Bayesian Networks

Challenge

Sherlock Holmes was asked to solve the following problem:

A man was murdered last night and the Police has three suspects. A knife was found close to the body and the tests showed that it had the fingerprints of suspect 3 . A neighbor saw a man running out of the house in which the murder occurred and the man had the same height of suspect 1 being much smaller than suspects 2 and 3 .
Which suspect is the murderer with highest probability ?

Summary

- Motivation
- Bayesian nets
- Inference in Bayesian nets
- Pearl algorithm
- Frey algorithm for factor graphs
- Junction tree

Roots

Graphical models were proposed in the 1st half of the 20th century in several fields e.g., in genetics and later in AI.

Recently they began to attract the attention of the electric engineering community as well as the attention of statisticians.

Mile stones:
-Wright (1921) geneticist - proposed a graphical representations for probabilities (severely criticized by statisticians).
-Howard e Matheson (1981) - developed influence diagrams for decision analysis.
-J. Pearl (1982) proposed an algorithm for the propagation of beliefs in trees as a way to model human reasoning. Later he extended this algorithm to Bayesian networks without multiple paths.

Why do we need Bayesian networks ?

Consistent reasoning should obey the rules of probabilistic calculus (Polya).

Key question: How does the human brain perform inference with large number of variables?

Paradox (Pearl,97)
Consider a collection of random variables x_{1}, \ldots, x_{n}.
Classic probability theory suggest that these variables should be characterized by a joint distribution $P\left(x_{1}, \ldots, x_{n}\right)$.

But it is almost impossible to learn joint distributions for a large number of variables without making strong assumptions.

Why do we need Bayesian networks ?

The inference of x_{i} from x_{j} requires the computation of marginal probabilities

$$
p\left(x_{i} \mid x_{j}\right)=\frac{\sum_{x: \text { known } x_{i}, x_{j}} p\left(x_{1}, \ldots, x_{n}\right)}{\sum_{\left.x: \text { known } x_{j}, \ldots, x_{n}\right)}}
$$

which can not be computed in most problems.
Human reasoning does not work in this way! It is easier to evaluate a proposition based on conditional probabilities $p\left(x_{i} \mid x_{j}\right)$ than on the joint distribution.

Assumptions (Pearl):

- reasoning should be based on marginal and conditional probabilities;
- the computational efficiency is achieved by an efficient representation of independence among different sets of variables.

Key Issues

How to represent a set of random variables using conditional probabilities ?

How to represent independence among subsets of variables ?

Graphical models provide answers to these questions namely
-Bayesian networks based on directed acyclic graphs (DAGs)
-Markov random fields based on undirected graphs.

DAG

A direct acyclic graph (DAG) consists of a set of nodes and directed edges between nodes,

Each node may have several parents (causes) and several children (efects).

No cycles are allowed if we follow the edge directions.
Links mean causal direct dependencies.

Ancestral Order

In a DAG it is possible to define a past and a future for each node.

Proposition: It is always possible to order the nodes of a DAG in such a way that the descendents of each node have a higher index value.

descendents of node 3

This property is violated if the graph contains cycles !

Bayesian Net

Given a set of random variables $x=\left(x_{1}, \ldots, x_{n}\right)$, a Bayesian net (BN) is a probabilistic model for x defined by

- a DAG, each node being associated to a random variable x_{i}
-conditional probability functions associated to each node: $P\left(x_{i} \mid a_{i}\right)$ where a_{i} denotes the parents of x_{i}.

Furthermore it is assumed that

$$
P\left(x_{i} \mid n d_{i}\right)=P\left(x_{i} \mid a_{i}\right) \quad \text { Markov property }
$$

where $n d_{i}$ are the non descendent nodes of x_{i}. Therefore, the parents summarize all the information contained in the non descendant nodes of x_{i}.

Example

Note: observed nodes are painted in gray

Sherlock Holmes

The problem is addressed using five random variables

c - criminal
u - the last person who handled the knife
e - expert exam
s - person who left the scene
a - height

Characterization:
$p_{c}=\left[\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$
c

u			
$\mathrm{p}(\mathrm{u} / \mathrm{c})$	1	2	3
1	.9	.05	.05
2	.05	.9	.05
3	.05	.05	.9

$\mathrm{P}(\mathrm{e} / \mathrm{u})$		e		
		1	2	3
	1	. 8	. 1	. 1
u	2	. 1	. 8	. 1
	3	. 1	. 1	. 8

$\mathrm{P}(\mathrm{s} / \mathrm{c})$		S		
		1	2	3
	1	. 8	. 1	. 1
C	2	. 1	. 8	. 1
	3	. 1	. 1	. 8

$\mathrm{P}(\mathrm{a} / \mathrm{s})$		a		
		1	2	3
	1	. 6	. 3	. 1
s	2	. 1	. 6	. 3
	3	. 1	. 4	. 5

Joint Distribution

Property: if $x=\left(x_{1}, \ldots, x_{n}\right)$ is described by a Bayesian network

$$
P(x)=\prod_{i} P\left(x_{i} \mid a_{i}\right)
$$

Bayesian networks factorize the joint distribution!

Example

$$
P(u, s, t, v)=P(v \mid t) P(t \mid u, s) P(s \mid u) P(u)
$$

Proof

Suppose the nodes are ordered according to an ancestral order (descendents have a higher index).

Then

$$
\begin{array}{rlrl}
p\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i} p(x_{i} \mid \underbrace{x_{1}, \ldots, x_{i-1}}_{\text {non descendents }}) & & \text { (def. of conditional prob.) } \\
& =\prod_{i} p\left(x_{i} \mid a_{i}\right) & \text { (Markov property) }
\end{array}
$$

Independence

The efficiency the inference operations depends on the ability to efficiently represent the independence of random variables.

Two key questions are:

- do Bayesian networks represent independence ?
- is it possible to determine if two subsets of variables are independent by the inspection of the graph ?

Difficulty: independence depends on the graph and on the conditional distributions associated to the nodes.

d - Separation

Definition: Let $\mathrm{x}^{\mathrm{A}}, \mathrm{x}^{\mathrm{B}}, \mathrm{x}^{\mathrm{s}}$, be three disjoint sets of variables of a BN . x^{A} is denoted d-separated from x^{B} given x^{s} if

$$
P\left(x^{A} / x^{B}, x^{s}\right)=P\left(x^{A /} / x^{s}\right), \quad \text { for all } P
$$

The independence of variables depends both on the graph and on the probability distribution P.
d- separation is stronger since it depends only on the graph topology.

Evidence Propagation

serial connection

diverging connection

converging connection

Evidence may be transmitted in a serial or diverging connection if x is not instantiated.
Evidence may only be transmitted in a converging connection if x or one of its descendand is instantiated.

D-Separation Rule

x^{A}, x^{B} are d-separated by x^{s} if all the paths from x^{A} to x^{B} are blocked. A path is blocked if there is

- a non convergent connection with a variable $x \in x^{s}$ or
- a convergent conection such that x and its descendants do not belong to x^{s}

Example

x_{1} e x_{4} are d-separated by x_{2}
x_{1} e x_{4} are not d-separated given $\left\{x_{2}, x_{5}\right\}$
x_{5} creates dependency
x_{4} e x_{9} are d-separated
x_{4} e x_{9} are not d-separated given x_{10}
$\begin{aligned} & x_{9} \text { creates dependency } \\ & \text { in its ancestors }\end{aligned}$

Suzan Family

links represent genetic dependency

It is assumed that the genetic description of Susan parents is known

Questions: is the prediction of Susan genetic code modified if we know the genes of the grand parents, sons, grand children, or by the parents of the grand children which are not sons?

Inference Methods

Inference aims to compute the distribution of a set of hidden variables given the observations, y . The simplest case is to compute $P(x / y)$ (belief) where x_{i} is a hidden variable.

There are several algorithms to compute the beliefs $P(x / y)$.
Inference in singly connected nets
-message passing (Pearl)

- multiply-add (Frey)

Inference in multiply connected nets

- junction tree (Jensen)
- Monte Carlo methods
- variational methods

Pearl Method

Pearl method is one of the first inference methods proposed in the literature. It extends the forward-backward algorithm proposed by Baum for HMM.

The algorithm was proposed by Pearl in 1982 for BN with tree topology and it was extended in 1983 to general BN without loops.

Trees

Tree networks are BN such that each node has a single cause (parent).

Inference goal: compute the distribution of each variable given evidence.

Evidence Decomposition

Each node splits the evidence in two disjoint parts (present-past and future)
e_{i}^{-}descendents of thei-thnode
e_{i}^{+}other (non descendent) nodes
e_{i}^{-}Can also be decomposed as follows

$$
e_{i}^{-}=e_{j}^{-} \cup e_{\bar{k}}^{-}
$$

Auxiliar Probabilities

$$
\begin{aligned}
& \alpha\left(x_{i}\right)=P\left(x_{i} / e_{i}^{+}\right) \\
& \beta\left(x_{i}\right)=P\left(e_{i}^{-} / x_{i}\right)
\end{aligned}
$$

β_{i} are obtained by a bottom-up recursion.
α_{i} are obtained by a top-down recursion using β_{i} variables.

Inference:

$$
P\left(x_{i} \mid y\right)=\mathrm{c} \alpha\left(x_{i}\right) \beta\left(x_{i}\right) \quad \mathrm{c}-\text { normalization factor }
$$

Pearl Algorithm for Trees

Proposition: the node conditional probabilities, given the evidence e, can be obtained as follows:

$$
p(x \mid e)=c \alpha(x) \beta(x)
$$

where

$$
\alpha(x)=\sum_{q} P(x \mid q) \alpha_{q x}(q), \quad \beta(x)=\beta_{u x}(x) \beta_{v x}(x)
$$

are obtained by a message passing procedure:
Bottom-up messages

$$
\beta_{x q}(q)=\sum_{x} P(x \mid q) \beta(x)
$$

$$
\alpha_{x u}(x)=c \alpha(x) \prod_{\substack{\text { other } \\ \text { siblings v }}}^{\prod} \beta_{v x}(x)
$$

Special cases:
if x is the root $\alpha(x)=P(x)$; if x^{\prime} is an observation of $x, \beta(x)=\delta\left(x, x^{\prime}\right)$, if x is a hidden leave $\beta(x)=1$

Proof

i)

$$
\begin{aligned}
P(x \mid e)= & c^{\prime} P\left(e_{x}^{-}, e_{x}^{+}, x\right)=c^{\prime} P\left(e_{x}^{-} \mid e_{x}^{+}, x\right) P\left(e_{x}^{+}, x\right) \\
& =c P\left(e_{x}^{-} \mid e_{x}^{+}, x\right) P\left(x \mid e_{x}^{-}\right)=c \alpha(x) \beta(x)
\end{aligned}
$$

ii) x observed

$$
\begin{array}{r}
\text { Def }: \alpha(x)=P\left(x \mid e_{x}^{+}\right) \\
\beta(x)=P\left(e_{x}^{-} \mid x\right)
\end{array}
$$

x non observed

$$
\beta(x)=P\left(e_{x}^{-} \mid x\right)=P\left(e_{u}^{-}, e_{v}^{-} \mid x\right)=P\left(e_{u}^{-} \mid x\right) P\left(e_{v}^{-} \mid x\right)
$$

Defining $\quad \beta_{u x}(x)=P\left(e_{u}^{-} \mid x\right), \beta_{v x}(x)=P\left(e_{v}^{-} \mid x\right)$

$$
\beta(x)=\beta_{u x}(x) \beta_{v x}(x)
$$

The product has one factor for each son of node x.

Proof (2)

iii)

$$
\begin{aligned}
& \beta_{x q}(q)=P\left(e_{x}^{-} \mid q\right)=\sum_{x} P\left(e_{x}^{-}, x \mid q\right)=\sum_{x} P\left(e_{x}^{-} \mid x, q\right) P(x \mid q) \\
& \quad=\sum_{x} P(x \mid q) \beta(x)
\end{aligned}
$$

iv)

$$
\alpha(x)=P\left(x \mid e_{x}^{+}\right)=\sum_{q} P\left(x, q \mid e_{x}^{+}\right)=\sum_{q} P(x \mid q) P\left(q \mid e_{x}^{+}\right)
$$

Definindo $\alpha_{q x}(q)=P\left(q \mid e_{x}^{-}\right) \quad$ vem $\quad \alpha(x)=\sum_{q} P(x \mid q) \alpha_{q x}(q)$
v)

$$
\begin{aligned}
\alpha_{x u}(x) & =P\left(x \mid e_{u}^{+}\right)=P\left(x \mid e_{v}^{-}, e_{x}^{+}\right)=c P\left(e_{v}^{-} \mid x, e_{x}^{+}\right) P\left(x \mid e_{x}^{+}\right) \\
& =c \beta_{v x}(x) \alpha(x)
\end{aligned}
$$

É neste passo que se cria a dependência do ciclo descendente em relação aos resultados do ciclo ascendente que têm que ser previamente calculados.

Mensage Propagation

starting point

new data

Example

observations: $y_{3}=1, y_{6}=1, y_{7}=0$
Rot: $\quad p_{x_{1}}=\left[\begin{array}{l}.7 \\ .3\end{array}\right]$

Transitions 12, 13, 46

father | | 0 | 1 |
| :---: | :---: | :---: |
| | 0 | .9 |
| 1 | | |
| 1 | .5 | .5 | son

Other transitions

father | | 0 | 1 |
| :---: | :---: | :---: |
| 0 | .2 | .8 |
| 1 | .1 | .9 | son

Example

Example

Singly Connected Networks

These networks allow multiple causes (fathers) for each node but not multiple paths between pairs of nodes.

Pear algorithm was generalized by Kim, Pearl, 1983 to deal with simply connected networks.

Kim \& Pearl Algorithm (1983)

(singly connected BN)

Update of internal variables

$$
\begin{aligned}
& \alpha(x)=\sum_{q, r} P(x \mid q, r) \alpha_{q x}(q) \alpha_{r x}(r) \quad \beta(x)=\beta_{u x}(x) \beta_{v x}(x) \\
& p(x \mid e)=c \alpha(x) \beta(x)
\end{aligned}
$$

Bottom up messages

$$
\beta_{x q}(q)=c \sum_{x} \beta(x) \sum_{r} P(x \mid q, r) \alpha_{r x}(r)
$$

Top down messages

$$
\alpha_{x u}(x)=c \frac{P(x \mid y)}{\beta_{u x}(x)}
$$

Special cases
If x is a root $\alpha(x)=P(x)$; if x^{\prime} is an observation of $x, \beta(x)=d\left(x, x^{\prime}\right)$, if x is a hidden leave $\beta(x)=1$

Factor Graphs

Factor graphs (FGs) reresent the decomposition of a joint distribution as a product of functions with less variables

They are used to represent

$$
P(x)=\alpha \prod_{j=1}^{N} f_{j}\left(x^{j}\right) \quad x^{j} \text { is the set of variables of } f_{j}
$$

Factor graphs have two types of nodes: nodes associated to random variables x_{i} and nodes associated to functions f_{j}. The f_{j} node is linked to the nodes of the variables in x^{j}.

Note: Frey claims that factor graphs are more general than Bayesian networks and Markov random fields.

From BN to FG

Any Bayesian network can be converted into a factor graph. We only have to creat additional nodes associated to the conditional distributions.

Example
Bayesian Network

$$
\begin{aligned}
& x=\{s, t, u, v\} \\
& P(x)=P(s) P(t \mid s) P(u \mid s, t) P(v / u)
\end{aligned}
$$

Factor Graph

$f_{A}=P(s) \quad f_{B}=P(t / s) \quad f_{C}=P(u / t, s)$
$f_{D}=P(v / u)$

Inference

The computation of $\mathrm{P}\left(\mathrm{x}_{i} / \mathrm{y}\right)$ in a singly connected factor graph can be obtained by the forward-backward algorithm or by the product-sum algorithm.

Both are based on the same type of update rules based on message transmission between nodes. The difference lies only in the way messages are sent (bottom-up/top-down or asynchronous).

In the first algorithm (FB) the graph is converted into a tree (by choosing an arbitrary node as root) and the information is first sent from the leaves to the root and in the opposite way afterwards.

The second algorithm (PS) starts from a known configuration of the network. Every time new observations are available, the observed nodes sent information to their neighbors which propagate through the network until the are absorbed.

Messages

There are two types of messages: $\mu_{\mathrm{xA}}, \mu_{\mathrm{Ax}}$

Product

$$
\mu_{X A}(x)=\mu_{B x}(x) \mu_{C x}(x)
$$

Or

$$
\mu_{X A}(x)=\delta\left(x, x_{0}\right) \quad \text { if } x \text { is observed }
$$

Note: each node propagates incoming messages in all the other directions. The beliefs are obtained by multiplying all the incomming messages of each node, nornalized by a multiplicative constant.

[^0]
Burgler Alarm

(Pearl)

Binary variables:
b - burglary
e - earthquake
a - alarm

Distributions:

$$
\begin{array}{ll}
P(b=1)=0.1 & P(e=1)=0.1 \\
P(a=1 \mid b=0, e=0)=0.001 & P(a=1 \mid b=1, e=0)=0.368 \\
P(a=1 \mid b=0, e=1)=0.135 & P(a=1 \mid b=1, e=1)=0.607
\end{array}
$$

Burgler Alarm (2)

$$
\mu_{B \rightarrow b}=(0.9,0.1)
$$

$$
\mu_{b \rightarrow A}=(0.9,0.1) \quad \mu_{a \rightarrow A}=(0,1)
$$

$\mu_{A \rightarrow e}=(0.0377,0.1822) \quad \mu_{E \rightarrow e}=(0.9,0.1)$
© Jorge Salvador Marques, 2002

$$
\mu_{e \rightarrow A}=(0.9,0.1)
$$

$$
\mu_{A \rightarrow b}=(0.0144,0.3919)
$$

$$
P(b / a=1)=(0.29,0.751) \quad P(\mathrm{e} / \mathrm{a}=1)=(0.651,0.349)
$$

Monte Carlo

Monte Carlo method simulates the BN and computes statistics of the network variables from multiple realizations of x . The method is valid even in the presence of multiple paths.

The network simulation is based on the Gibbs sampler. The Gibbs sampler starts from an initial configuration and modifies a single variable x_{i} at a time. The new value of x_{i} is randomly selected according to the conditional distribution

$$
P\left(x_{i} / x \backslash\left\{x_{i}\right\}\right)=c \prod_{k} P\left(x_{k} / a_{k}\right)
$$

This procedure is repeated until all the variables are updated. This task is repeated as many times as needed.

Note: to compute the conditional distribution, only the terms associated to the neighboring nodes are considered.

Example

This example shows the beliefs obtained by Monte Carlo simulation using 10000 iterations.
(this graph has multiple paths)

$P_{x_{1}}=\left[\begin{array}{lll}.1 & .8 & .1\end{array}\right]^{\prime}$					observations: $x_{5}=2$				
$1 \rightarrow 2$	1	2	3	x_{2}	$1 \rightarrow 3$	1	2	3	x_{3}
1	. 2	. 7	. 1		1	. 8	. 1	. 1	
2	. 4	. 2	. 4		2	. 2	. 1	. 7	
$\begin{gathered} 3 \\ x_{1} \end{gathered}$. 9	. 1	0		3 x_{1}	. 6	. 3	. 1	
$23 \rightarrow 4$	1	2	3	x_{4}	$4 \rightarrow 5$	1	2	3	x_{5}
11	. 6	. 3	. 1		1	. 8	. 1	. 1	
12	. 4	. 1	. 5		2	. 1	. 1	. 8	
13	. 1	. 8	. 1		3	. 1	. 1	. 8	
21	. 2	. 6	. 2		x_{4}				
22	. 1	. 5	. 4						
23	. 6	. 3	. 1						
31	. 8	. 1	. 1						
32	. 4	. 3	. 3						
33	. 1	. 8	. 1						
$\mathrm{x}_{2} \mathrm{x}_{3}$									

© Jorge Salvador Marques, 2002

Sherlock Holmes (2)

The network was simulated 10000 times. All the variables were simulated starting from the previous configuration.

The mais suspect is the 3rd, although suspect 1 also has a high score.

Marginalization

BN allow the use of efficient marginalization methods using the distributive property of multiplication. (even in the presence of multiple paths)

Several efficient algorithms are based on this property e.g., inference methods based on junction trees.

[^1]
Example

Problem: compute $P\left(x_{4}\right)$
Direct method: $P\left(x_{4}\right)=\sum_{x_{1}, x_{2}, x_{3}, x_{5}, x_{6}} P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$
Efficient method:

$$
P\left(x_{4}\right)=\sum_{x_{1}} p\left(x_{1}\right) \sum_{x_{2}} p\left(x_{2} / x_{1}\right) p\left(x_{4} / x_{2}\right) \sum_{x_{3}} p\left(x_{3} / x_{1}\right) \sum_{x_{5}} p\left(x_{5} / x_{2}, x_{3}\right) \sum_{x_{6}} p\left(x_{6} / x_{3}\right)
$$

Difficulty

The complexity of the marginalization operation depends on the choice of the elimination sequence.

Different elimination sequences may lead to different computational efforts.

What is the best elimination sequence?

Domain Graph

The domain graph is an undirected graph with links among the variables of each potential function f_{k}.

Bayesian network

Node Elimination

What happens to the domain graph when a variable is eliminated by marginalization?

the fill ins (insertions) increase the computational burden !

Simplicial Node

Definition: simplicial node is a node with a complete neighbor set.
Proposition: x is a simplicial node iif F_{x} is a clique.

No fill ins are created by the elimination of simplicial nodes !

Triangulated Graphs

Is it possible to find an elimination sequence without fill ins ?

Abstract

Theorem If G is a triangulated graph, there is has a perfect elimination sequence (without fill ins) for each variable x_{i}.

Definition: an undirected graph G is a triangulated graph if there is one perfect elimination sequence i.e., without fill ins.

Example

The concept of triangulated graph is misleading:

non triangulated graph

triangulated graph

Triangulation of Graphs

> If G is a non triangulated graph, how can we compute a triangulated Graph with the minimum number of insertions ?

This is a NP-hard problem. There are sub-optimal solutions which usually work well.

Algorithm:

Eliminate one node of G in each iteration, choosing a simplicial node. If there is not any simplicial node, chose a node x_{i} with the smallest neighborhood.

Inference in Triangulated Graphs

How can we perform inference in a $B N$ with a triangulated domain graph

Junction trees solve this problem for all the nodes, by using perfect elimination sequences i.e., without insertions.

Junction trees are trees in which the nodes are cliques of the domain graph.

Computation of the Junction Tree

1. Compute cliques C_{i} and separator sets S_{i} (see below)
2. Link determination: sequentialy link each clique C_{i} to a clique C_{i} such that $S_{i} \subset C_{j}$ and $j>i$.
3. Determine the clique potentials: the potential of the ith clique j_{i} is the product of the potentials of the eliminated nodes.

Clique Computation

1. Choose a simplicial node x and define $C_{i}=F_{x}$.
2. Eliminate all the nodes of F_{x} which have all the neighbors in F_{x}; the other nodes define the separator S_{i}.
3. Repeat the previous steps and increase i, until all nodes are eliminated.

Example

$C_{1}=A B C D \quad S_{1}=B C D$
$\mathrm{C}_{2}=\mathrm{DEFI} \quad \mathrm{S}_{2}=\mathrm{DE}$
$\mathrm{C}_{3}=\mathrm{CGHJ} \quad \mathrm{S}_{3}=\mathrm{CG}$
$\mathrm{C}_{4}=\mathrm{BCDG} \quad \mathrm{S}_{4}=\mathrm{BCD}$
$\mathrm{C}_{5}=\mathrm{BCDE}$

Example

$\begin{array}{ll}\mathrm{C}_{1}=\mathrm{ABCD} & \mathrm{S}_{1}=\mathrm{BCD} \\ \mathrm{C}_{2}=\mathrm{DEFI} & \mathrm{S}_{2}=\mathrm{DE} \\ \mathrm{C}_{3}=\mathrm{CGHJ} & \mathrm{S}_{3}=\mathrm{CG} \\ \mathrm{C}_{4}=\mathrm{BCDG} & \mathrm{S}_{4}=\mathrm{BCD} \\ \mathrm{C}_{5}=\mathrm{BCDE} & \end{array}$

$$
\begin{aligned}
& \varphi_{1}=\phi_{\mathrm{A}} \\
& \varphi_{2}=\phi_{\mathrm{F}} \phi_{\mathrm{I}} \\
& \varphi_{3}=\phi_{\mathrm{H}} \phi_{\mathrm{J}} \\
& \varphi_{4}=\phi_{\mathrm{G}} \\
& \varphi_{5}=\phi_{\mathrm{B}} \phi_{\mathrm{C}} \phi_{\mathrm{D}} \phi_{\mathrm{E}}
\end{aligned}
$$

Inference in Junction Trees

Collect Evidence: propagate messages from the leaves to the root

$$
\psi_{k}=\left(\varphi_{k} \psi_{i} \psi_{j}\right)^{\downarrow S_{k}}
$$

Distribute Evidence: propagate messages from the root to the leaves

$$
\psi^{i}=\left(\varphi_{k} \psi^{k} \psi_{j}\right)^{\downarrow S_{i}}
$$

Notation: ($)^{\downarrow_{x}}$ marginalize with respect to x

$$
P\left(C_{k}\right)=\varphi_{k} \psi^{k} \psi_{i} \psi_{j}
$$

Example

Junction tree

C_{i}	S_{i}
$\mathrm{x}_{6} \mathrm{x}_{3}$	x_{3}
$\mathrm{x}_{4} \mathrm{x}_{2}$	x_{2}
$\mathrm{x}_{5} \mathrm{X}_{2} \mathrm{x}_{3}$	$\mathrm{x}_{2} \mathrm{x}_{3}$
$\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{x}_{3}$	

φ_{i}
φ_{i}
$\phi_{6}\left(\mathrm{x}_{6}, \mathrm{x}_{3}\right)$
$\phi_{4}\left(\mathrm{x}_{4}, \mathrm{x}_{2}\right)$
$\phi_{5}\left(\mathrm{x}_{5}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$
$\phi_{1}\left(\mathrm{x}_{1}\right) \phi_{2}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) \phi_{3}\left(\mathrm{x}_{3}, \mathrm{x}_{1}\right)$

Exemplo

Collecting evidence

$$
\begin{aligned}
& \psi_{2}\left(x_{2}\right)=\sum_{x_{4}} \phi_{4}\left(x_{4}, x_{2}\right) \\
& \psi_{3}\left(x_{2}, x_{3}\right)=\sum_{x_{5}} \phi_{5}\left(x_{5}, x_{2}, x_{3}\right) \psi_{2}\left(x_{2}\right) \\
& \psi_{1}\left(x_{3}\right)=\sum_{x_{6}} \phi_{6}\left(x_{6}, x_{3}\right)
\end{aligned}
$$

Distributing evidence

$$
\psi^{1}\left(x_{3}\right)=\sum_{x_{1}, x_{2}} \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}, x_{1}\right) \phi_{3}\left(x_{3}, x_{1}\right) \psi_{3}\left(x_{2}, x_{3}\right)
$$

$$
\psi^{3}\left(x_{2}, x_{3}\right)=\sum_{x_{1}} \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}, x_{1}\right) \phi_{3}\left(x_{3}, x_{1}\right) \psi_{1}\left(x_{3}\right)
$$

$$
\psi^{2}\left(x_{2}\right)=\sum_{x_{2}, x_{5}} \phi_{5}\left(x_{5}, x_{2}, x_{3}\right) \psi^{3}\left(x_{2}, x_{3}\right)
$$

$$
\begin{aligned}
& P\left(C_{1}\right)=P\left(x_{3}, x_{6}\right)=\phi_{6}\left(x_{6}, x_{3}\right) \psi^{1}\left(x_{3}\right) \\
& P\left(C_{3}\right)=P\left(x_{2}, x_{3}, x_{5}\right)=\phi_{5}\left(x_{5}, x_{2}, x_{3}\right) \psi^{3}\left(x_{2}, x_{3}\right) \psi_{2}\left(x_{4}\right)
\end{aligned}
$$

Software

Software for Bayesian Networks:

Bayes Net Toolbox (Murphy)
BAIES (Cowell, 1995)
Hugin (Andersen, 1989)
IDEAL (Srinvas, Breese, 1990)
PRESS (Gammerman, 1995)

Comment

"Belief networks are designed and trained to answer more than just the question of classifying future cases. They are able to give a much higher level of explanation, including exploring what were important input features in reaching the conclusion and whether the input data were in some sense in conflict. To do so they model the whole joint distribution. Although there will be an advantage in using qualitative knowledge (at least if it is a reasonable approximation to reality), the need to model the whole distribution makes more demands on limited data resources"
Ripley, 1996

Exercises

1. Describe a problem and define a Bayesian network to solve it.
2. Solve the Sherlock Holmes problem using Frey algorithm and junction trees.

Project

Design a system for medical diagnosis of two diseases A, B from two medical exams C, D or any subset of these.

Training data:

A	0	1	1	0	0	1	0	0	1	0	1	0	0	0	1	1	0	0	1
B	0	0	1	1	0	0	1	1	1	0	0	1	1	0	1	0	1	1	1
C	0	0	1	1	0	0	1	1	1	0	0	1	1	0	1	0	1	1	1
D	1	1	1	0	0	1	1	0	1	0	1	0	1	0	1	1	0	1	0

Characterize the output of the system for all input configurations. Characterize the performance of the system on the training set.

Note: the assessment of the system performance should be based on independent data.

Bibliografia

- Z. Ghahramani, An Introduction to Hidden Markov Models and Bayesian Networks, 2001.
-F. Jensen, Bayesian Networks and Decision Graphs, New York/Berlin, Springer, 2001.
-J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, $2^{\text {² }}$ ed. Revista, 1997.
-B. Frey, Graphical Models for Machine Learning and Digital Communication, MIT Press 1998.
-B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press, 1996.

[^0]: © Jorge Salvador Marques, 2002

[^1]: (the next slides are inspired in F. Jensen, Bayesian Networks and Decision Graphs, Springer, 2001)

