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Motivation

Hidden Markov models have been used in several problems:

• speech recognition

• hand written text recognition

• tracking of human gestures

• self localization of mobile robots

• grammatical analysis

All these problems can be tackled by using models based on two random 

processess: an observable process (visible) and an unobserved process 

(hidden).



Challenge

Observations:

What is the sequence of boxes ?

Hypothesis: 

• each ball is extracted from one of the boxes.

• boxes are randomly selected and this choice only depends on the last chosen box.



Label Generation
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Label sequence:   3 3 2 1 1 3 1 1 3 2 2 2 1



Challenge - Formulation

There are two random processes in the box problem:

• sequence of colored balls

• sequence of the box labels

y1, y2, …, yN         (visible)

x1, x2, …, xN         (invisible)

{xt} is a 1st order Markov process i.e.,    P(xt|x1,…, xt-1) = P(xt|xt-1)

yt depends on xt: P(yt|xt)

yt is independent on xt,  t<t , if  xt is known

This model is known as a Hidden Markov Model.



HMM
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txx ,...,1 sequence of state variables

tyy ,...,1 sequence of observations

The state variables are discrete, },...,1{ Nxi 

and they verify a 1st order Markov property.



Characterization

Sequence of state varibles:
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transition probabilities: ijtt aixjxP   }|{ 1
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Sequence of observations: emission probabilities
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Sequences generated by the model

x: 2 2 1 1 1 1 2 2 2 1 1 1 2 1 1 2 2 

y: 1 1 2 1 2 2 1 1 3 2 1 2 1 2 2 3 1 



Uncertainty Propagation

If no observations are available, the state distribution evolves according to
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Uncertainty Propagation
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When there are observations available,                                        

Is updated according to:

Prediction

Filtering
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These equations correspond to the Kalman filter in the case of continuous

state variables. However, they do not require any linearity or Gaussianity 

assumptions.



Likelihood Function
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Joint distribution

Log likelihood function
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This expression is too complex to be useful!



Forward Backward Algorithms

(Baum)

Recursively computes
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Matrix F-B Algorithm

Forward Algorithm Backward Algorithm
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Th forward algorithm is similar to the propagation of the conditional 

distribution of the state variable, except for a multiplicative factor.



Viterbi Algorithm

It is possible to efficiently calculate the most likely state sequence.

The Viterbi algorithm does this in linear time using Dynamic Programming. 
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1. Forward recursion

3. Backward recursion
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Viterbi Training Algorithm

Model training consists of the estimation of , A, B from known 

observation sequences (training data).  The state sequences x are unknown.

Viterbi training algorithm is iterative. It starts from a set of initial 

estimates of the unknown parameters and recursively updates them in two 

steps:

1- estimation of the most probable state sequences for the hidden 

variables.

2- estimation of matrices , A, B from the relative frequencies of the state 

transitions or output symbol emission.

When the observations are continuous (e.g., mistures of Gaussians) step 2 is performed by using 

standard estimation methods (e.g. EM method).

Viterbi training algorithm is fast but it only considers the most probable sequence.



Baum Training Method

Baum proposed in 1972 training algorithm which takes into account all 

possible state sequences. Baum algorithm is equivalente to the EM 

method.

E step:

M step:
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Training set: {yp} 



Exercises

1. Given a HMM model

a) compute the asymptotic tate distribution.

b) fiven the sequence y=132 compute the probability distribution of the hidden variables.

c) determine the most likely state sequence using the Viterbi algorithm. Compare with the 

output of last alina.
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2. Consider the HMM defined by:

 
N(5,1) .7N(-5,1) .3p(y/2)
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After observing  y=(.27 –1.43 3.21 ), compute

a) The distribution of the hidden variables and

b)  Most probable state sequence using the Viterbi algorithm.

3. Compute the distribution of the duration time in state i. Discuss the modeling restrictions.
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