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3.1. Completely randomized experiment.

I Experimentation allows an investigator to find out what hap-
pens to the output variables when the settings of the input
variables in a system are purposely changed.

I In many investigations, e.g. in social sciences, in economics,
in ecological field studies, there is no control over the way
that data arise. No interventions are made, we simply ob-
serve. These are observational studies. The standard methods
of analysis (ANOVA, regression etc.) are valid but the wider
applicability of conclusions is limited.

I In experiments, such as laboratory experiments, we can delib-
erately vary the conditions and observe the changing responses.
Such planned experiments allow conclusions to be drawn which
can not be drawn from observational studies, e.g. about cause
and e↵ect.
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3.1. Completely randomized experiment.

I In the Observational Studies is investigate the characteristics
of an output variable y , and conceptually, once a unit i is
selected, there is a fixed (non-random) value yi of the output
to be obtained.

I In Experimental Design Studies, the values of input variables
are carefully chosen and controlled, and the output variables are
regarded as random in that the values of the output variables
will change over repeated experiments under the same setting
of the input variables. Experimental design was introduced by
Sir Ronald Fisher, in the context of agricultural experiments
at Rothamstead Experimental Station. When Fisher joined
Rothamstead, RES employees knew that their fields had fer-
tility gradients, di↵erent exposures to sunlight, and that yield
could be a↵ected by crops and practices used in previous sea-
sons.
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3.1. Completely randomized experiment.

I It was not su�cient to pick one field at random and use, say,
fertilizer A, and another at random and use fertilizer B, then
compare the yields. The observed di↵erence could be due to
sunlight exposure or previous crops.

I In principle one could pick many fields at random for fertilizer
A, and many fields at random for fertilizer B, and then compare
the results.

I But it is even better if you can pick the fields at random in
such a way that the choice controls for possible confounding
factors; e.g., it would be good if equal numbers of fertilizer A
fields and fertilizer B fields were in bright sunshine (or shaded),
or had good drainage (or not), and so forth.
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3.1. Completely randomized experiment.

I We also assume that the setting of the input variables deter-
mines the distribution of the output variables, in a way to be
discovered. The population under study is the collection of all
possible quantitative settings behind each setting of experimen-
tal factors and is (at least conceptually) infinite.

I Experimental Design Terminology: Because these methods are
used in a wide range of areas of application, a standard termi-
nology is used.
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3.1. Completely randomized experiment.

I Experimental Unit: The basic set of conditions/materials on
which a single element of the experiment is carried out (e.g.
patient, blood sample, piece of material etc.).

I Treatment: What we do to the experimental unit. In various
situations a treatment can be a type of drug, a catalyst, a type
of fertilizer, a methodology etc.

I Trial: A single, independent application of a treatment to an
experimental unit.

I Response: The outcome of a trial - also known as an observa-
tion, or collectively as data.

I Block: A set of experimental units with some common property,
e.g. patients with similar characteristics.

I Factor: A controllable experimental variable that is thought to
influence the response.
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3.1. Completely randomized experiment.

I Nuisance factor : As above but outside the control of the ex-
perimenter, e.g. environmental variables.

I Level: Specific value of a factor.

I Interaction: Existence of joint factor e↵ects in which the e↵ect
of each factor depends on the levels of the other factors.

I Replication: Repetition of an entire experiment or a portion of
an experiment under two or more sets of conditions. Most ex-
periments have several replications. To be genuine replications,
each replication must be carried out independently on distinct
sets of experimental units.
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3.1. Completely randomized experiment.

Completely Randomized Design

A completely randomized design is a design for which independent
random samples of experimental units are selected for each treatment.
The ANOVA is used to test whether or not di↵erent levels (qualitative
or quantitative) of a > 2 treatments involved in populations cause
property change. For examples:

1. An experiment to study the e↵ects of five di↵erent brands of
gasoline on auto mobile engine operating e�ciency (mpg);

2. An experiment to study the e↵ects of the presence of four
di↵erent sugar solutions (glucose, sucrose, fructose, and a
mixture of the three) on bacterial growth;

3. An experiment to study the e↵ects of the four di↵erent
training methods for the course of statistics on the scores of
examination.
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3.2. Single-factor analysis variance, (one-way ANOVA).

I The ANOVA methodology was proposed by Sir Ronald Fisher
in the Rothamstead Experimental Station.

I The aim is to see if there is any di↵erence between groups
on some variable. As an example let us see the IRIS data set
with the variables Sepal Width and Petal Width by the groups
Setosa, Versicolor and Verginica.
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I The variable Petal Width looks like di↵erent for the three groups.
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3.2. Single-factor analysis variance, (one-way ANOVA).

I Suppose there are a > 2 treatments. For each treatment i

there are ni independent experiment runs. A design is called
balanced if n1 = n2 = . . . na. For a balanced single factor
design the total number of runs is N = na. A completely
randomized design would randomly assign a runs to treatment
1, a runs to treatment 2, etc.

I Some Notation:
I a: is the number of treatments;
I yij : is the measurement on the jth unit receiving treatment i ;
I ni : is the number of experimental units that received

treatment i ;
I N: is the total number of observations;
I yi. is the sum of all measurements for units receiving

treatment i ;
I ȳi.: is the average of all measurements for units receiving

treatment i ;
I ȳ..: is the average of all measurements.
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3.2. Single-factor analysis variance, (one-way ANOVA).

I The analysis of variance (ANOVA) works by splitting up the
variation between the data into components which are assigned
to various sources. In the one-way ANOVA these sources in-
clude di↵erences among the population means and random er-
rors.

Model one-way ANOVA

Yij = µi + "ij = µ+ ⌧i + "ij

I In each case the errors "ij are independent and identically dis-
tributed N(0,�2). In the second parametrization µ is an over-
all mean and ⌧i is a treatment e↵ect. In order not to have
too many parameters we apply the constraint

P
a

i=1 ⌧i = 0.
Alternatively we may make µ represent the mean for the first
population and set ⌧1 = 0. In this case ⌧2, . . . , ⌧a represent
di↵erences of the other population means from the first.
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3.2. Single-factor analysis variance, (one-way ANOVA).

I Note that we thus have three key assumptions assumed in all
populations:
1. normality,
2. independence,
3. equal variances.

Our primary interest is to test if the treatment means are all
the same, i.e. to test:

H0 : µ1 = µ2 = · · · = µa vs H1 : µi 6= µj for some (i , j),

or in the equivalent formulation

H0 : ⌧1 = ⌧2 = · · · = ⌧a = 0 vs H1 : ⌧i 6= 0 for some i .
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3.2. Single-factor analysis variance, (one-way ANOVA).

I The strategy in making an ANOVA test is to partition the total
variation in the data into components attributable to di↵erent
e↵ects.

I In the case of one-way ANOVA, we divide the total sum of
squares (SST ) into the part attributable to di↵erences between
the treatment means (SSTR) and the part attributable to dif-
ferences within treatment groups, or the sum of squares due to
pure error (SSE ), SST = SSTR + SSE .

I SST =
P

a
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I Within-treatment: SSE =
P

a
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P
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j
(yij � ȳi ⇧)2.
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3.2. Single-factor analysis variance, (one-way ANOVA).

I Anova Table:

Source of
variation

SS df MS

Treatments SSTR a� 1 MSTR = SSTR

a�1

Error SSE N � a MSE = SSE

N�a

Total SST N � 1
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3.2. Single-factor analysis variance, (one-way ANOVA).

I It is possible to show that �̂2 = MSE and is an unbiased esti-
mator:

E [MSE ] = �2 and
SSE

�2
⇠ �2

(N�a).

On the other hand:

E [MSTR] = �2 +
1

a� 1

aX

i=1

ni (µi � µ)2.

I Hence, if H0 is true, we have

E [MST ] = �2 and
SST

�2
⇠ �2

(N�1).

I If H0 is true we have that E [MSTR] = �2 and SSTR

�2 ⇠ �2
(a�1),

on the other hand if H1 is true E [MSTR] > E [MSE ].
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3.2. Single-factor analysis variance, (one-way ANOVA).

Test Statistic-equality of e↵ects:

F0 =
MSTR

MSE

H0⇠ F(a�1,N�a)

I If H0 is not true, MSTR will become quite large. Hence, if
the value of F0 >> 1, we will reject H0. Accordingly, we will
perform upper-tailed F -test.
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3.2. Single-factor analysis variance, (one-way ANOVA).

Balanced Design: N = an

I Choosing a balanced design has two important advantages:

1. ANOVA is relatively insensitive to small departures from the
assumption of equality of variances if the sample sizes are
equal. This is not the case for unequal sample sizes.

2. The power of the test is maximized if the samples are of equal
size.
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3.3. Multiple comparisons.

I The ANOVA is a powerful procedure for test the homogeneity
of a set of means. However, if we reject the null hypothesis and
accept the stated alternative that the means are not all equal
we still do not know which of the population means are equal
and which are di↵erent. We can analyse how the treatments
di↵erers.

Inferences for a single mean value: µi . Since Ȳi ⇧ ⇠ N(µi ,
�2

ni
),

we have the pivotal variable:
Ȳi ⇧ � µiq

MSE

ni

⇠ t(N�a)

I C .I .(1�↵)⇥100%(µi ) =
⇣
Ȳi ⇧ ± t1�↵

2 (N�a)

q
MSE

ni

⌘
.
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3.3. Multiple comparisons.

Paired Comparison-inference for (µi � µj)

From

Ȳi ⇧ � Ȳj ⇧ ⇠ N(µi � µj ,
�2

ni
+

�2

nj
),

we have the pivotal variable:

Ȳi ⇧ � Ȳj ⇧ � (µi � µj)r
MSE

⇣
1
ni
+ 1

nj

⌘ ⇠ t(N�a)

I The (1� ↵)⇥ 100% confidence interval for (µi � µj) is given
by:

 
(Ȳi ⇧ � Ȳj ⇧)± t1�↵

2 (N�a)

s

MSE

✓
1

ni
+

1

nj

◆!
.
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3.3. Multiple comparisons.

I As a general rule, if the CI does not contain zero, then these two
means can considered statistically di↵erent (with confidence
level (1� ↵)).

I With a treatment there are g = a(a � 1)/2 pairs of means to
be compared and we want the overall confidence level for all
intervals to be “correct” (1� ↵)⇥% of the times.

I For example, if we construct many 95% confidence in-
tervals, the chance that they all contain the true values
of the parameters that they estimate will be lower than
95%. For g independent confidence intervals we have
P(all confidence intervals cover their parameters) = 0.95g .

g 1 2 3 . . . 10 . . . 100
0.95g 0.9500 0.9025 0.8574 . . . 0.5987 . . . 0.0059
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3.3. Multiple comparisons.

I One possible correction for the two by two investigate di↵er-
ences is the follow: the par of means µi and µj are declared
significantly di↵erent if

|ȳi ⇧ � ȳj ⇧| > LSD,

where LSD = z

r
MSE

⇣
1
ni
+ 1

nj

⌘
and z = t1� ↵

2g (N�a) where g

is the total number of comparisons under study. This is called
Bonferroni correction.

I Residuals are eij = yij � ȳi ⇧. The residuals analysis and model
checking can be performed as we did in multiple regression,
e.g., qq-plots, plots of eij vs ȳi ⇧ and eij vs factor levels.
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one-way ANOVA with R

Iris data set with

I Two equivalent ways: avo command

> iris.aov= aov(Petal.Width ~ Species, data=iris)
Call:
   aov(formula = Petal.Width ~ Species, data = iris)

Terms:
                 Species Residuals
Sum of Squares  80.41333   6.15660
Deg. of Freedom        2       147

Residual standard error: 0.20465
Estimated effects may be unbalanced
anova(Petal.Width ~ Species, data=iris)

> summary(iris.aov)
             Df Sum Sq Mean Sq F value Pr(>F)    
Species       2  80.41   40.21     960 <2e-16 ***
Residuals   147   6.16    0.04                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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one-way ANOVA with R

I Two equivalent ways: lm and anova commands

> lmiris=lm(Petal.Width ~ Species, data=iris)
> summary(lmiris)

Call:
lm(formula = Petal.Width ~ Species, data = iris)

Residuals:
   Min     1Q Median     3Q    Max 
-0.626 -0.126 -0.026  0.154  0.474 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.24600    0.02894    8.50 1.96e-14 ***
Speciesversicolor  1.08000    0.04093   26.39  < 2e-16 ***
Speciesvirginica   1.78000    0.04093   43.49  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2047 on 147 degrees of freedom
Multiple R-squared:  0.9289,    Adjusted R-squared:  0.9279 
F-statistic:   960 on 2 and 147 DF,  p-value: < 2.2e-16

> anova(lmiris)
Analysis of Variance Table

Response: Petal.Width
           Df Sum Sq Mean Sq F value    Pr(>F)    
Species     2 80.413  40.207  960.01 < 2.2e-16 ***
Residuals 147  6.157   0.042                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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one-way ANOVA with R

I We can obtain the estimates of µ1, ⌧2 and ⌧3 with the command
coef:

coef(iris.aov)
(Intercept) Speciesversicolor Speciesvirginica
0.246 1.080 1.780

I µ̂1 = 0.246: Petal Width mean for species Setosa;
⌧̂2 = 1.080, increment of Petal Width mean for species Versi-
color related to Petal With mean for species Setosa;
⌧̂3 = 1.780, increment of Petal Width mean for species Vir-
ginica related to Petal With mean for species Setosa.
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one-way ANOVA with R

I To confirm let calculate the total mean and the mean by group:
command model.tables

> model.tables(iris.aov , type="mean")
Tables of means
Grand mean
         
1.199333 

 Species 
Species
    setosa versicolor  virginica 
     0.246      1.326      2.026 
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one-way ANOVA with R

Pairwise comparisons:
Library(asbio)

command: pairw.anova

library(asbio)
pairw.anova(iris[,4],iris[,5], method="bonf")

95% Bonferroni confidence intervals 

                          Diff    Lower    Upper  Decision Adj. p-value
musetosa-muversicolor    -1.08 -1.17912 -0.98088 Reject H0            0
musetosa-muvirginica     -1.78 -1.87912 -1.68088 Reject H0            0
muversicolor-muvirginica  -0.7 -0.79912 -0.60088 Reject H0            0
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3.4. Two-factors analysis variance, (two-way ANOVA).

I The response variable Y is continuous.

I There are now two categorical explanatory variables (factors).
Call them factor A and factor B .

I Data for Two-way ANOVA:

I Y , the response variable;

I Factor A with levels i = 1, . . . , a;

I Factor B with levels j = 1, . . . , b;

I A particular combination of levels is called a treatment or a cell.
There are ab treatments;

I Yijk is the k-th observation for treatment (i , j), k = 1, . . . , n.

I We will assume equal sample size in each treatment combina-
tion, nij = n > 1 and N = abn. We have a balanced design.
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3.4. Two-factors analysis variance, (two-way ANOVA).

Notation

I For Yijk the subscripts are interpreted as follows:

I i denotes the level of the factor A, with i = 1, . . . , a levels of
factor A;

I j denotes the level of the factor B , with j = 1, . . . , b levels of
factor B ;

I k denotes the k-th observation in cell or treatment (i , j), with
k = 1, . . . , n observations in cell (i , j).
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3.4. Two-factors analysis variance, (two-way ANOVA).

Model Assumptions

I As a consequence of the assumptions to the error model, we
have that the response variable observations are independent,
and normally distributed with a mean that may depend on the
levels of the factors A and B , and a variance that does not (is
constant).

Cell Means Model: Yijk = µij + ✏ijk

I µij is the theoretical mean or expected value of all observations
in cell (i , j));

I The errors are i.i.d. ✏ijk ⇠ N(0;�2);

I Yijk ⇠ N(µij ;�2) and independent.
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3.4. Two-factors analysis variance, (two-way ANOVA).

Alternative:
Factor E↵ects Model: Yijk = µ+ ⌧i + �j + (⌧�)ij + "ijk

I µ is the overall (grand) mean;

I ⌧i is the main e↵ect of Factor A;

I �j is the main e↵ect of Factor B ;

I (⌧�)ij is the interaction e↵ect between A and B . Note that
(⌧�)ij is the name of a parameter and does not refer to the
product of ⌧ and �.

I A model without the interaction term, i.e., µij = µ+ ⌧i + �j is
called an additive model.
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3.4. Two-factors analysis variance, (two-way ANOVA).

Parameters Definition:

I The overall mean: µ =
P

a

i

P
b

j
µij

ab
.

I The mean for the i-th level of A is µi ⇧ =
P

b

j
µij

b
.

I The mean for the j-th level of B is µ⇧j =
P

a

i
µij

a
.

I So, µi ⇧ = µ+ ⌧i and µ⇧j = µ+ �j )

⌧i = µi ⇧ � µ and �j = µ⇧j � µ.

I (⌧�)ij = µij � (µ+ ⌧i + �j) = µij � µi ⇧ � µ⇧j + µ.
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3.4. Two-factors analysis variance, (two-way ANOVA).

Parameters Interpretation

I ⌧i is an adjustment for level i of A and �j is an adjustment for
level j of B , related to the overall mean µ. They are called the
principal e↵ects.

I (⌧�)ij is an additional adjustment that takes into account both
levels i and j . This is called the interaction e↵ect. Non inter-
action e↵ect ) additive model.
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3.4. Two-factors analysis variance, (two-way ANOVA).

Analyse existence of interaction e↵ect:
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3.4. Two-factors analysis variance, (two-way ANOVA).

Zero-sum Constraints
I As in the one-way model, we now have too many parameters

and need now several constraints:
1. ⌧⇧ =

P
a

i=1 ⌧i = 0;

2. �⇧ =
P

b

j=1 �j = 0;

3. (⌧�)⇧j =
P

a

i=1(⌧�)ij = 0, 8j ;
4. (⌧�)i⇧ =

P
b

j=1(⌧�)ij = 0, 8i .

Estimates (LS) for Factor-e↵ects model:

I µ̂ = Ȳ⇧⇧⇧ =
P

a

i

P
b

j

P
n

k
yijk

abn
, µ̂i ⇧ = Ȳi ⇧⇧, µ̂⇧j = Ȳ⇧j ⇧ ;

I ⌧̂i = Ȳi ⇧⇧ � Ȳ⇧⇧⇧ and �̂j = Ȳ⇧j ⇧ � Ȳ⇧⇧⇧ ;

I ˆ(⌧�)ij = Ȳij ⇧ � Ȳi ⇧⇧ � Ȳ⇧j ⇧ + Ȳ⇧⇧⇧ .
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3.4. Two-factors analysis variance, (two-way ANOVA).

SS for ANOVA Table

SSA =
aX

i

bX

j

nX

k

⌧̂i
2 =

aX

i

y
2
i ⇧⇧
bn

� y
2
⇧⇧⇧

abn
;

SSB =
aX

i

bX

j

nX

k

�̂j
2
=

bX

j

y
2
⇧j ⇧
an

� y
2
⇧⇧⇧

abn
;

SSAB =
aX

i

bX

j

nX

k

ˆ(⌧�)2
ij
=

aX

i

bX

j

y
2
ij ⇧
n

� y
2
⇧⇧⇧

abn
� SSA� SSB ;

SSE =
aX

i

bX

j

nX

k

�
Yijk � Ȳij ⇧

�2
;

SST =
aX

i

bX

j

nX

k

�
Yijk � Ȳ⇧⇧⇧

�2
=

aX

i

bX

j

nX

k

y
2
ijk

� y
2
⇧⇧⇧

abn

= SSA+ SSB + SSAB + SSE .
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3.4. Two-factors analysis variance, (two-way ANOVA).

ANOVA Table
Source of
variation

SS df MS

A Treatments SSA =
P

a

i

y
2
i⇧⇧
bn

� y
2
⇧⇧⇧
abn

a � 1 MSA = SSA

a�1

B Treatments SSB =
P

b

j

y
2
⇧j⇧
an

� y
2
⇧⇧⇧
abn

b � 1 MSB = SSB

b�1

Interaction SSAB =
P

a

i

P
b

j

y
2
ij⇧
n

� y
2
⇧⇧⇧
abn

� SSA � SSB (a � 1)(b � 1) MSAB = SSAB

(a�1)(b�1)

Error SSE =
P

a

i

P
b

j

P
n

k
(yijk � ȳij⇧)2 ab(n � 1) MSE = SSE

ab(n�1)

Total SST =
P

a

i

P
b

j

P
n

k
y
2
ijk

� y
2
⇧⇧⇧
abn

abn � 1
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3.4. Two-factors analysis variance, (two-way ANOVA).

Test Hypotheses for two-way ANOVA

I Test for factor A e↵ect:

H0 : µ1⇧ = µ2⇧ = · · · = µa⇧ vs H1 : µi ⇧ 6= µj ⇧ 9(i ,j)

) H0 : ⌧i = 0 , 8i vs H1 : ⌧i 6= 0 , 9i

Under H0 we have that F0 =
MSA

MSE

H0⇠ F(a�1,ab(n�1)).

I We reject H0 in the upper-tailed of the F(a�1,ab(n�1)) distribu-
tion.
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3.4. Two-factors analysis variance, (two-way ANOVA).

I Test for factor B e↵ect:

H0 : µ⇧1 = µ⇧2 = · · · = µ⇧b vs H1 : µ⇧i 6= µ⇧j 9(i ,j)

) H0 : �j = 0 , 8j vs H1 : �j 6= 0 , 9j

Under H0 we have that F0 =
MSB

MSE

H0⇠ F(b�1,ab(n�1)).

I We reject H0 in the upper-tailed of the F(b�1,ab(n�1)) distribu-
tion.
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3.4. Two-factors analysis variance, (two-way ANOVA).

I Test for interaction E↵ect:

H0 : µ11 = µ12 = µ21 = µ22 · · · = µab vs H1 :⇠ H0

H0 : (⌧�)ij = 0 , 8(i , j) vs H1 : (⌧�)ij 6= 0 , 9(i ,j)

Under H0 we have that F0 =
MSAB

MSE

H0⇠ F((a�1)(b�1),ab(n�1)).

I We reject H0 in the upper-tailed of the F((a�1)(b�1),ab(n�1))

distribution.
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Two-way ANOVA with R

Weightgain Data set (in library(HSAUR)) with

library(HSAUR)

data(weightgain)

               package:HSAUR                R Documentation

Gain in Weight of Rats

Description:

     The data arise from an experiment to study the gain in weight of
     rats fed on four different diets, distinguished by amount of
     protein (low and high) and by source of protein (beef and cereal).

Usage:

     data("weightgain")
     
Format:

     A data frame with 40 observations on the following 3 variables.

     ‘source’ source of protein given, a factor with levels ‘Beef’ and
          ‘Cereal’.

     ‘type’ amount of protein given, a factor with levels ‘High’ and
          ‘Low’.

     ‘weightgain’ weigt gain in grams.

Details:

     Ten rats are randomized to each of the four treatments. The
     question of interest is how diet affects weight gain.
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Two-way ANOVA with R

Weightgain Data set (in library(HSAUR)) with

> head(weightgain)

  source type weightgain
1   Beef  Low         90
2   Beef  Low         76
3   Beef  Low         90
4   Beef  Low         64
5   Beef  Low         86
6   Beef  Low         51

> summary(weightgain)
    source     type      weightgain    
 Beef  :20   High:20   Min.   : 51.00  
 Cereal:20   Low :20   1st Qu.: 75.50  
                       Median : 88.50  
                       Mean   : 87.25  
                       3rd Qu.: 98.00  
                       Max.   :118.00  
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Two-way ANOVA with R

> weightgain.aov= aov(weightgain ~type+source+ type * source, data = 
weightgain)
> summary(weightgain.aov)

            Df Sum Sq Mean Sq F value Pr(>F)  
type         1   1300  1299.6   5.812 0.0211 *
source       1    221   220.9   0.988 0.3269  
type:source  1    884   883.6   3.952 0.0545 .
Residuals   36   8049   223.6 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Two-way ANOVA with R

> model.tables(weightgain.aov, type="mean")
Tables of means
Grand mean
      
87.25 

 type 
type
 High   Low 
92.95 81.55 

 source 
source
  Beef Cereal 
  89.6   84.9 

 type:source 
      source
type   Beef  Cereal
  High 100.0  85.9 
  Low   79.2  83.9 
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Two-way ANOVA with R

interaction.plot(weightgain$type,
weightgain$source,weightgain$weightgain)
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Two-way ANOVA with R

plot.design(weightgain)
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Two-way ANOVA with R

> pairw.anova(weightgain$weightgain, weightgain$type, method="bonf")

95% Bonferroni confidence intervals 

             Diff   Lower    Upper  Decision Adj. p-value
muHigh-muLow 11.4 1.46412 21.33588 Reject H0     0.025649
> pairw.anova(weightgain$weightgain, weightgain$source, method="bonf")

95% Bonferroni confidence intervals 

                Diff    Lower    Upper Decision Adj. p-value
muBeef-muCereal  4.7 -5.80501 15.20501   FTR H0     0.370788
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