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Question
Let x be a random variable with values in IR2 and let y be a linear 

combination of the x components, corrupted by additive noise: 

y = x1+x2+w

Is it possible to estimate x from y ?
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Data Fusion

uncertainty region

new observation

Where is the boat ?
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Bayesian Inference

prior

• inicial location:    p(x)       prior

new observation

• sensor model:       p(y|x)

• final location:      p(x|y) a posteriori density function

The final result is a distribution!
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A Posteriori Distribution
(known model)
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Bayes law
likelihood function

prior

constant

How to compute the a posteriori distribution ?
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Conjugate Prior

The prior represents the knowledge available about the unknown 

variables before any observation is made.

It should allow an easy computation of the a posteriori 

distribution. 

A conjugate prior is a prior such that the a posteriori distribution 

has the same analytic expression as the prior, with different 

values of the parameters.
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Exponencial Family

It is easy to obtain conjugate priors if the sensor model p(y|x) belongs to the 

exponencial family. 

Definition: p(y|x) belongs to the exponential family if and only if

    1|    e       )()(exp)()()|( x)dyp(yxcytxgyhxyp
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Several well known distributions e.g., normal (with known covariance), gamma, 

binomial, Poisson, belong to the exponential family.
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Proof
Let y = y1, ..., yn be a sequence of independent observations.

likelihood function
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a posteriori density
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Binomial Distribution

The binomial distribution B() belongs to the exponential family. 

bmdbcP  )1()( Conjugate prior:

A posteriori distribution: the same with 1
~~

  ddk,  bb

Beta distribution

n=0 n=1 n=4 n=100

Example: =.2
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observation

Example

posteriorprior

This example  considers p(x)=N(0,I),  p(y/x)=N(x,.04I)

hypothesis
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Recursive Computation

Suppose we obtain n independent observations  y=(y1, ..., yn).

Then

)()|()|()()|,()|( 1221 xpxypxycpxpxyycpyxp 

This suggests the following recursion:

)|()|(     )|( 1:1:1 kkk yxpxypyxp 

where y1:k=(y1,..., yk)

This procedure is very useful when conjugate priors are used.
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A Posteriori Distribution
(unknown model)

Let us assume that x depends on an unknown variable q.

In this case

 qqq dypxpyxp )|()|()|(

where
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When the model is unknown the Bayesian approach considers all

possible models weighted by their confidence degrees 𝑝(𝜃/𝑦), 
instead of using a single (best) model.
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MAP and MMSE Estimates

MAP estimate (maximum a posteriori)

MMSE estimate (minimum mean squared error)

 dxyxpxyxEx  )|( }|{ˆ

)()|(maxarg)|(maxargˆ xpxypyxpx
xx



EQMx̂

x

p(x|y)

MAPx̂

How to obtain an estimate of x from the a posteriori distribution ?
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MAP vs ML

ML estimator:

MAP estimator:

x)p(yx
x

|maxargˆ 

x)p(x)p(yx
x

|maxargˆ 

prior

The prior has an important role when there is few data.

(simple rule:the should be 10 observations for each parameter to be estimated.)
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Parábolic Fit
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Gaussian Variables

yx

Hypothesis: x,y have normal distribution.

Question: what is the distribution of x given y ?

Answer: ),ˆ()|( PxNyxp 
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Proof

Lemma:
1

111

          
-

--

EBDF

C)(A-BDE

HG

FE

DC

BA























. The argument of the exponential is

c)y-)F(yx-2(x)x-E(x)'x-x(
y-y

x-x

y-y

x-x
1'





























yyxy

yxxx

PP

PP
q

c'))y-F(y-x)(Ex-2(x)x-Exx' 

),ˆ()/( PxNyxp 

Comparing with the exponent of xPxxPxxPxPxN ˆˆˆ'2´   :),ˆ( 111  

we conclude )y-F(y-xExE, PP --  ˆ
11

Therefore, )y(y-P-Pxx, )PPP(PP
-
yyxy

-
yxyyxyxx

111
ˆ 





© Jorge Salvador Marques, 2002

Example
Let x~N(0,R) be a random variable with values in R2 and y a linear 

combination of x components, corrupted by white noise: 

𝑦 = 𝑥1+ 𝑥2+ 𝑤

Is it possible to estimate x fom y ?

This example was obtained with  x~N(0,P), w~N(0,.1), y=2  
8.75.

75.8.
P
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Linear Model

),0(~   ),,(~     QNvPxNxvCxy 

Let us consider a linear model with additive Gaussian noise:

What is the distribution of x, after observing y ?

Answer:

RCPCSPKCIP

SCPKxCyKxx
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This result suggests an incremental update of the parameters when y is a 

sequence of independent observations.
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Bayesian Estimation

Principles:

• The unknown parameters are random variables with known 

distribution.

• The observations allow to reduce uncertainty of the parameter 

estimates and to update their distribution. The updated 

distribution is denoted as a posteriori distribution.

• The update is done by the Bayes law.

Notes:

• Bayesian methods provide objective criteria for the design of estimators. 

• They have better performance that classic methods when there is few 

data points.
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Difficulties

• invalid data (outliers);

• incomplete data (hidden variables);

• need of model validation/selection;

• multiple models

Inference is more difficult in the following cases:
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Model Selection

p=1 p=2 p=3 p=4

p=5 p=6 p=7 p=8

What is the best model ?
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Model Selection

Let us consider all the available models M1, ..., Mc to represent 

a sequence of observations y.

What is the best ?

There are several criteria: MV, MAP, MDL, AIC, etc
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Occam Razor

In XIV century Occam the following principle:

Choose the simplest model which describes the data with the 

desired accuracy. 
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Exercises
1. Let x1 , ..., xn be a sequence of independent and identically

distributed observations. Knowing that

compute the MAP estimate of a.

2. Consider a signal yt generated by the model yt = a yt-1 +b ut + wt

Determine a Bayesian estimate of a,b coefficients assuming that the

inputs and outputs y1 ... yn , u1 ... un are available and the noise 

sequence w1 ... wn consists of uncorrelated variables wi ~N(0,s2).

3. Show that a density p(x)=Cexp[-0.5 (x’Ax+b’x)] is normal N(m,P) 

with P=A-1 e m=-0.5 A-1 b. 

4. Show that the product of two normal densities N(mi,Pi), i=1,2, is a 

normal density (apart from a scale factor).
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Work

Consider data generated by two probabilistic models

a) x ~ N(m,s2) with known s2 and m ~ N(mo, so
2) 

b) ,0    )(    ,0    )/( 0
0 

  
epxexp

x

Given an observation x, determine a criteria for the

selection of the model.

Characterize the performance of the previous method computing 

the error probability experimentally.
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