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Question

Let x be a random variable with values in IR? and let y be a linear
combination of the x components, corrupted by additive noise:

Y = X +X,+W

Is it possible to estimate x fromy ?
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Data Fusion

new observation

uncertainty region

Where is the boat ?
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Bayes (1702-1761)
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Bayesian Inference

new observation

prior

* inicial location: p(x) prior
* sensor model: p(y|x)

« final location:  p(x]y) a posteriori density function

The final result is a distribution!
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A Posteriori Distribution

(known model)

How to compute the a posteriori distribution ?

likelihood function
Bayes law
ﬁ prior

p(x|y)= p(y | X)p(x)
p(y)

N

constant
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Conjugate Prior

The prior represents the knowledge available about the unknown
variables before any observation is made.

It should allow an easy computation of the a posteriori
distribution.

A conjugate prior is a prior such that the a posteriori distribution
has the same analytic expression as the prior, with different
values of the parameters.
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Exponencial Family

It is easy to obtain conjugate priors if the sensor model p(y|x) belongs to the
exponencial family.

Definition: p(y|x) belongs to the exponential family if and only if

p(y | X) =h(y)g(x)expit(y)e(x)] e [p(y[Xdy =1

conjugate prior: p(x) = g(x)d exp{bc(x)}

a posteriori density: p(x|y)= g(x)a exp{Ec(x)}, d=d+n, b=b+ Et(yi)
i=1

Several well known distributions e.g., normal (with known covariance), gamma,
binomial, Poisson, belong to the exponential family.

© Jorge Salvador Marques, 2002



Proof

Lety =vy,, ..., ¥, be a sequence of independent observations.

likelihood function
p(y 1) =g()" T h(yi)expit(y;)c(x)}
|

a posteriori density

p(x1y) @ p(y [X)p(x)
a g™ hiyi)exp ft(yi)e(x)}x g(x)° expibe(x)}
I

a g(x)"* exp{(b + 3 t(y; )]C(X)}
i

o g(x)a exp {Ec(x)}
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Binomial Distribution

The binomial distribution B(a) belongs to the exponential family.

Conjugate prior;  P(a)=ca®@-a)™P Beta distribution

A posteriori distribution: the same with b=b+k, d=d+1

Example: a=.2

n=0 n=1 n=4 n=100
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Example

prior posterior

hypothesis
\

observation

This example considers p(x)=N(0,1), p(y/x)=N(x,.04l)
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Recursive Computation

Suppose we obtain n independent observations y=(yy, ..., ¥,)-

Then
P(X|Yy) =cp(ynY2 | X)p(x) =cp(y2 | X)p(y1 | X)p(X)

This suggests the following recursion:
P(X|y1k) @ Pk [X)p(X|Y1k-1)

where y,.,.=(Y4,..., Y}

This procedure is very useful when conjugate priors are used.
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A Posteriori Distribution

(unknown model)

Let us assume that x depends on an unknown variable 6.

In this case

p(x|y)=[p(x|O)p(@|y)do
where

Py [9)p(0)

g1v) =
pP@1y) o)

When the model is unknown the Bayesian approach considers all
possible models weighted by their confidence degrees p(8/y),
instead of using a single (best) model.
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MAP and MMSE Estimates

How to obtain an estimate of x from the a posteriori distribution ?
MAP estimate (maximum a posteriori)

X = argmax p(x]y)=arg max p(y [ x)p(x)

MMSE estimate (minimum mean squared error)

% =E{x|y}=]xp(x|y)dx
p(xly) 1

VA

P X
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MAP vs ML

ML estimator: X = argmax p(y | x)

MAP estimator: X = arg mgx p(y | X)p(X)

\ prior

The prior has an important role when there is few data.

(simple rule:the should be 10 observations for each parameter to be estimated.)
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MAP
estimate -

© Jorge Salvador Marques, 2002

15

Parabolic Fit

205

0.5

15



Gaussian Variables

% «(y)
Hypothesis: x,y have normal distribution.

Question: what is the distribution of x giveny ?

Answer:  p(x|y)=N(xP) R=X+Pyy yy(y y)

P = Pex — Py Poy Pyx

Notation: a = E{a}, Py, = E{(a—a)(b-b)'}
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Proof

Lemma: A B _1_ e F E =(A-BD"C)"
| C D G H F=-EBD™

p(x/y)=N(X,P) . The argument of the exponential is

x - X [ Pu Pyx ry-x N B B B
q:{y-y} ny 5 {y_y}:(x-x) E(x-X)+2(X-X)F(y-y)+cC

yy
=X'EX-X)-2(X-X)(EX-F(y-y))+c'
Comparing with the exponent (%, P) : XPIx—2x' PR+ 8P 7%

we conclude p?t= E, plg= EX-F(y-y)

Therefore, P =(Py —Pyy Py_ylpyx )t R = X-Pyy Py'i(y-v)
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Example

Let x~N(0O,R) be a random variable with values in R? and y a linear
combination of x components, corrupted by white noise:

y =X t+XxX,+w
Is it possible to estimate x fomy ?

. . . .8
This example was obtained with x~N(0,P), w~N(0,.1), y=2 P = \.
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Linear Model

Let us consider a linear model with additive Gaussian noise:
y=Cx+v Xx~N(X,P), v~N(0,Q)

What is the distribution of x, after observingy ?

Answer: p(x|y) =N(x,P)
R=x+K(y-Cx) K=PC'S™

P=(I-KC)P S =CPC4R

This result suggests an incremental update of the parameters when y is a
sequence of independent observations.
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Bayesian Estimation

Principles:

* The unknown parameters are random variables with known
distribution.

» The observations allow to reduce uncertainty of the parameter

estimates and to update their distribution. The updated
distribution is denoted as a posteriori distribution.

» The update is done by the Bayes law.

Notes:
» Bayesian methods provide objective criteria for the design of estimators.

* They have better performance that classic methods when there is few

data points.
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Difficulties

Inference is more difficult in the following cases:

* invalid data (outliers);
* iIncomplete data (hidden variables);
* need of model validation/selection;

» multiple models
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Model Selection

p=1 p=2 p=3
P=5 p=6 p=7

What is the best model ?
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Model Selection

Let us consider all the available models M, ..., M, to represent
a sequence of observations y.

What is the best ?

There are several criteria: MV, MAP, MDL, AIC, etc
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Occam Razor

In XIV century Occam the following principle:

Choose the simplest model which describes the data with the
desired accuracy.

© Jorge Salvador Marques, 2002



Exercises

1. Let X, ..., X,be a sequence of independent and identically
distributed observations. Knowing that

ax, Ca

p(Xi | ) =ce p(a) =ce” a,X; >0

compute the MAP estimate of a.

2. Consider a signal y, generated by the model y, = ay,; +b u, + w,
Determine a Bayesian estimate of a,b coefficients assuming that the
iInputs and outputs y, ...y, , U; ... U, are available and the noise
sequence w; ... W, consists of uncorrelated variables w;, ~N(0,6?).

3. Show that a density p(x)=Cexp[-0.5 (X’Ax+b’x)] is normal N(u,P)
with P=A1 e u=-0.5 A1 b.

4. Show that the product of two normal densities N(w;,P;), i=1,2, is a
normal density (apart from a scale factor).
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Work

Consider data generated by two probabilistic models

a) X ~ N(u,02) with known o? and p ~ N(u,, 6,°)

oX —ap

b) p(x/a)=ce™ x>0, p(a)=age a >0,

Given an observation x, determine a criteria for the
selection of the model.

Characterize the performance of the previous method computing
the error probability experimentally.
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