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Motivation

Hidden Markov models have been used in several problems:

* Speech recognition

* hand written text recognition

» tracking of human gestures

» self localization of mobile robots
« grammatical analysis

All these problems can be tackled by using models based on two random
processess: an observable process (visible) and an unobserved process
(hidden).



Challenge

Observations: ® o o e © o o

What is the sequence of boxes ?

Hypothesis:
» each ball is extracted from one of the boxes.
* boxes are randomly selected and this choice only depends on the last chosen box.



Label Generation
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Challenge - Formulation

There are two random processes in the box problem:

» sequence of colored balls Vi, Yo - YN (ViSible)
» sequence of the box labels Xy, X5 .., Xy (INVISIDIE)

{x.} is a 15t order Markov process i.e., P(X{Xy,..., X;.1) = P(X{X¢.1)

y; depends on x;: P(y,X,)

y, Is independent on x_, ¥ t<t, if X, Is known

This model is known as a Hidden Markov Model.



X1,.. % Sequence of state variables

Y1,... Yy sequence of observations

The state variables are discrete, X; e{L,...,N}

and they verify a 1st order Markov property.



Characterization

Sequence of state varibles:
initial distribution  P{X; =1} =7;

transition probabilities: P{xt =] [ xt—1 =1} =4

Sequence of observations: emission probabilities
discrete case: P{yt =[xt =i} =1y

Continuous case: P(Yt | Xt =1) = bj(Yt)

vector

matrix A

matrix B



Example

Model:
2 9 1 2 7 1
FIES S
Sequences generated by the model

X:22111122211121122
y:11212211321212231
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Uncertainty Propagation
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If no observations are available, the state distribution evolves according to

=A7 t=g prediction

The asymptotic distribution verifies (4°-1) z=0



Uncertainty Propagation

i

When there are observations available, 7t =col{P(xt =1/Yy1t)}
Is updated according to:

Filtering 7' =kDy 7' D, =diag(by(yy)....on (1))

Prediction ARE R U

These equations correspond to the Kalman filter in the case of continuous
state variables. However, they do not require any linearity or Gaussianity
assumptions.



Likelihood Function

Joint distribution

n
p(X,y) — tl:[]_ aXt_]_Xt p(yt | Xt) convention : aXoX]_ = Ter

Log likelihood function

p(Y) =3 {ﬁ 2y, POV /xt)}

X Lt=1

This expression is too complex to be useful!



Forward Backward Algorithms

(Baum)

Recursively computes

at(1) =Pt =Ly1t), A())=PYtsan % =)

Forward Algorithm Backward Algorithm
a1(j) =bj(yD7; pN () =1
. N _ N
a(j) = bj (yt)_Zlaijat_l(l) t=2,..,n  pi(i)= _Zlaijbj (Vt41)Bti1(J) t=n-1..,1
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Likelihood function
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Matrix F-B Algorithm

Forward Algorithm Backward Algorithm
a =Dy Nogg t=2,..m Pi(i)=ADy fry t=n-1..1

Th forward algorithm is similar to the propagation of the conditional
distribution of the state variable, except for a multiplicative factor.



Viterbi Algorithm

It is possible to efficiently calculate the most likely state sequence.
The Viterbi algorithm does this in linear time using Dynamic Programming.

1. Forward recursion
o1 (1) = 7ib; (1)
6t (J) =bj(yr) miax Sa(a; t=23..,n

3. Backward recursion
X =argmax op (i)
|

% =argmax S&¢(1ajg , t=nl, ..,1
|



Viterbi Training Algorithm

Model training consists of the estimation of 7z, A, B from known
observation sequences (training data). The state sequences x are unknown.

Viterbi training algorithm is iterative. It starts from a set of initial
estimates of the unknown parameters and recursively updates them in two
steps:

1- estimation of the most probable state sequences for the hidden
variables.

2- estimation of matrices z, A, B from the relative frequencies of the state
transitions or output symbol emission.

When the observations are continuous (e.g., mistures of Gaussians) step 2 is performed by using
standard estimation methods (e.g. EM method).

Viterbi training algorithm is fast but it only considers the most probable sequence.



Baum Training Method

Baum proposed in 1972 training algorithm which takes into account all
possible state sequences. Baum algorithm is equivalente to the EM
method.

i)By (i Yis10¢_1(ajibi (vP)B ()
E step: S L dij - t>1%t-1(13iP j Pt
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thj_-y,?:j ot (B¢ (1)

ij = i
yP p(y")

M step:  Zi =& Cj, i =ﬁdij, ajj =7 &jj o, 3,y constants

Training set: {yr}



Exercises

TR

a) compute the asymptotic tate distribution.

b) fiven the sequence y=132 compute the probability distribution of the hidden variables.

c) determine the most likely state sequence using the Viterbi algorithm. Compare with the
output of last alina.
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1. Given a HMM model [

2. Consider the HMM defined by:
B H A 7 .3 p(y/1) = N(0,1)
Tl "2 8 p(y2) = .3N(-5,1) + .7 N(5,1)
After observing y=(.27 -1.43 3.21 ), compute

a) The distribution of the hidden variables and
b) Most probable state sequence using the Viterbi algorithm.

3. Compute the distribution of the duration time in state i. Discuss the modeling restrictions.
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