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•Optimal Classifiers
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Challenge

How to decide if a pattern belongs to class 1 or 2 ?
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Pattern Recognition

Main Problem: classify an observation (signal, image, etc) in one 

of c admissible classes.
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Classic Architecture
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2 Populations

It is not possible to classify without errors!

Problem: distinguish two populations of persons

weight
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2 Populations

Decision is simple in this case!

weight

height
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Decision Regions

weight

heigth

R1

R2



© Jorge Salvador Marques, 2000

Decision Regions

A classifier defines a partition of the feature space with c disjoint 

regions denoted by decision regions: R1 , …, Rc. 

The decision region Ri is the set of all the patterns classified in class i.
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Discriminant functions

f1

f2

fc

arg max
y x̂

)(maxargˆ yfx i
i



Functions  f1, …, fc, (fi:S R) are a set of discriminant functions 

for a classifier C if and only if
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Evaluation

A classifier can be evaluated using the confusion matrix P=(Pij):

i.e. the probability of classifying an observation in class j if it 

was generated by class i. 
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The most frequent error consists of classifying 

in class 3 patterns of class 1. 
Example:

}|ˆ{ ixjxPPij 

It is often difficult to compute the integral. The confusion matrix is often estimated applying the 

classifier to a set of data previously classified without errors (test set). The elements of the 

confusion matrix are approximated by the relative frequency of each type of error.
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Error Probability

The probability of classification error is given by

iii

c

i
e PPP 




1

1

where

Pii - diagonal element of the confusion matrix

Pi - a priori probability of class i
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Design of a Classifier

A classifier is designed using the joint distribution of the data and classes 

or using examples of correct classifications (training set).

The estimation of a classifier from known decisions is denoted by 

supervised training.
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Visual Method

weight

heigth

R1

R2

When the patterns belong to R2 the classifier can be defined in a 

visual way



© Jorge Salvador Marques, 2000

Method of the Nearest Signature

The method of the nearest signature consists of defining a prototype for 

each class (e.g., mean vector) and classifying the observations into the 

class of the nearest prototype.

The prototypes are often denoted as signatures. 

signatures
pattern to be classified
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Optimal Classifiers
(known distribution)
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Inference and Classification

yx y – feature

x - classe

Problem: estimate x, given y

x belongs to a finite set of classes: W={1, .., c}

inference problem

The decision is based on the a posteriori distribution.

 xxPxykpyxP       )()|()|(
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MAP Classifier

)()|(maxargˆ xPxypx
x



A MAP classifier is optimal in the sense that it has the smallest probability of 

classification error.

Classification law

The discriminant functions are

cxxPxypyfx ,...,1                       )()|()( 

cxxPxypygx ,...,1         )(log)|(log)( 
or
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Example

p(y|1) p(y|2)
p(y|1)*P(1)

p(y|2)*P(2)

R1 R2 R1
y y
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Example

3.0)3(,2.0)2(,5.0)1( :Prior

},,,{    }3,2,1{ :sets nobservatio and Class





PPP

dcbay

0.20.700.13

0.20.20.40.22

00.10.30.61

dcbaP(y|x

)

0.60.700.083

0.40.130.350.112

00.170.650.811

dcbaP(x|y

)

Decision regions: R1={a,b} R2= R3={c,d}  

a posteriori distribution
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Example (cont.)
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Example

Error percentage: 19%

Data:

P(1)=1/3  P(2)=2/3
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Bayes Classifier

}|)ˆ,({ yxxcE )ˆ,( xxc cost

Decision law:

)|(),()(         )(maxargˆ
1

yxPixcycycx
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

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The MAP classifier is a special case of the Bayes classifier when c(i,j)=1-dij i.e., when all the 

same cost is assigned to all errors. 

The Bayes classifier minimizes the decision risk:

)( yci cost of classifying y in class i
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Binary Classification

The Bayes classifier compares the likelihood ratio with a 

threshold

22221
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The decision costs and the prior only influence the threshold.
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Example

0,p(y/x) :model nobservatio      )( :Prior

    }3,2,1{ :nsobservatio and classes of Sets

x
x 



yeiP

Ry

y


Bayes Classifier:

The threshold t depends on the cost matrix and a priori probabilities.

The Bayes decision is equivalent to a comparison with a threshold.
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Gaussian Case
(Ri=s2I)

Discriminant function

iii Pyyyf log||||)( 2


(classes equiprováveis: classificador de assinatura mais próxima)

i class of signature the is iy

Linear discriminant function 

iiiii Pyyyyyg log'')( 
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Gaussian Case

(Ri=R)



© Jorge Salvador Marques, 2000

Gaussian Case

(different covariances)
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Supervised Learning
(unknown distributions)



© Jorge Salvador Marques, 2000

Supervised Learning

•estimation of the probabilistic model

•estimation of the discriminant functions
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Training Set

The classifier is designed using a set of known feature vectors and 

decisions, denoted as training set. 


c

i
ii YYY

1

class th i of patterns  training        




The training set can be split into c subsets (one per class) containing the 

patterns associated with each class.
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Estimation of the Probabilistic Model

MAP Classifier:

)()/( iPiypfi 
relative frequency

probability density function

Both terms can be estimated using the training set Y.

Note: p(y/i) is estimated using the data associated to the i-th class
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Estimation of P(y/Y)

 dYPyPYyP )/()/()/( 

Hypothesis: we know a parametric model, p(y/), with unknown .

How to estimate the density of y from Y ?

The Bayesian solution is

This integral can not be analytically computed in most cases.

An alternative is the use of numerical integration methods e.g., Monte 

Carlo. In practice a suboptimal approach is adopted :

  )ˆ/()/(  fore     there)ˆ()/( :Hypothesis  yPYyPYP 

estimatean  is ̂
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Plug in Classifier

In practice, p(y/Y) is computed in two steps: 

1. computate an estimate

2. replace

̂

)ˆ/()/( ypYyp 

Estimation  

of 

Y

Parametric 

Model

y )ˆ/( yp

̂

This procedure is sub-optimal
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Estimation Methods

The methods adopted to estimate the unknown parameters are standard 

estimation methods e.g.,

• maximum likelihood

• minimum variance (minimum mean squared error)

• maximum a posteriori

• EM
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Example

Confusion matrix: 24 9

12 55

100 test patterns

Error percentage: 21%

100 training patterns



© Jorge Salvador Marques, 2000

Method of Parzen

This is a non parametric method. The density function is approximated by a 

sum of non-negative functions with unit integral, denoted as windows, 

centered at the training paterns. The intuitive idea is to distribute the 

“mass” of each training pattern by the neighboring points.

by window denoted is   w          )~()(ˆ
~

yywyp
Yy




Strong points: it is a general method since it does not assume any  

knowledge about the data distribution and easy to program.

Weak points: needs many training patterns (the number of patterns 

exponentially increases with the dimension of the feature space) and it 

is slow.
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Adaptive Windows

The window w may be point dependent (adaptive)

 )~()(ˆ
~

yywyp y
Yy




For example: narrow windows can be used in regions with a high density of 

points and large windows in regions with few data points.

A special case consists of choosing a binary window of finite support chosen 

in such a way that only k training patterns are inside the window suport: 



 


               c.c.     0

||y'-y||  se     1
)'(


ywy

adaptative 
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Nearest Neighbor Classifier 

Let Y be a training set with classified patterns. The nearest neighbor 

classifier classifies each observation y in two steps:

 y~ of class in they classify 

y nearest to Yy~pattern    thedetermine 

Example

The decision regions are Voronoi 

cells.
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k-Nearest Neighbor Classifier 

The nearest neighbor classifier determines the k training patterns closest 

to the pattern y to be classified; y is classified in the most voted class.

Example

k=3 neighbors
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Asymptotic Properties

Is the nearest neighbor classifier a good classifier ?

Proof: see Duda e Hart, 1973 ou Ripley, 1996.

Proposition (Cover, Hart, 1967)

Let Pe* be the probability of error of the MAP classifier in a classification 

problem with c classes. Then the probability of error of the nearest neighbor 

classifier converges in L1 to  a value

**

1

*
2)2( eek

k
ee PPPP 



when the number of training patterns tends to infinity.
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Complexity

The computation of the nearest neighbors is simple but slow. There are fast 

methods to perform this operation (Ripley, 1996) as well as pre-processing 

methods of the training set:

• outlier elimination

• data reduction (elimination of data points which do not influence the 

decision boundary)

The nearest neighbor classifier is one of the simplest classifiers. It is 

therefore is one of the first to be used when we have a data classification 

problem. However it is not optimal and has computational drawbacks.
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Multiedit Algorithm
(Denvijver, Kittler, 1982)

The objective is the elimination of spurious points in the training set.

1. Define a current set with all traning patterns.

2. Separate the current set into V>2 disjoint subsets. Use pairs of subsets as 

traing and test sets.

3. For each pair classify the test patterns using the k-nn with the training 

patterns.

4. Eliminate from the current set all the test patterns which were incorrectly 

classified.

5. If some patterns were eliminated return to step 2. 
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Condensation

The condensation algorithms try to reduce the computational complexity 

of the nearest neighbor classifier reducing the number of training patterns 

without degradation of performance. Example:

Hart algorithm (1968)

1. Initialize the training set with the first pattern a an auxiliary set 

(garbage) with the rest.

2. Classify each pattern of the auxiliary set with the nearest neighbor 

classifier. If the pattern was misclassified it is moved to the traning 

set.

3. Return to 2 until there is no more changes or the auxiliary set is 

empty. 
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Other issues

Several issues were not addressed:

• feature extraction and selection

• assessment of the classifier performance
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Métodos de agrupamento

Objectivo: procurar grupos de pixels com características semelhantes
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Métodos hierárquicos

Tem associada uma noção de escala.

métodos partitivos – dividem recursivamente o domínio da imagem em 

regiões cada vez mais pequenas.

métodos agomerativos – associam regiões elementares para formarem 

regiões maiores com base num critério de 

homogeneidade.
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Métodos aglomerativos

inicialização: definir uma colecção de regiões elementares (p.ex., pixels)

ciclo: até se obter um única região

- determinar o par de regiões mais próximas e fundi-los

- registar num dendograma as regiões associadas e a distância entre elas

segmentação: escolher uma distância máxima de fusão e obter os grupos de 

dados por análise do dendograma

1
2

3
4

5

6

7

8 9

1    2    3    4    5   6    7    8    9   

dendograma
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Distância entre grupos

mind
maxd mind

maxd

||||max

||||min

,
max

,
min

yxd

yxd

YyXx

YyXx








distância do mínimo

distância do máximo

método de ligação simples

método de ligação completa
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Exemplo
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Método de k-Médias

1c

3c

2c

Separar o conjunto de dados X em k subconjuntos disjuntos Xk

Aproximar os dados em cada subconjunto Xk por um centróide ck

Critério
2

|||| i
Xxi

cxE

i




problema de optimização
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Método de k-Médias (2)

Inicialização: escolher valores para os k centróides (p.ex., k observações)

Ciclo

classificação: classificar os padrões na classe com centróides mais próximos

actualização: recalcular os centróides

ikcxcxXx kii     ||||||||     sse    


 k

k Xx
Xk xc

#
1

(se a distância for euclidiana)
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Exemplo
dados resultados do k-médias

Nota: mostra-se a classe correcta (cor) que não é usada pelo algoritmo de k-medias
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Aplicação do K-médias 

Segmentação com o método k-médias no espaço RGB, 9 classes
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Exercises

Let y be an observation produced by a binomial distribution with parameter i which depends on the class 

i. Determine the decision law and decision regions of the MAP classifier, knowing that they occur with 

probabilities P(1), P(2).

Determine the decision regions of a MAP classifier knowing that the observation y is generated by each 

class according to normal distributions N(0,1), N(0,4) . The a priori distribution of the classes is given by 

P(1), P(2).

Let y1, ..., yn be independent realizations of a random variable characterized by the following conditional 

distributions:



 

c.c.          

     y
y-

e) p(y/xNxyp
0

0
2

22      )1,1()1/(

Determine the classification law and the decision regions of the MAP classifier.
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Exercises

Determine the error probability of a MAP classifier knowing that y is generated by one of two classes with 

distribution

The classes are equiprobable.

1,2i              
c.c.               0

0y     
y-

e)p(y/
i

i 


 
i

Determine a Bayes classifier for vector random variables with normal distributionknowing that the cost 

matrix is

 
01
50

C

And we have a training set with realizations of y produced by both classes: 

   )2,2(),2,3(),1,1(),3,2(2     )4,3(),3,4(),6,2(),5,3(),3,5(),4,2(1  XX
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