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Bayesian Networks
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Challenge

Sherlock Holmes was asked to solve the following problem:

A man was murdered last night and the Police has three suspects. A 

knife was found close to the body and the tests showed that it had the 

fingerprints of suspect 3. A neighbor saw a man running out of the house 

in which the murder occurred and the man had the same height of 

suspect 1 being much smaller than suspects 2 and 3.

Which suspect is the murderer with highest probability ?
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Summary

• Motivation

• Bayesian nets

• Inference in Bayesian nets

• Pearl algorithm

• Frey algorithm for factor graphs

• Junction tree
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Roots

•Wright (1921) geneticist – proposed a graphical representations for   

probabilities (severely criticized by statisticians).

•Howard e Matheson (1981) – developed influence diagrams for decision 

analysis.

•J. Pearl (1982) proposed an algorithm for the propagation of beliefs in 

trees as a way to model human reasoning. Later he extended this 

algorithm to Bayesian networks without multiple paths.

Graphical models were proposed in the 1st half of the 20th century in several 

fields e.g., in genetics and later in AI. 

Recently they began to attract the attention of the electric engineering 

community as well as the attention of statisticians.

Mile stones:



© Jorge Salvador Marques, 2002

Why do we need Bayesian networks ?

Consistent reasoning should obey the rules of probabilistic calculus 

(Polya).

Key question: How does the human brain perform inference with large 

number of variables ?

Paradox (Pearl,97)

Consider a collection of random variables x1, ..., xn.

Classic probability theory suggest that these variables should be 

characterized by a joint distribution P(x1, ..., xn). 

But it is almost impossible to learn joint distributions for a large number 

of variables without making strong assumptions.
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Why do we need Bayesian networks ?
The inference of xi from xj requires the computation of marginal probabilities

which can not be computed in most problems.
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Human reasoning does not work in this way ! It is easier to evaluate a 

proposition based on conditional probabilities p(xi|xj) than on the joint 

distribution.

Assumptions (Pearl): 

• reasoning should be based on marginal and conditional probabilities;

• the computational efficiency is achieved by an efficient

representation of independence among different sets of variables.
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Key Issues

How to represent a set of random variables using conditional 

probabilities ?

How to represent independence among subsets of variables ?

Graphical models provide answers to these questions namely

•Bayesian networks based on directed acyclic graphs (DAGs)

•Markov random fields based on undirected graphs.
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DAG
A direct acyclic graph (DAG) consists of a set of nodes and directed edges 

between nodes,

Each node may have several parents (causes) and several children 

(efects). 

No cycles are allowed if we follow the edge directions.

Links mean causal direct dependencies.
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1

2

7

6

4

Ancestral Order

In a DAG it is possible to define a past and a future for each node.

Proposition: It is always possible to order the nodes of a DAG in such a 

way that the descendents of each node have a higher index value.

3

5

descendents of 

node 3

non descendents

of node 3  (3)

This property is violated if the graph contains cycles !



© Jorge Salvador Marques, 2002

Bayesian Net

Given a set of random variables x=(x1, ..., xn ), a Bayesian net (BN) is a 

probabilistic model for x defined by 

•a DAG, each node being associated to a random variable xi

•conditional probability functions associated to each node: P(xi|ai) where ai

denotes the parents of xi.

P(xi|ndi) = P(xi|ai)

where ndi are the non descendent nodes of xi. Therefore, the parents 

summarize all the information contained in the non descendant nodes of xi.

Furthermore it is assumed that

Markov property
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y1

Example

x1 x2 x3

y2 y3 y4

diseases

symptoms

Note: observed nodes are painted in gray
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Sherlock Holmes

The problem is addressed using five random variables

c

u e

s a

c – criminal

u – the last person who handled the knife

e – expert exam

s – person who left the scene

a - height

Characterization:

p(u/c) 1 2 3

1 .9 .05 .05

2 .05 .9 .05

3 .05 .05 .9

P(e/u) 1 2 3

1 .8 .1 .1

2 .1 .8 .1

3 .1 .1 .8

P(s/c) 1 2 3

1 .8 .1 .1

2 .1 .8 .1

3 .1 .1 .8

P(a/s) 1 2 3

1 .6 .3 .1

2 .1 .6 .3

3 .1 .4 .5

u

u

e s

cc

a

s








3/1
3/1
3/1

cp
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Joint Distribution

)|()( 
i

ii axPxP

Property: if x=(x1, ..., xn) is described by a Bayesian network

Example

t v

u s

P(u,s,t,v) = P(v|t) P(t|u,s) P(s|u) P(u)

Bayesian networks factorize the joint distribution !
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Proof

Suppose the nodes are ordered according to an ancestral order 

(descendents have a higher index).

Then
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xxxpxxp
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 
(def. of conditional prob.)

(Markov property)
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Independence

The efficiency the inference operations depends on the ability to 

efficiently represent the independence of random variables.

Two key questions are:

• do Bayesian networks represent independence ?

• is it possible to determine if two subsets of variables are 

independent by the inspection of the graph ?

Difficulty: independence depends on the graph and on the conditional

distributions associated to the nodes.
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d - Separation

The independence of variables depends both on the graph and on the 

probability distribution P.

Definition: Let xA, xB, xS, be three disjoint sets of variables of a BN.

xA is denoted d-separated from xB given xS iif

P(xA/ xB,xS) = P(xA/xS)  ,         for all P

d- separation is stronger since it depends only on the graph topology.
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Evidence Propagation

xserial connection a b

x

diverging connection

a b c

x

a b c
converging connection

Evidence may be transmitted in a serial or diverging connection if x is not instantiated.

Evidence may only be transmitted in a converging connection if x or one of its 

descendand is instantiated.
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D-Separation Rule

xA, xB are d-separated by xS if all the paths from xA to xB are blocked. A path is 

blocked if there is

• a non convergent connection with a variable x  xS   or 

• a convergent conection such that x and its descendants do not belong to xS

x

do not belong to xS

x

x

x belongs to xS
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Example

x1

x3

x2

x4

x5

x6

x8

x7

x10

x9

x1 e x4 are d-separated by x2

x1 e x4 are not d-separated given {x2,x5}

x5 creates dependency

x4 e x9 are d-separated

x4 e x9 are not d-separated given x10

x9 creates dependency 

in its ancestors



© Jorge Salvador Marques, 2002

Suzan Family

grand parents

parents

Susan

children

grand children

links represent genetic dependency

It is assumed that the genetic 

description of Susan parents is 

known

Questions: is the prediction of Susan 

genetic code modified  if we know 

the genes of the grand parents, 

sons, grand children, or by the 

parents of the grand children which 

are not sons ?
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Inference Methods

Inference in singly connected nets

•message passing (Pearl)

• multiply-add (Frey)

Inference in multiply connected nets

• junction tree (Jensen)

• Monte Carlo methods 

• variational methods

Inference aims to compute the distribution of a set of hidden variables given 

the observations, y. The simplest case is to compute P(xi/y) (belief) where xi

is a hidden variable.

There are several algorithms to compute the beliefs P(xi/y). 
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Pearl Method

Pearl method is one of the first inference methods proposed in the 

literature. It extends the forward-backward algorithm proposed by Baum 

for HMM.

The algorithm was proposed by Pearl in 1982 for BN with tree topology and 

it was extended in 1983 to general BN without loops.
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Trees

Tree networks are BN such that each node has a single cause (parent).

observed (evidence)

hidden

Inference goal: compute the distribution of each variable given evidence.
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Evidence Decomposition

Each node splits the evidence in two disjoint parts (present-past and future)

nodes )descendent (non other   

 node th-i the of sdescendent   





i

i

e

e

xi

 
i

e

   
ie

   
ie Can also be decomposed as follows


 kji eee

xj xk
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Auxiliar Probabilities

xi

 ie

   
i

e

xj xk

 )/()(
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



i are obtained by a bottom-up 

recursion.

Inference:  )()(c)|( iii xxyxP  c – normalization factor

i are obtained by a top-down 

recursion using i variables.



© Jorge Salvador Marques, 2002

Pearl Algorithm for Trees

where )()()(   ),( )|()( xxxqqxPx vxuxqx
q

 

)()()|( xxcexp 

Bottom-up messages

)()|()( xqxPq
x

xq  

Top-down messages



v siblings
 other

vx )()()( xxcxxu 

Special cases:

if x is the root (x)=P(x); if x’ is an observation of x, (x)=d(x,x’), if x is a 

hidden leave (x)=1

q

x

u v

xq

xu

are obtained by a message passing procedure:

Proposition: the node conditional probabilities, given the 

evidence e,  can be obtained as follows:
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Proof

i)

)()()|(),|(              

),(),|('),,(')|(

xxcexPxeecP

xePxeePcxeePcexP
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xxxxx









ii)   x observed

)',()|()( xxxePx x d 


x non observed

)|()|()|,()|()( xePxePxeePxePx vuvux




Defining )|()(),|()( xePxxePx vvxuux


 

)()()( xxx vxux  

The product has one factor for each son of node x.
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Proof (2)

iii)

)()|(    

)|(),|()|,()|()(

xqxP

qxPqxePqxePqePq

x

x
x

x
x

xxq










iv) )|()|()|,()|()( 
 x
q

x
q

x eqPqxPeqxPexPx

Definindo )|()( 
 xqx eqPq vem )()|()( qqxPx qx

q

 

v)

)()(           

)|(),|(),|()|()(

xxc

exPexecPeexPexPx

vx

xxvxvuxu










É neste passo que se cria a dependência do ciclo descendente em relação 

aos resultados do ciclo ascendente que têm que ser previamente calculados.
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Mensage Propagation

starting point new data
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Example

x1

x2 x3 x4

x5 x6

x7 x8

observations: y3=1, y6=1, y7=0







3.
7.

1x
pRot:

Transitions 12, 13, 46

0 1

0 .9 .1

1 .5 .5

son

father

Other transitions

0 1

0 .2 .8

1 .1 .9

son

father
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Example

x1

x2 x3 x4

x5 x6

x7 x8

(Bottom-up:  update)







1

1






1

0







0

1







9.

8.












9.

8.

9.1.

8.2.







1

1







5.

9.







9.

8.







5.

9.







1

0







1

1







1

1







5.

1.







5.

1.
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Example

x1

x2 x3 x4

x5 x6

x7 x8

(Propagação dos s)






3.

7.







9.

1.







1

0







9.

1.







9.

1.







9.

1.







9.

1.






9101.

0899.







0

1







1

0







891.

109.

Note: beliefs P(xi/y) are not 

shown although they are 

recursively computed







3727.

6273. 





16.

78.













6818.

3182.

5.1.

5.9.







3.

7.






6818.

3182.







5./6818.

1./3182.



© Jorge Salvador Marques, 2002

Example

x1

x2 x3 x4

x5 x6

x7 x8

(beliefs)






6818.

3182.







3727.

6273.






1

0







8333.

1667.







0

1






9101.

0899.







1

0







891.

109.
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Singly Connected Networks

These networks allow multiple causes (fathers) for each node but not 

multiple paths between pairs of nodes.

not allowed

Pear algorithm was generalized by Kim, Pearl, 1983 to deal with simply 

connected networks.
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Kim & Pearl Algorithm (1983) 
(singly connected BN)

Update of internal variables

q

x

r

u v

)()()( xxx vxux  )()( ),|()(
,

rqrqxPx rxqx
rq

 

)()()|( xxcexp 

Bottom up messages

)(),|()()( rrqxPxcq rx
rx

xq  

Top down messages

)(

)|(
)(

x

yxP
cx

ux
xu


 

Special cases

If x is a root (x)=P(x); if x’ is an observation of x, (x)=d(x,x’), if x is a 

hidden leave (x)=1

xq

xu
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Factor Graphs

Factor graphs (FGs) reresent the decomposition of a joint distribution as a 

product of functions with less variables

They are used to represent

)()(
1

j
j

N

j

xfxP 


 jx is the set of variables of  fj

Factor graphs have two types of nodes: nodes associated to random variables 

xi and nodes associated to functions fj. The fj node is linked to the nodes of the 

variables in       . 

Note: Frey claims that factor graphs are more general than Bayesian networks and 

Markov random fields.

jx



© Jorge Salvador Marques, 2002

From BN to FG

Any Bayesian network can be converted into a factor graph. We only have to 

creat additional nodes associated to the conditional distributions.

Example

s t

u v

x={s,t,u,v}

P(x)=P(s) P(t|s) P(u|s,t) P(v|u)

Bayesian Network Factor Graph

s t

u v

A B

C

D

fA=P(s)    fB=P(t|s)    fC=P(u|t,s)

fD=P(v|u) 
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Inference
The computation of P(xi/y) in a singly connected factor graph can be 

obtained by the forward-backward algorithm or by the product-sum

algorithm.

Both are based on the same type of update rules based on message 

transmission between nodes. The difference lies only in the way 

messages are sent (bottom-up/top-down or asynchronous).

In the first algorithm (FB) the graph is converted into a tree (by choosing 

an arbitrary node as root) and the information is first sent from the 

leaves to the root and in the opposite way afterwards.

The second algorithm (PS) starts from a known configuration of the 

network. Every time new observations are available, the observed 

nodes sent information to their neighbors which propagate through the 

network until the are absorbed. 
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Messages

There are two types of messages: mxA, mAx

Product Sum

)()(),,()(
,

tstsxfx tAsAA
ts

Ax mmm )()()( xxx CxBxxA mmm 

x

s

t

fA

mxA

mAx

fB

fC

),()( 0xxxxA dm 

or

if x is observed

Note: each node propagates incoming messages in all the other directions. The beliefs are obtained 

by multiplying all the incomming messages of each node, nornalized by a multiplicative constant.
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Burgler Alarm

Binary variables:

b – burglary

e - earthquake

a - alarm

Distributions:

P( b=1 ) = 0.1                           P( e=1 ) = 0.1

P( a=1 | b=0,e=0 ) = 0.001     P( a=1 | b=1,e=0 ) = 0.368 

P( a=1 | b=0,e=1 ) = 0.135     P( a=1 | b=1,e=1 ) = 0.607 

b e

a

b e

a

A

B E

a=1

(Pearl)
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Burgler Alarm (2)

a

b

e

a

b

e

a

b

e

a

b

e

a

b

e

a

b

e

B

B

B

B

B

B

A

A

A

E

E

E

A

A

A

E

E

E

)1.0,9.0(bBm

)1,0(    )1.0,9.0(   AaAb mm

)1.0,9.0(    )1822.0,0377.0(   eEeA mm

 )1.0,9.0(Aem

)3919.0,0144.0(bAm

)349.0,651.0(1)(e/a    )751.0,29.0()1/(  PabP
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Monte Carlo

Monte Carlo method simulates the BN and computes statistics of the 

network variables from multiple realizations of x. The method is valid even 

in the presence of multiple paths.

The network simulation is based on the Gibbs sampler. The Gibbs sampler 

starts from an initial configuration and modifies a single variable xi at a 

time. The new value of xi is randomly selected according to the conditional 

distribution

)/(}){\/( kk
k

ii axPcxxxP 

Note: to compute the conditional distribution, only the terms associated to the neighboring 

nodes are considered.

This procedure is repeated until all the variables are updated. This task is 

repeated as many times as needed .
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Example

x1

x3
x2

x4
x5

]'[ 1.8.1.1xp

12 1 2 3

1 .2 .7 .1

2 .4 .2 .4

3 .9 .1 0

13 1 2 3

1 .8 .1 .1

2 .2 .1 .7

3 .6 .3 .1

45 1 2 3

1 .8 .1 .1

2 .1 .1 .8

3 .1 .1 .8

234 1 2 3

11 .6 .3 .1

12 .4 .1 .5

13 .1 .8 .1

21 .2 .6 .2

22 .1 .5 .4

23 .6 .3 .1

31 .8 .1 .1

32 .4 .3 .3

33 .1 .8 .1

x2 x3

x5
x4

x1 x1

x4

x2x3

observations: x5=2

This example shows the beliefs 

obtained by Monte Carlo simulation 

using 10000 iterations.

(this graph has multiple paths)















108.

795.

097.















329.

227.

444.















579.

123.

297.















143.

553.

304.















0

1

0
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Sherlock Holmes (2) 













1

0

0













680.

085.

235.

c

e u













555.

104

340.













0

0

1













311.

099.

589.

The network was simulated 10000 times. All the variables were simulated 

starting from the previous configuration.

a s

The mais suspect is the 3rd, although suspect 1 also has a high score.
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Marginalization

BN allow the use of efficient marginalization methods using the distributive 

property of multiplication. (even in the presence of multiple paths)

Several efficient algorithms are based on this property e.g., inference 

methods based on junction trees.

(the next slides are inspired in  F. Jensen, Bayesian Networks and Decision Graphs, Springer, 

2001)
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Example

x1

x2 x3

x4 x5 x6

.)/()/()/()()(

4321

2413121 


xxpxxpxxpxpxP 


65

)/(),/( 36325



xxpxxxp

Problem: compute P(x4)



65321 ,,,,
6543214 ),,,,,(   )(   :methodDirect 

xxxxx

xxxxxxPxP



65321

)/(),/()/()/()/()()( 3632513241214
xxxxx

xxpxxxpxxpxxpxxpxpxP

Efficient method:
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),( 366 xx ),,( 3255 xxx

)( 36 x ),( 325 xx

),( 133 xx

),( 213 xx

),( 122 xx

),( 244 xx

),( 412 xx

)( 11 x


6x


5x


3x


2x


1x

)( 4xP

),,(),(

),()(

3255325

36636

5

6

xxxxx

xxx
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x









),()(),(),( 32536133213

3

xxxxxxx
x

 

),(),(),(),( 244122213412

2

xxxxxxxx
x

 

),()()( 412114

1

xxxxP
x


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Difficulty

What is the best elimination sequence ?

The complexity of the marginalization operation depends on the 

choice of the elimination sequence.

Different elimination sequences may lead to different 

computational efforts.
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Domain Graph

x1

x2 x3

x4 x5 x6

The domain graph is an undirected graph with links among the 

variables of each potential function fk.

Bayesian network domain graph

x1

x2 x3

x4 x5 x6
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Node Elimination

x1

x2 x3

x4 x5 x6

What happens to the domain graph when a variable is eliminated by 

marginalization ?

x1

x2

x4 x5 x6

fill ins
the fill ins (insertions) increase the computational burden !

elimination of x3
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Simplicial Node

Definition: simplicial node is a node with a complete neighbor set.

Proposition: x is a simplicial node iif Fx is a clique.

No fill ins are created by the elimination of simplicial nodes !

x1

x2 x3

x4 x5 x6

simplicial

non simplicial
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Triangulated Graphs

Is it possible to find an elimination sequence without fill ins ? 

Theorem

If G is a triangulated graph, there is has a perfect elimination 

sequence (without fill ins) for each variable xi.

Definition: an undirected graph G is a triangulated graph if there is 

one perfect elimination sequence i.e., without fill ins.
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Example

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

triangulated graphnon triangulated graph

The concept of triangulated graph is misleading:
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Triangulation of Graphs

If G is a non triangulated graph, how can we compute a 

triangulated Graph with the minimum number of insertions ?

This is a NP-hard problem. There are sub-optimal solutions which 

usually work well.

Algorithm:

Eliminate one node of G in each iteration, choosing a simplicial 

node. If there is not any simplicial node, chose a node xi with the 

smallest neighborhood.
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Example
fill in

fill in
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Inference in Triangulated Graphs

How can we perform inference in a BN with a triangulated domain graph ?

Junction trees solve this problem for all the nodes, by using perfect 

elimination sequences i.e., without insertions.

Junction trees are trees in which the nodes are cliques of the 

domain graph.
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Computation of the Junction Tree

1. Compute cliques Ci and separator sets Si (see below)

2. Link determination: sequentialy link each clique Ci to a clique 

Ci such that Si  Cj and j>i.

3. Determine the clique potentials: the potential of the ith clique ji
is the product of the potentials of the eliminated nodes.

Clique Computation

1. Choose a simplicial node x and define Ci=Fx. 

2. Eliminate all the nodes of Fx which have all the neighbors in Fx; 

the other nodes define the separator Si .

3. Repeat the previous steps  and increase i, until all nodes are 

eliminated.
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Example

A B E

C D F

H G I

J

B E

C D F

H G I

J

B E

C D

H G

J

B E

C D

G

C1=ABCD    S1=BCD

C2=DEFI      S2=DE

C3=CGHJ     S3=CG

C4=BCDG    S4=BCD

C5=BCDE

B E

C D
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Example

C1=ABCD    S1=BCD

C2=DEFI      S2=DE

C3=CGHJ     S3=CG

C4=BCDG    S4=BCD

C5=BCDE

BCDE

ABCD DEFI

BCDG

CGHJ

BCD DE

BCD

CG

j1=A

j2= F I

j3= H J

j4=G

j5= B C D E
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Inference in Junction Trees

Ck

Ci

Yk

Yk

Cj

YjYi

Collect Evidence: propagate 

messages from the leaves to the root

Distribute Evidence: propagate 

messages from the root to the leaves

kS
jikk


 )( j

Notation:            marginalize with respect to xx
()

iS
j

k
k

i 
 )( j

ji
k

kkCP j)(
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Example

x1

x2 x3

x4 x5 x6

x1

x2 x3

x4 x5 x6

Ci Si ji

x6 x3              x3                 6 (x6 ,x3) 

x4 x2              x2                 4 (x4 ,x2) 

x5 x2 x3        x2 x3           5 (x5 ,x2,x3) 

x1 x2  x3       1 (x1) 2 (x2 ,x1) 3 (x3 ,x1) 

C4

C1
C3

C2

Junction tree

x3
x2x3

x2



© Jorge Salvador Marques, 2002

Exemplo
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Distributing evidence
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Software

Software for Bayesian Networks:

Bayes Net Toolbox (Murphy)

BAIES (Cowell, 1995)

Hugin (Andersen, 1989)

IDEAL (Srinvas, Breese, 1990)

PRESS (Gammerman, 1995)
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Comment

“Belief networks are designed and trained to answer more than just 

the question of classifying future cases. They are able to give a 

much higher level of explanation, including exploring what were 

important input features in reaching the conclusion and whether the 

input data were in some sense in conflict. To do so they model the 

whole joint distribution. Although there will be an advantage in 

using qualitative knowledge (at least if it is a reasonable 

approximation to reality), the need to model the whole distribution 

makes more demands on limited data resources”

Ripley, 1996
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Exercises

1. Describe a problem and define a Bayesian network to 

solve it.

2. Solve the Sherlock Holmes problem using Frey algorithm 

and junction trees.
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Project

Design a system for medical diagnosis of two diseases A, B from 

two medical exams C, D or any subset of these.

Training data:

0101101010101100111

1110101100111001100

1110101100111001100

1001100010100100110

D

C

B

A

Characterize the output of the system for all input configurations. 

Characterize the performance of the system on the training set.

Note: the assessment of the system performance should be based on independent data.
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