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How to decide if a pattern belongs to class 1 or 2 ?
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Pattern Recognition

Main Problem: classify an observation (signal, image, etc) in one
of ¢ admissible classes.

Decision
System

A
v

observed signal
X estimated class
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Classic Architecture

Feature
extraction

Z observed signal
y feature vector (pattern)

X estimated class
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2 Populations

Problem: distinguish two populations of persons
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It is not possible to classify without errors!
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2 Populations
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Decision is simple in this case!
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Decision Regions
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© Jorge Salvador Marques, 2000




Decision Regions

A

Rs

v

Ry

A classifier defines a partition of the feature space with c disjoint
regions denoted by decision regions: R, ..., R..

The decision region R; is the set of all the patterns classified in class i.
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Discriminant functions

Functions f,, ..., f,, (f:S —R) are a set of discriminant functions
for a classifier C if and only if

X = argmax fj (y)
|

1 f
y f, X

— arg max —
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Evaluation

A classifier can be evaluated using the confusion matrix P=(Py):

Pj=P{X=jlx=i} Pij=RI p(y |i)dy
j

l.e. the probability of classifying an observation in class j if it
was generated by class I.

— errors
(0.85 0.05 0.1

Example: The most frequent error consists of classifying
P=( 0 0.98 0.02| inclass 3 patterns of class 1.

erros — 10.07 0.03 0.9 |

It is often difficult to compute the integral. The confusion matrix is often estimated applying the
classifier to a set of data previously classified without errors (test set). The elements of the
confusion matrix are approximated by the relative frequency of each type of error.
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Error Probability

The probability of classification error is given by

where

P; - diagonal element of the confusion matrix
P, - a priori probability of class i

Example  rggs 005 0.1 i
P=| 0 098 002| r5=|7 P, = 0.054
007 003 09 1
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Design of a Classifier

A classifier is designed using the joint distribution of the data and classes
or using examples of correct classifications (training set).

The estimation of a classifier from known decisions is denoted by
supervised training.

© Jorge Salvador Marques, 2000



Visual Method

When the patterns belong to R? the classifier can be defined in a
visual way
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Method of the Nearest Signature

The method of the nearest signature consists of defining a prototype for
each class (e.g., mean vector) and classifying the observations into the
class of the nearest prototype.

e Signatures
e pattern to be classified

The prototypes are often denoted as signatures.
© Jorge Salvador Marques, 2000



Optimal Classifiers
(known distribution)
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Inference and Classification

@ :® y — feature

X - classe

Problem: estimate x, giveny —— inference problem
X belongs to a finite set of classes: W={1, .., ¢}

The decision is based on the a posteriori distribution.

P(x]y)=kp(y | X)P(x) XxeQ
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MAP Classifier

Classification law

X =argmax p(y | Xx)P(x)
X

The discriminant functions are

fy (y) = p(y [ x)P(x) X=1...,C
or

I
=
Ie)

gx(y)=logp(y | x) +logP(x) X

A MAP classifier is optimal in the sense that it has the smallest probability of
classification error.
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pyll) -~ p(y|2)

Example

p(yl[1)*P(1)

y|2)*P(2)
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Example

Class and observationsets : Q ={123} vy e{a,b,c,d}
Prior : P(1) =0.5,P(2)=0.2,P(3)=0.3

a posteriori distribution

P(y|x| a b C d P(xly| a b C

1 06 03/01| 0 1 0.81/0.650.17| 0
2 102040202 2 10.11/0.35/0.13| 0.4
3 01| 0 |07]02 3 008 0 07|06

Decision regions: R,={a,b} R,=¢ R,={c,d}
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Example (cont.)

Data model p(y|x) P(y|x)*p(x)

m IH s i

o
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Example

Data:

p(y [1) = N(O,Rj)

P(1)=1/3 P(2)=2/3 5 9 10 -6
R1= Ro =
2 1 -6 10
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Bayes Classifier

Decision law:

C
>?=argm;':1><ci (y) Ci(y)= 2 c(x,)P(x]y)
x=1

Ci(y) costof classifyingy in class |

The Bayes classifier minimizes the decision risk:

R=E{c(x,X)|y} c(x,X) cost

The MAP classifier is a special case of the Bayes classifier when c(i,j)=1-d; i.e., when all the
same cost is assigned to all errors.

© Jorge Salvador Marques, 2000



Binary Classification

The Bayes classifier compares the likelihood ratio with a
threshold

2
ply/x=2) » i (@2-c11)R
p(y/x=1) f (C21—C22)P,

The decision costs and the prior only influence the threshold.
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Example

Sets of classes and observations : Q ={123} yeR

Prior :P(i)  observation model : p(y/X) = aye®Y,y >0

Bayes Classifier:

2
Ci1o —Cq11)P
vt t:%mgal(lz wPL oy
i a1-a2  “ap(Co1—C22)Po

The threshold t depends on the cost matrix and a priori probabilities.

The Bayes decision is equivalent to a comparison with a threshold.

v

0 R, R,
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Gaussian Case
(R=s4l)

Discriminant function

. _ =112 .
fi(y)=lly -yill~ +logh Linear discriminant function

y; Is the signature of class i gi(Y)=VYi'y +Vi'yi +logP.

(classes equiprovaveis: classificador de assinatura mais proxima)
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Gaussian Case
(R=R)




Gaussian Case

(different covariances)
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Supervised Learning
(unknown distributions)
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Supervised Learning

«estimation of the probabilistic model

eestimation of the discriminant functions
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Training Set

The classifier is designed using a set of known feature vectors and
decisions, denoted as training set.

The training set can be split into ¢ subsets (one per class) containing the
patterns associated with each class.

C
Y = UY; Y; training patterns of i th class
=1
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Estimation of the Probabilistic Model

MAP Classifier:

fi = p(y/)P() .
— relative frequency

> probability density function

Both terms can be estimated using the training set Y.

Note: p(y/i) is estimated using the data associated to the i-th class
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Estimation of P(y/Y)

Hypothesis: we know a parametric model, p(y/0), with unknown 6.

How to estimate the density of y fromY ?

The Bayesian solution is
P(y/Y)=] P(y/0)P(6/Y)db

This integral can not be analytically computed in most cases.

An alternative is the use of numerical integration methods e.g., Monte
Carlo. In practice a suboptimal approach is adopted :

Hypothesis : P(@/Y)=5(6—-6) therefore P(y/Y)=P(y/6)

0 is an estimate
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Plug in Classifier

In practice, p(y/Y) is computed in two steps:
1. computate an estimate ¢

2. replace p(y/Y)=p(y/H)

This procedure is sub-optimal

Y )
____,| Estimation
of 0
i /0
y Parametric PLy . )
Model
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Estimation Methods

The methods adopted to estimate the unknown parameters are standard
estimation methods e.g.,

« maximum likelihood
* minimum variance (minimum mean squared error)
* maximum a posteriori

- EM
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100 training patterns

Confusion matrix: 24
12
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100 test patterns

Error percentage: 21%



Method of Parzen

This is a non parametric method. The density function is approximated by a
sum of non-negative functions with unit integral, denoted as windows,
centered at the training paterns. The intuitive idea is to distribute the
“mass” of each training pattern by the neighboring points.

p(y)= > w(y-Yy) w is denoted by window
yeY

Strong points: it is a general method since it does not assume any
knowledge about the data distribution and easy to program.

Weak points: needs many training patterns (the number of patterns
exponentially increases with the dimension of the feature space) and it
IS slow.
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Adaptive Windows

The window w may be point dependent (adaptive)

p(Y) = T wy(y—7)
yeY

For example: narrow windows can be used in regions with a high density of
points and large windows in regions with few data points.

A special case consists of choosing a binary window of finite support chosen
In such a way that only k training patterns are inside the window suport:

n_J1 se|y-Y<o adaptative &
Wv(y)‘{o C.C. P
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Nearest Neighbor Classifier

Let Y be a training set with classified patterns. The nearest neighbor
classifier classifies each observation y in two steps:

determine the pattern y € Y nearesttoy
classify y in the class of y

o o
o o) .
O o O
fo) +
Example o o B
The decision regions are Voronoi ° .
O
cells. ol .
+ Ols +
(o) +
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k-Nearest Neighbor Classifier

The nearest neighbor classifier determines the k training patterns closest
to the pattern y to be classified; y is classified in the most voted class.

Example ° o o
O O + + +
. o
k=3 neighbors o ©
o © *
o + +
(o] * . +
o * ©
O . . v o (@)
+ o + 3 ©
O +
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Asymptotic Properties

Is the nearest neighbor classifier a good classifier ?

Proposition (Cover, Hart, 1967)

Let Pe* be the probability of error of the MAP classifier in a classification
problem with c classes. Then the probability of error of the nearest neighbor
classifier converges in L, to a value

Pe <P (2-%P.) <2P;

when the number of training patterns tends to infinity.

Proof: see Duda e Hart, 1973 ou Ripley, 1996.
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Complexity

The nearest neighbor classifier is one of the simplest classifiers. It is
therefore is one of the first to be used when we have a data classification
problem. However it is not optimal and has computational drawbacks.

The computation of the nearest neighbors is simple but slow. There are fast
methods to perform this operation (Ripley, 1996) as well as pre-processing
methods of the training set:

e outlier elimination

» data reduction (elimination of data points which do not influence the
decision boundary)
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Multiedit Algorithm

(Denvijver, Kittler, 1982)

The objective is the elimination of spurious points in the training set.

1. Define a current set with all traning patterns.

2. Separate the current set into VV>2 disjoint subsets. Use pairs of subsets as
traing and test sets.

3. For each pair classify the test patterns using the k-nn with the training
patterns.

4. Eliminate from the current set all the test patterns which were incorrectly

classified.
5. If some patterns were eliminated return to step 2.
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Condensation

The condensation algorithms try to reduce the computational complexity
of the nearest neighbor classifier reducing the number of training patterns
without degradation of performance. Example:

Hart algorithm (1968)

1. Initialize the training set with the first pattern a an auxiliary set
(garbage) with the rest.

2. Classify each pattern of the auxiliary set with the nearest neighbor
classifier. If the pattern was misclassified it is moved to the traning
set.

3. Return to 2 until there is no more changes or the auxiliary set is
empty.
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Other iIssues

Several 1ssues were not addressed:
« feature extraction and selection

« assessment of the classifier performance
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Metodos de agrupamento

Objectivo: procurar grupos de pixels com caracteristicas semelhantes
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Metodos hierarquicos

Tem associada uma nocao de escala.

métodos partitivos — dividem recursivamente o dominio da imagem em
regides cada vez mais pequenas.

métodos agomerativos — associam regides elementares para formarem
regides maiores com base num critério de
homogeneidade.
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Metodos aglomerativos

A

: dendograma

5 o gl

1 2 3 4 56 7 8 9

inicializacao: definir uma coleccao de regides elementares (p.ex., pixels)

ciclo: até se obter um Unica regido
- determinar o par de regides mais proximas e fundi-los
- registar num dendograma as regides associadas e a distancia entre elas

segmentacao: escolher uma distancia maxima de fuséo e obter os grupos de
dados por anélise do dendograma
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Distancia entre grupos

distancia do minimo  dmin = min || x—y| método de ligacdo simples
xeX,yeY

distancia do maximo dmpax = r)rgaX y I x=yll método de ligacdo completa
xeX,ye
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Exemplo

“%(5
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Méetodo de k-Médias

Separar 0 conjunto de dados X em k subconjuntos disjuntos X,
Aproximar os dados em cada subconjunto X, por um centroide c,
Critério
2 .. ~
E=% ZX 1 X—Gj || « problema de optimizacéo
I XeXj
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Metodo de k-Médias (2)

Inicializacdo: escolher valores para os k centroides (p.ex., k observacoes)
Ciclo
classificacéo: classificar os padrdes na classe com centroides mais proximos
XeXj sse |[|[x—¢jll<l|x—ck| Vk=i
actualizacdo: recalcular os centroides

_ 1 A .
Ck = X, 2 X (se a distancia for euclidiana)

Xe Xk
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Exemplo

dados resultados do k-médias
vt b
) . h - ‘ . : I . ' . :l. < . .. a

Nota: mostra-se a classe correcta (cor) que ndo é usada pelo algoritmo de k-medias
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Aplicacao do K-médias

Segmentacdo com o método k-médias no espaco RGB, 9 classes
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Exercises

Let y be an observation produced by a binomial distribution with parameter o; which depends on the class
I. Determine the decision law and decision regions of the MAP classifier, knowing that they occur with
probabilities P(1), P(2).

Determine the decision regions of a MAP classifier knowing that the observation y is generated by each
class according to normal distributions N(0,1), N(0,4) . The a priori distribution of the classes is given by
P(1), P(2).

Lety,, ..., ¥, be independent realizations of a random variable characterized by the following conditional
distributions:

-2
p(y/x=1)=N(11) p(y/x:2):{28 Y y>0
c.C.

Determine the classification law and the decision regions of the MAP classifier.
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Exercises

Determine the error probability of a MAP classifier knowing that y is generated by one of two classes with
distribution

-
p(y/i) = {O‘ie Y y>0 i=1,2
0 C.C.
The classes are equiprobable.

Determine a Bayes classifier for vector random variables with normal distributionknowing that the cost
matrix is 05
C= |_1 oJ

And we have a training set with realizations of y produced by both classes:

X1 - {(_214)1(_513)1(_315)1(_216)1(_413)’(_3’4)} X2 = {(2!3)’(1!1)1(3’2)!(2!2)}
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