Bayesian Inference

Summary

- Motivation
- A Posteriori Distribution
- Bayesian Estimation Methods
- Model Selection

Question

Let x be a random variable with values in $I R^{2}$ and let y be a linear combination of the x components, corrupted by additive noise:

$$
y=x_{1}+x_{2}+w
$$

Is it possible to estimate x from y ?

Data Fusion

Where is the boat?

Bayes (1702-1761)

Bayesian Inference

- inicial location: $p(x)$ prior
- sensor model: $\quad \mathrm{p}(\mathrm{y} \mid \mathrm{x})$
- final location: $\quad p(x \mid y)$ a posteriori density function

The final result is a distribution!

A Posteriori Distribution (known model)

How to compute the a posteriori distribution?

Conjugate Prior

The prior represents the knowledge available about the unknown variables before any observation is made.

It should allow an easy computation of the a posteriori distribution.

A conjugate prior is a prior such that the a posteriori distribution has the same analytic expression as the prior, with different values of the parameters.

Exponencial Family

It is easy to obtain conjugate priors if the sensor model $p(y \mid x)$ belongs to the exponencial family.

Definition: $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$ belongs to the exponential family if and only if

$$
p(y \mid x)=h(y) g(x) \exp \{t(y) c(x)\} \quad \text { e } \int p(y \mid x) d y=1
$$

conjugate prior:

$$
\begin{aligned}
& p(x)=g(x)^{d} \exp \{b c(x)\} \\
& \quad p(x \mid y)=g(x)^{\tilde{d}} \exp \{\tilde{b} c(x)\}, \quad \tilde{d}=d+n, \tilde{b}=b+\sum_{i=1}^{n} t\left(y_{i}\right)
\end{aligned}
$$

Several well known distributions e.g., normal (with known covariance), gamma, binomial, Poisson, belong to the exponential family.

Proof

Let $\mathrm{y}=\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}$ be a sequence of independent observations.
likelihood function

$$
p(y \mid x)=g(x)^{n} \prod_{i} h\left(y_{i}\right) \exp \left\{t\left(y_{i}\right) c(x)\right\}
$$

a posteriori density

$$
\begin{aligned}
p(x \mid y) & \alpha p(y \mid x) p(x) \\
& \alpha g(x)^{n} \prod_{i} h\left(y_{i}\right) \exp \left\{t\left(y_{i}\right) c(x)\right\} \times g(x)^{d} \exp \{b c(x)\} \\
& \alpha g(x)^{n+d} \exp \left\{\left(b+\sum_{i} t\left(y_{i}\right)\right) c(x)\right\} \\
& \alpha g(x)^{\tilde{d}} \exp \{\tilde{b} c(x)\}
\end{aligned}
$$

Binomial Distribution

The binomial distribution $B(\alpha)$ belongs to the exponential family.

Conjugate prior: $\quad P(\alpha)=c \alpha^{b}(1-\alpha)^{m d-b} \quad$ Beta distribution
A posteriori distribution: the same with $\tilde{b}=b+k, \tilde{d}=d+1$

Example: $\alpha=.2$

Example

This example considers $p(x)=N(0, I), p(y / x)=N(x, .04 I)$

Recursive Computation

Suppose we obtain n independent observations $\mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$.
Then

$$
p(x \mid y)=c p\left(y_{1}, y_{2} \mid x\right) p(x)=c p\left(y_{2} \mid x\right) p\left(y_{1} \mid x\right) p(x)
$$

This suggests the following recursion:

$$
p\left(x \mid y_{1: k}\right) \quad \alpha p\left(y_{k} \mid x\right) p\left(x \mid y_{1: k-1}\right)
$$

where $y_{1: k}=\left(y_{1}, \ldots, y_{k}\right)$

This procedure is very useful when conjugate priors are used.

A Posteriori Distribution (unknown model)

Let us assume that x depends on an unnown variable θ.

In this case

$$
p(x \mid y)=\int p(x \mid \theta) p(\theta \mid y) d \theta
$$

where

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{p(y)}
$$

When the model is unknown the Bayesian approach considers all possible models weighted by their confidence degrees $p(\theta / y)$, instead of using a single (best) model.

MAP and MMSE Estimates

How to obtain an estimate of x from the a posteriori distribution ?
MAP estimate (maximum a posteriori)

$$
\hat{x}=\underset{x}{\operatorname{argmax}} p(x \mid y)=\underset{x}{\operatorname{argmax}} p(y \mid x) p(x)
$$

MMSE estimate (minimum mean squared error)

$$
\hat{x}=E\{x \mid y\}=\int x p(x \mid y) d x
$$

$$
\hat{x}_{M A P} \quad \hat{x}_{E Q M}
$$

MAP vs ML

ML estimator:

MAP estimator:

$$
\hat{x}=\underset{x}{\operatorname{argmax}} p(y \mid x)
$$

$\hat{x}=\underset{x}{\operatorname{argmax}} p(y \mid x) p(x)$

The prior has an important role when there is few data.
(simple rule:the should be 10 observations for each parameter to be estimated.)

Parábolic Fit

MAP estimate

Gaussian Variables

Hypothesis: x, y have normal distribution.
Question: what is the distribution of x given y ?

Answer: $\quad p(x \mid y)=N(\hat{x}, P)$

$$
\begin{aligned}
& \hat{x}=\bar{x}+P_{x y} P_{y y}^{-1}(y-\bar{y}) \\
& P=P_{x x}-P_{x y} P_{y y}^{-1} P_{y x}
\end{aligned}
$$

Notation: $\bar{a}=E\{a\}, P_{a b}=E\left\{(a-\bar{a})(b-\bar{b})^{\prime}\right\}$

Lemma:

Proof

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right] \quad \begin{aligned}
& E=\left(A-B D^{-1} C\right)^{-1} \\
& F=-E B D^{-1}
\end{aligned}
$$

$p(x / y)=N(\hat{x}, P)$. The argument of the exponential is

$$
\begin{aligned}
q & =\left[\begin{array}{l}
\mathrm{x}-\overline{\mathrm{x}} \\
\mathrm{y}-\overline{\mathrm{y}}
\end{array}\right]^{\prime}\left[\begin{array}{ll}
P_{x x} & P_{y x} \\
P_{x y} & P_{y y}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathrm{x}-\overline{\mathrm{x}} \\
\mathrm{y}-\overline{\mathrm{y}}
\end{array}\right]=(\mathrm{x}-\overline{\mathrm{x}})^{\prime} \mathrm{E}(\mathrm{x}-\overline{\mathrm{x}})+2(\mathrm{x}-\overline{\mathrm{x}}) \mathrm{F}(\mathrm{y}-\overline{\mathrm{y}})+\mathrm{c} \\
& \left.=\mathrm{x}^{\prime} \mathrm{Ex}-\overline{\mathrm{x}}\right)-2(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{E} \overline{\mathrm{x}}-\mathrm{F}(\mathrm{y}-\overline{\mathrm{y}}))+\mathrm{c}^{\prime}
\end{aligned}
$$

Comparing with the exponent of $(\hat{x}, P): x^{\prime} P^{-1} x-2 x^{\prime} P^{-1} \hat{x}+\hat{x} P^{-1} \hat{x}$ we conclude $P^{-1}=E, P^{-1} \hat{x}=E \bar{x}-F(y-\bar{y})$

Therefore, $\quad P=\left(P_{x x}-P_{x y} P_{y y}^{-1} P_{y x}\right)^{-1}, \hat{x}=\bar{x}-P_{x y} P_{y y}^{-1}(y-\bar{y})$

Example

Let $x \sim N(0, R)$ be a random variable with values in R^{2} and y a linear combination of x components, corrupted by white noise:

$$
y=x_{1}+x_{2}+w
$$

Is it possible to estimate x fom y ?

$$
\text { This example was obtained with } \mathrm{x} \sim \mathrm{~N}(0, \mathrm{P}), \mathrm{w} \sim \mathrm{~N}(0, .1), \mathrm{y}=2 \quad P=\left[\begin{array}{cc}
.8 & .75 \\
75 & .8
\end{array}\right]
$$

Linear Model

Let us consider a linear model with additive Gaussian noise:

$$
y=C x+v \quad x \sim N(\bar{x}, \bar{P}), \quad v \sim N(0, Q)
$$

What is the distribution of x, after observing y ?

Answer: $\quad p(x \mid y)=N(\hat{x}, P)$

$$
\begin{array}{ll}
\hat{x}=\bar{x}+K(y-C \bar{x}) & K=\bar{P} C^{\prime} S^{-1} \\
P=(I-K C) \bar{P} & S=C \bar{P} C^{\prime}+R
\end{array}
$$

This result suggests an incremental update of the parameters when y is a sequence of independent observations.

Bayesian Estimation

Principles:

- The unknown parameters are random variables with known distribution.
- The observations allow to reduce uncertainty of the parameter estimates and to update their distribution. The updated distribution is denoted as a posteriori distribution.
- The update is done by the Bayes law.

Notes:

- Bayesian methods provide objective criteria for the design of estimators.
- They have better performance that classic methods when there is few data points.
© Jorge Salvador Marques, 2002

Difficulties

Inference is more difficult in the following cases:

- invalid data (outliers);
- incomplete data (hidden variables);
- need of model validation/selection;
- multiple models

Model Selection

$$
\begin{aligned}
& p=1 \\
& p=2 \\
& p=6
\end{aligned}
$$

What is the best model?

Model Selection

Let us consider all the available models M_{1}, \ldots, M_{c} to represent a sequence of observations y.

What is the best?

There are several criteria: MV, MAP, MDL, AIC, etc

Occam Razor

In XIV century Occam the following principle:
Choose the simplest model which describes the data with the desired accuracy.

Exercises

1. Let x_{1}, \ldots, x_{n} be a sequence of independent and identically distributed observations. Knowing that

$$
p\left(x_{i} \mid \alpha\right)=\alpha e^{-\alpha x_{i}} \quad p(\alpha)=c e^{-c \alpha} \quad \alpha, x_{\mathrm{i}}>0
$$

compute the MAP estimate of a.
2. Consider a signal y_{t} generated by the model $y_{t}=a y_{t-1}+b u_{t}+w_{t}$ Determine a Bayesian estimate of a,b coefficients assuming that the inputs and outputs $y_{1} \ldots y_{n}, u_{1} \ldots u_{n}$ are available and the noise sequence $w_{1} \ldots w_{n}$ consists of uncorrelated variables $w_{i} \sim N\left(0, \sigma^{2}\right)$.
3. Show that a density $\mathrm{p}(\mathrm{x})=\mathrm{Cexp}\left[-0.5\left(\mathrm{x}^{\prime} \mathrm{Ax}+\mathrm{b}^{\prime} \mathrm{x}\right)\right]$ is normal $\mathrm{N}(\mu, \mathrm{P})$ with $P=A^{-1}$ e $\mu=-0.5 A^{-1} b$.
4. Show that the product of two normal densities $N\left(\mu_{i}, P_{i}\right), i=1,2$, is a normal density (apart from a scale factor).

Work

Consider data generated by two probabilistic models
a) $\mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ with known σ^{2} and $\mu \sim N\left(\mu_{0}, \sigma_{0}{ }^{2}\right)$
b) $p(x / \alpha)=\alpha e^{-\alpha x} \quad x>0, \quad p(\alpha)=\alpha_{0} e^{-\alpha_{0} \alpha} \quad \alpha>0$,

Given an observation x, determine a criteria for the selection of the model.

Characterize the performance of the previous method computing the error probability experimentally.

Bibliography

J. Marques, Reconhecimento de Padrões. Métodos Estatí́sticos e Neuronais, IST Press, 1999

