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Probability Theory

(revisited)
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Summary

• Probability v.s. plausibility

• Random variables

• Simulation of Random Experiments
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Challenge

The alarm of a shop rang .

Soon afterwards, a man was seen running in the street, 

persecuted by a policeman.

Is the man a thief ?

Can a machine reason like us  ?
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Jacob Bernoulli (1654-1705)
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Bernoulli definition

Definition of probability attributed to  Jacob Bernoulli (1689):

n

m
P 

m – number of favorable cases

n  – total number of cases

This definition establishes a link between probabilities and the output 

of experiments.

Question: how to manipulate probabilities in a consistent way ?
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Kolmogorov (1903-1987)
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Kolmogorov Axioms

Kolmogorov defined a set of axioms for Probability Calculus based on set 

theory and measure theory:

He defines:

• sigma algebra of sets, closed with respect to 

complement and union of a countable number 

of sets.

• a probability measure for the sets belonging 

to the sigma field, denoted as events.

A

B

Strong point: all the operations with probabilities can be defined from 

the axioms in a consistent way.

Question: what is the relationship between probabilities and experimental data ?

E
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Probability Space

A probability space consists of: a sample space E, an event space F and a 

probability measure P. 

E is the set of results of the random experiment, F is a family of subsets of 

E  such that

P is a function from F into [0,1] such that:
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E. Jaynes (1922-1998)
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Thinking Robot

How to build a thinking robot ?

Based on the works of Polya e Cox, Jaynes assigns a plausibility to 

each proposition and demonstrates that a consistent inductive logic 

must obey the rules of Probability Calculus.

In this context, probabilities are assigned not to sets of a sigma field but 

to propositions.
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Random Variables

A random variable assigns a numeric value to each experiment. 

random variables

discrete

continuous
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Discrete Random Variables

How to characterize a discrete random variable ?

Probability function Properties
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Note: the same symbol will be used to denote the random variable a realization. Different symbols 

(e.g., capital and lower letters) could be used to make this difference more clear.
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Binomial Distribution

It answers the following problem: what is the probability of an event A 

being observed k times in n random experiments ?
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Continuous Random Variables

How to characterize a continuous random variable x ?

Probability density function, p Properties
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Normal Distribution

Probability density function
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Joint Distribution

The joint distribution of x1,..., xN, is defined on the set of values of 

the sequence, being characterized by

Probability function                  P(x1,..., xN)         (discrete variables)

Probability density function      p(x1,..., xN)         (continuous variables)

Marginalization
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Independence

Def: the r.v. x1,..., xN are independent if and only if
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Note: independent r.v. are converted into dependent ones by applying a non diagonal linear transformation
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Correlation

Def: x1,..., xN are correlated r.v. if their covariance matrix is non diagonal.

Notes:

• independent r.v. are always uncorrelated. The converse is not true.

• given n r.vs. it is possible to decorrelate them by applying a suitable linear

transformation (e.g. KLT or PCA)
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Conditional Probabilities

Definition (conditional probability): 

P(x|y) is interpreted as the probability of occurring x knowing that y 

occurred.

0)( if     )(/),()|(  yPyPyxPyxP

Note: if x,y are continuous random variables the conditional probability 

density function p(x|y) is defined in an analogous way .
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Expectation

)()()}({ xPxfxfE
x


dxxpxfxfE )()()}({ 

(x - discrete r.v.)

(x - continuous r.v.)

Relationship with the aritmetic mean:
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x1, x2, .... are realization of x

Definition (Expectation): Let f: SRn

Definition  (mean and covariance matrix): Let x be a random variable

mean  =E{x}       covariance matrix:  R=E{(x-)(x-)'}
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Properties of the Covariance Matrix

A is a covariance matrix if and only if it is a square matrix, symmetric and 

semi definite positive. 

Other properties:

• the eigen values of a covariance matrix are non negative.

•
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Properties of Normal Distribution

•If x1, ..., xn, are r.v. with normal distribution, any subset  of variables xp1, 

..., xpm  are also r.v. with normal distribution.

• Given a r.v.                          the distribution of  y=Ax+b  is

'     , ARARbxAy yy 

 ),(~ RxNx ),( yyRyN

•Given 2 variables  ),(~, ),(~ yyxx RyNyRxNx
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Generation of Random Values

Discrete variables:

•Split [0,1[ interval into  subintervals of length P(i).

•generate a random value with uniform distribution in [0,1[. The value 

of x is the index of the subinterval which was selected.

0 1

P(1) P(2) P(N)
x=2

Continuous variables:

•specific algorithms for some distributions

•Metropolis algorithm

•importance sampling

•Gibbs sampler
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Metropolis Algorithm

How to generate random values with a given distribution ?

Metropolis Algorithm:

- move x randomly

- accept the new value x’ with probability

))(/)'(,1min( xpxpP 

otherwise make x’=x
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Importance Sampling

It is used to compute expected values when it is difficult to generate 

random values with the true distribution p(x) but it is possible to generate 

samples with an auxiliary distribution q(x).

Algorithm:

• generate n independent realizations xi~q(x)

• assign a weight to each realization (importance) wi= p(xi) /q(xi).

Expectation: )()}({
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Note: 

•

• poor performance in high dimension spaces
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© Jorge Salvador Marques, 2002

Example

We wish to estimate 2 moments of a distribution N(0,1) using 

importance sampling.

We considered n=100; 100 estimation experiments were performed

q=N(0,.25)      -0.0194    0.2801    0.6549    0.4575

q=N(0,1)           0.0034    0.0951    0.9977    0.1540

q=N(0,4)           0.0170    0.0927    0.9959    0.0611
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Gibbs Sampler

Problem: generate random values with a known distribution

),...,( 1 NxxP

Algorithm:

begin

• generate x1 with distribution

• generate x2 with distribution

• generate xN with distribution

repeat
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This algorithm generates a Markov with asymptotic distribution

),...,( 1 NxxP
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Optimization with the Gibbs Sampler

p10

p

p20

p30

Generate realizations of a r.v. x with 

distribution p(x)a

Change a until a dominant mode is 

observed

In the limit the algorithm will only generate 

values which maximize p.

Difficulty: there are no optimal criteria 

for the evolution of a
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Problems

1. Given a distribution P(x,y) defined by:

i) P(x)   ii) P(y)   iii) P(x|y)   iv) E{x}   v) E{y}   vi) E{x+y}    vii) E{xy}

2. The meaning of variables x,y,z is the following : x-the is gas in the tank; 

y – battery is OK; z- motor starts at first attempt. Define a probability 

distribution for these variables. 

3. A random variable x~N(0,R) has an uncertainty ellipsoid with semi axis 

[3 1], [-.2 .6]. Compute the covariance matrix R knowing that E{x1
2}=1.

x y P

1

1

1

2

2

2

1

2

3

1

2

3

.1

.2

.1

.3

.1

.2

4. We known that a bridge falls with probability .8 if the main structure elements break and 

this happens with probability .001. Which is the break probability knowing that the bridge has 

fallen? Discuss if this problem can be solved.

5. Three prisoners A, B, C are in separate cells. One is going to be released and the other 

two will be condemned to die. Prisoner A asks the jailer to deliver a farewell letter to one of 

the other prisoners which will be condemned. The next day the jailer tells him that he 

delivered the letter to prisoner B. What is the probability of A being set free before and after 

the jailer answer? 
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Work

Let x be a random variable with distribution N(0,1). Determine in an exact 

or approximate way:

E{x2}, E{x4}, E{cos(x)}, E{tan(x)}, E{tan-1(x)}
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