
© Jorge Salvador Marques, 2002

Classic Estimation
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Summary

•Motivation

•Deterministic Methods

•Classic Probabilistic Methods

•Examples
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Challenge

Given the data points shown in the figure we wish to approximate them 

by a 2nd order polynomial

y=c2 x2+ c1 x+ c0

Problem: how to compute c0, c1, c2.
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Note: we assume that the x values are accurately known but the y 

values are corrupted by measurement noise.
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Gauss (1777-1855)
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Parabolic Fit

The absolute value of the errors 

must be small

ei - error

yi

Quadratic cost:
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Estimation of the coefficients

What coefficients minimize E ?

Stationarity condition:
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Results
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Least Squares Method

Least squares method:

|||| e

cost

Given a set of observations (xi, yi). We wish to approximate yi by f(xi,q),  q

being an unknown vector of parameters. The error is

ei = yi - f(xi,q)

How to obtain q ?

Hypothesis: it is assumed that xi is accurately known.

2
||||  minargˆ

i
i

e
q

q

normEuclidean   theis ||.||



© Jorge Salvador Marques, 2002

Linear Model

iii exy  q )'(Model:

LS estimate: bA 1
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Proof
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Computing the derivative with respect to q and using the appropriate properties

is a stationary point.

If the matrix
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is positive definite,

E is minimized by   .
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Geometric Interpretation

Observations y=(y1, ..., yn), belong to a vector space E of dimension n.

Model sequence y=((x1)’q, ..., (xn)’q), belongs to a subspace S  E with a 

lower dimension.

The least squares method computes the coefficients of the orthogonal 

projection of y onto the subspace S, using the internal product:

ii
i

yxyx  ,

y projection is such that the projection e=y-y error is orthogonal to all the 

vectors in S:

<e,b>=0,  b S                 (orthogonality condition)

^

^
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Geometric Interpretation

y

e

ŷ

Set of signals generated by the model

If it is a linear subspace S (linear model),     is the orthogonal projection of 

y onto S

e

ŷ

y Orthogonality conditions

<e,b>=0

b – any vector of S

ŷ

E
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Learning vs Inference

The least squares method allows the solution of several problems.

? inference

Learning

(model identification)

training data

it does not provide an uncertainty  measure!
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Estimation

yx

General problem: how to estimate x, q, given y ?

Subproblems: 

obtain x from y, q (inference)

obtain q from y, x    (learning, identification)

y depends on x and on a vector q

x is known or unknown

The learning problem is often based on observations obtained at different 

instants of time or even different experiments.

The estimation of the unknown variable x is usually performed in each 

experiment.



© Jorge Salvador Marques, 2002

Regression

Given (xi ,yi ), we wish to approximate yi by 

f(xi ,q) with q unknown.

Least squares estimate:

2
||||  minargˆ
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e
q

q ),( qiii xfye 

Examples: linear combination of basis functions, neural networks.

x

y

Hypothesis (asymmetric): x is accurately known.
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Prediction

Given y=( y1 , ..., yt-1 ), we wish to predict yt using a linear combination of 

past observations: 

y1 = at yt-1 + ... + ap yt-p + et

The coefficients ai are estimated by least squares.

?
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Frequency Estimation

Given a model

iii etAy  )cos( 

We wish to estimate A,, ?

Available data: (ti, yi) i=1, ...,N

Idea: choose  A,, minimizing 
i

ieE
2

non linear problem
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Estimation of a Sinusoid

with noise
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(white noise with s=.5)
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Restrictions

The least squares method has the following restrictions:

• does not allow a statistical description of the error: nothing is known 

about the error we obtain in the next experiment.

•Not robust

•Leads to difficult optimization problems when non linear models are 

used. In general, only local minima of E can be obtained.
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Robustness
spurious observations

Not robust

Alternatives:

• weighted LS (errors are weighted by confidence degrees)

• robust estimation methods

(why ?)
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RANSAC

•choose a minimal set of data allowing to estimate the parameters

•compute the number of observations well approximated by the model

•repeat the previous steps N times and at the end choose the estimate with bigger support

(the estimate is refined using the support observations)

Refinement

Procedure

support=2 support=3 support=5

Generation of random hypothesis
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Robust Methods

||)(||  minargˆ i
ix

ex 

Robust estimator:

|||| e

r

•requires recursive numeric optimization

Example: LMed
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Exercises

1. Given a signal  y=( y1 , ..., yN ), determine the coefficients of the linear 

predictor

N>>p

using the least squares method.

2. Generalize the previous problem to the case in which we want to predict the 

signal k steps ahead.

ptptt yayay   ...ˆ 11
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Work

Consider two parabolas and observations close to each of them. 

However, we do not know which parabola fits each observation. 

Estimate the coefficients of the parabolas using the least squares 

method and robust methods.

Characterize the performance of both methods
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Classic Probabilistic Methods
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Classic vs Bayesian Methods

yx y – realization of a random variable

•classic:    LS, EM

•Bayesian: MAP, MSE

Estimation methods:

Classic methods consider x as a deterministic variable.

Bayesian methods consider x as a random variable characterized 

by an a posteriori distribution p(x|y)

x - unknown
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Classic Estimation

•classic estimation methods are not based on general principles.

• An estimator is a map from the observation space into the parameter 

space.

• Each estimator is a random variable which can be statistically 

characterized. In general we wish to define estimators with a set of desired 

properties (e.g., unbiased and with low variance).
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Maximum Likelihood Method

Maximum likelihood estimate (ML)

x)p(yl(x)xlx

x)p(yL(x)xLx

x

x

|log          )( maxargˆ

|          )( maxargˆ





(Fisher, 1921)

If y= y1,..., yN is a set of independent and identically distributed (iid) 

observations, then
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likelihood function

log likelihood function
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Normal Distribution

Problem: estimate the mean and covariance matrix of a normal distribution 

N(m,R) from a set of n independent random variables y1, ..., yn.

Log likelihood function:
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Proof

Mean estimation:

0)(2)()'(0 11
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multiplying by R we get

Note: see the derivative rules presented in Lecture 1

Covariance estimation :
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Properties of ML estimates

)ˆ(ˆ  then  )( if MLML xfzxfz 

•Invariance to nonlinear 1-1 transformations of the parameter:

In the sequel we consider that we observed a sequence of n iid variables, 

with density p, such that p belongs to the family of functions adopted as 

model, i.e.  p=px0
, where xo is the correct value of the parameter x.

• the ML estimator is consistent (    converges to xo when n tends to 

infinity)

• has a normal asymptotic distribution:

x̂

),0()ˆ( JNxxn
d

o 

where J is the Fisher information matrix associated to a single observation:

}{
T

dx
dl

dx
dlEJ 
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Approximation
How does the ML method work if the model is wrong ?

Proposition

Let y be a sequence of n iid variables with density p and {px} a family of 

functions depending on x (model). If the ML estimates converge to   

when n tends to infinity, then    minimizes the Kullback-Leibler divergence 

between p and {px} (model):

dy
yp

yp
ypppD

x
x

)(

)(
log)(],[ 

x̂

The divergence is a non symmetric distance.

p

px

D

x̂
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ML vs LS

When the observations are normally distributed

)()|( qq ECeyp 


The maximum likelihood method is equivalent to the least squares 

method.
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Polynomial Approximation

Model:

Data: (x1, y1), (x2, y2), ..., (xn, yn)
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Log likelihood function:

where E is the least squares energy. The maximum likelihood estimate 

is equal to the least squares estimate.

Did we gain anything ?  Yes.       can be statistically characterized.q̂
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Example – Frequency estimation
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Binary Detection

A binary symbol                       was transmitted in an analog channel in base 

band.
},{ AAq

At the receiver, the observed signal is

,...,n iwy ii 1   q

We wish to estimate q assuming that the noise is uncorrelated and 

),0(~ 2sNwi

The log likelihood function is
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This is the expression of the matched filter.
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Linear Prediction

Prediction is a regression problm. In linear prediction the regression vector 

consists of the past values of the signal.

ipipii vyayay   ...11

),0(~      ' 2
 sq Nvvy iiii  ]'...[     ]'...[ 11 piiip yyaa  q

The solution of this problem is similar to the estimation of parameters with 

a linear model (see polynomial approximation)

i=p+1, ...,n
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Characterization of Estimators

An estimator is a random variable which depends on x, y.

2nd order properties

Mean

          }ˆ{xExB 

}ˆ{xEm

Covariance matrix

})ˆ)(ˆ{( TxxER mm 

Bias

Notes:

•ideal goal: B=0 e zero covariance. This goal is impossible in most problems.

•Expected values are computed using p(y/x).
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Crámer-Rao bound

Can the covariance matrix of an unbiased estimator be the null matrix ?

Crámer-Rao theorem

1}ˆ{ 
 JxCov

J -1 Crámer-Rao bound,   J is the Fisher information matrix

} {
T

dx
dl

dx
dlEJ  l log likelihood function

If the estimator is called eficient.
1}ˆ{ 

 JxCov

(unbiased estimator)

definition: A>B if and only if A-B positive definite.
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Example

In practice it is not always easy to compute the Crámer-Rao bound. One 

case which can be easily addressed concerns the estimation of the 

mean vector of a normal distribution, given N observations y1,..., yN.

RCov
N
1}ˆ{ m

Proof: since p(y|x)=N(m,R),
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Note: show that the ML estimator of m is efficient.
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Monte Carlo Method

Monte Carlo Method: 

Numeric evaluation of an estimator based on a large number of estimation 

experiments and statistical analysis of the results.
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Exercises
1. Let x be a binary variable such that P(0)=Po, where Po is an unknown 

parameter. Determine the ML estimate of Po from n independent 

realizations of x. 

2. Determine the ML estimator of the mean and covariance matrix of a 

normal distribution N(m,R), given n independent observations. (see 

Apendix).

3. Given n samples of a random signal y described by an autoregressive 

model yt= a yt-1+ b wt, where wt is a white process with distribution 

wt~N(0,1), determine coefficients a, b by the ML method.

4. Compute the Crámer-Rao bound for the estimation of the parameter of 

a Rayleigh distribution, knowing N realizations y1, ..., yN.
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Appendix – Matrices (I)

Transpose:

Sum:

Multiplication:  

Trace:

Inversion:          

eigen values and eigen vectors: iiiii

k ii

k kjikij

ijijij

ijij

vAvv
IAAAAAC
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bacBAC

acAC
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Properties

• a square matrix is non singular if all its eigen values are non zero;

• the rank of a matrix is equal to the number of eigen values different from 

zero; a non singular matrix has full rank.

•The eigen values of a symmetric matrix are real.

Operations
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Appendix Matrices (II)

• the trace of a matrix is equal to the summ of all its eigen values;

• the determinant of a matrix is equal to the product of all its eigen values

• the inverse of a matrix has the following properties:

111)(   ABAB

2212

2111
1

][  ][

][  ][
   que em     

nnDnnC

nnBnnA
HG
FE

DC
BA



















111

1

1

11 )(

















CEBDDDH

CEDG

EBDF

CBDAE



© Jorge Salvador Marques, 2002

Derivatives
The derivative of a scalar function f(X) with respect to matrix X is a matrix 
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Note: adapted from Sage & Melsa
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