is unknown and the robot has sonar sensors
which detect obstacles closer than 40cm in the directions NESW.

Simulate the robot and the sensors in a computer.

Develop a self-localization algorithm and compute the uncertainty ofeach
admissible position.

Test the algorithm by showing the correct position as well as the uncertainty
associate to all admissible positions.

environment (known)
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Exercicios

Let X,y be sequences of discrete random variables generated by the model:

0.2 vxe{-2,-1,0,1,2}
0 C.C.

Xt = Xt—1 + W Wt = +1, P{Wt =1} = P{Wt =-1}=05
P(x1)=
Vi = X + Vg Vg =22, P{v; = 2} = P{v; = -2} = 0.5

w, v are independent processes.

Given a the output sequence y=(0 1 -2 -1 -2) propagate the distribution of the state variable x; for t €
{1,2,3,4,5} and determine the MAP estimate of x.

Solve the previous problem assuming that processes x, y, w, v are continuous and w,~N(0,1),
vi~N(0,4), X,~N(0,1).
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