
INSTITUTO SUPERIOR TÉCNICO
DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

ORGANIZAÇÃO DE COMPUTADORES

LEIC

Second Lab Assignment: System Modeling and Profiling

Version 1.1.0

2022/2023

1 Introduction

The goal of this assignment is twofold: (i) to determine the characteristics of a computer’s caches, and
(ii) to leverage the obtained knowledge about the caches in order to optimize the performance of a given
program. For this task, the students will make use of a performance analysis tool to have direct access to
hardware performance counters available on most modern microprocessors. The tool that will be used is
the standard Application Programming Interface (API): PAPI [1].

In the rest of this section, we make a brief introduction to PAPI, and describe the targeted computer
platform and the development environment. In Section 3, we describe the procedure for modeling the L1
and L2 caches of the targeted platform (Subsection 3.1), and provide a guide for analyzing the perfor-
mance of a matrix-multiply code segment and optimizing it based on the characteristics of the L2 cache
of the target architecture (Subsection 3.2).

1.1 Targeted Platform and Development Environment

IMPORTANT: This assignment must be performed on the computers of your lab classes room.
These computers have similar hardware characteristics, and any of them can be used as a target platform.
Note that, since this work is hardware-dependent, conducting it on an computer with different hardware
characteristics could produce unexpected results, and hence invalidating your work. This means you
should always use the same lab. If you are an Alameda student, you can access the specific lab computer
you want (see https://welcome.rnl.tecnico.ulisboa.pt/#labs-access).

To properly setup the development environment, it is necessary to obtain the PAPI library and a set
of auxiliary program files. This material can be found in the package lab2_kit.zip, which can be
downloaded from the course website. After downloading and uncompressing this package on any of the
lab classes’ computers, PAPI must be built. To this end, change directories to the location of the PAPI
source code: folder papi-X.X.X/src. Compile the code by issuing the commands: ./configure,
and make. This operation will produce a set of helper tools located in directory src/utils/ and create
the PAPI library papilib.a. The tool papi_avail, in particular, is useful to determine the PAPI events
supported on the target platform. The library will be linked to the auxiliary programs presented in the
following sections.

Lab. II - Pág. 2 de 22

2 Exercise

To help determining the characteristics of the labs computer’s caches, the following exercises will help
you estimate cache parameters from small C applications.

The first step to get acquainted with the procedure is to determine only the size of the cache using
a small C application on a (known) machine, such as the code you have analyzed on lab exercise VI.3.
This C code, is a simplified version of the following programs in this assignment. Basically, it iterates
over an array to determine the cache size.

To guarantee that you measure the time accurately, please use the source code available in the labkit
(file spark.c).

In order to perform the evaluation you should go to your lab in order to access the cache size by
running the application there. You may want to repeat the evaluation of the elapsed time a few times
to achieve statistical significance. You should table the relevant results for different cache sizes on the
response sheet and make a conclusion regarding the cache size. You can calculate more measures before
the output, examine the final part of the source code file.

1. What is the cache capacity of the computer you tested? Please justify.

To discover the other cache parameters, you’re going to modify the C application, so that it generates
different data access patterns. Please spend a few minutes analyzing the modifications to the source code.

for(size_t cache_size = CACHE_MIN; cache_size < CACHE_MAX; cache_size = 2*cache_size) {
for(size_t stride = 1; stride <= cache_size/2; stride = 2*stride){

limit = cache_size - stride + 1;
for(ssize_t i = 10 * stride; i > 0; i--) {

for(index = 0; index < limit; index += stride) {
array[index] = array[index] + 1;

}
}

}
}

The meaning of each variable is the following:

array[] an arbitrary large array that will be repeatedly accessed to measure the cache miss pattern;

cache_size value of the cache size under test; all cache sizes given by integer powers of 2, between
CACHE_MIN = 8kB and CACHE_MAX = 64kB should be considered;

stride states how many entries are being skipped at each access; for example, if the stride is 4, entries
0, 4, 8, 12, ... in the array are being accessed, while entries 1, 2, 3, 5, 6, 7, 9, 10, 11, ... are skipped;

limit the largest address that will be accessed for the cache size and access pattern under test;

repeat denotes the number of times that each access pattern will be repeated in array.
The execution time for this code segment on this machine yield the chart depicted in Figure 1,

by varying the adopted value for the stride parameter and for different array sizes, defined between
ARRAY_MIN = 4kB and ARRAY_MAX = 4MB.

2. What is the cache capacity of the computer?

3. What is the size of each cache block?

4. What is the L1 cache miss penalty time?

Lab. II - Pág. 3 de 22

200

300

400

500

600

700

800

900

1000

1100

T
im

e
 f

o
r

re
a

d
 +

 w
ri

te
 (

n
s)

Stride

4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M

Figure 1: Variation of the cache access time with the adopted stride value for different array sizes.

3 Procedure

3.1 Modeling Computer Caches

In the first part of this assignment, the goal is to model the characteristics of the L1 data cache and L2
cache of the targeted computer platform. Next, we provide instructions for performing this analysis.

Use the forms at the end to answer the questions below.

3.1.1 Modeling the L1 Data Cache

The methodology to experimentally model the L1 data cache consists in considering the total amount of
data cache misses during the execution of the following code sequence of program cm1.c, similar to the
program in Section 2. This program can be found in the package lab2_kit.zip.

for(array_size=ARRAY_MIN; array_size < ARRAY_MAX; array_size=array_size*2)
for(stride=1; stride <= array_size/2; stride=stride*2){

limit = array_size - stride + 1;
for(repeat=0; repeat<=200*stride; repeat++)

for(index=0; index<limit; index+=stride)
x[index] = x[index] + 1;

}

a) Change to directory cm1/, in the package lab2_kit.zip, and analyze de code of the program
cm1.c. Identify its source code with the program described above.
What are the processor events that will be analyzed during its execution? Explain their meaning.

b) Compile the program cm1.c using the provided Makefile and execute cm1. Plot the variation of
the average number of misses (Avg Misses) with the stride size, for each considered dimension
of the L1 data cache (8kB, 16kB, 32kB and 64kB).

NOTE: A fast sketch of these plots can be drawn in your computer by running the following commands:

./cm1 > cm1.out

./cm1_proc.sh

NOTE 2: You can draw these tables and plots on your computer, print, and attach to the report. You do not have to

Lab. II - Pág. 4 de 22

fill them by hand on the printed report.

NOTE 3: You may need to mark the script as executable before being able to run it.

c) By analyzing the obtained results:

• Determine the size of the L1 data cache. Justify your answer.

• Determine the block size adopted in this cache. Justify your answer.

• Characterize the associativity set size adopted in this cache. Justify your answer.

3.1.2 Modeling the L2 Cache

In this part of the assignment, the goal is to experimentally model the characteristics of the L2 cache of
the targeted computer platform. To analyze the computer’s L2 cache, we will use the same methodology
that was introduced in the previous section to model the L1 data cache.

a) Modify the program cm1.c in order to analyze the characteristics of the L2 cache. (Hint: use the
event PAPI_L2_DCM.) Describe and justify the changes introduced in this program.

b) Compile the program cm1.c, execute cm1, and plot the variation of the average number of misses
(Avg Misses) with the stride size, for each considered dimension of the L2 cache.

c) By analyzing the obtained results:

• Determine the size of the L2 cache. Justify your answer.

• Determine the block size adopted in this cache. Justify your answer.

• Characterize the associativity set size adopted in this cache. Justify your answer.

3.2 Profiling and Optimizing Data Cache Accesses

Often, programmers wishing to improve their programs’ performance focus their attention on how the
programs affect the computer’s caches. In the following, it will be analyzed how simple code changes
can help to improve that performance for a matrix multiplication application.

Consider a simple matrix multiplication application, operating on two square matrices of N × N
16-bit integer elements, with N = 1024. From a mathematical point of view, given two matrices A and
B, with elements aij and bij such that 0 ≤ i, j < N , the product matrix C is defined as:

cij =

N−1∑
k=0

aikbkj = ai1b1j + ai2b2j + . . .+ ai(N−1)b(N−1)j (1)

Lab. II - Pág. 5 de 22

Figure 2: Straightforward matrix multiplication.

3.2.1 Straightforward implementation

A straight-forward C implementation of Eq. 1 can look like this:

for (i = 0; i < N; ++i) {
for (j = 0; j < N; ++j) {

for (k = 0; k < N; ++k) {
res[i][j] += mul1[i][k] * mul2[k][j];

}
}

}

The two input matrices are mul1 and mul2. The result matrix res is assumed to be initialized to all
zeroes.

The provided program mm1.c includes this code sequence and all the necessary initialization steps,
as well as the set of statements that are required in order to profile its execution using the PAPI toolbox.

a) Change to directory mm1/ and analyze de code of the program mm1.c. Identify its source code
with the program described above.
What is the total amount of memory that is required to accommodate each of these matrices?

b) Compile the source file mm1.c using the provided Makefile and execute it. Fill the table with
the obtained data.

c) Evaluate the resulting L1 data cache Hit-Rate.

3.2.2 First Optimization: Matrix transpose before multiplication [2]

By analyzing the obtained results, it can be observed that such a straightforward implementation suffers
from a severe penalty in what concerns the amount of L2 cache misses resulting from its access pattern.
In fact, while mul1 matrix is accessed sequentially, the inner loop advances the row number of mul2
(see Fig. 2), meaning successive accesses to far away memory positions.

Figure 3: Transposed matrix multiplication.

Lab. II - Pág. 6 de 22

One possible remedy to attenuate such problem is based on matrix transposition. In fact, since
each matrix element is accessed multiple times, it might be worthwhile to rearrange (“transpose,” in
mathematical terms) the second matrix mul2 before using it (see Fig. 3):

cij =
N−1∑
k=0

aikb
T
jk = ai1b

T
j1 + ai2b

T
j2 + . . .+ ai(N−1)b

T
j(N−1) (2)

After the preliminary transposition step, both matrices may be iterated sequentially. As far as the C
code is concerned, it now looks like this:

int16_t tmp[N][N];

// transposition
for (i = 0; i < N; ++i) {

for (j = 0; j < N; ++j) {
tmp[i][j] = mul2[j][i];

}
}

// multiplication
for (i = 0; i < N; ++i) {

for (j = 0; j < N; ++j) {
for (k = 0; k < N; ++k) {

res[i][j] += mul1[i][k] * tmp[j][k];
}

}
}

Variable tmp is a temporary array to store the transposed matrix.
One direct consequence of this optimization is that it now requires additional accesses to the data

memory. Hopefully, this extra cost can be easily recovered, since the 1024 non-sequential accesses per
column are usually much more expensive.

a) Change to directory mm2/ and analyze the code of the program mm2.c. Identify its source code
with the program described above. Compile this program using the provided Makefile and exe-
cute it.

Fill the table with the obtained data.

b) Evaluate the resulting L1 data cache Hit-Rate.

c) Change the code in the program mm2.c in order to include the matrix transposition in the execution
time. Compile this program using the provided Makefile and execute it.

Fill the table with the obtained data.

Comment on the obtained results when including the matrix transposition in the execution time.

d) Compare the obtained results with those that were obtained for the straightforward implementation,
by calculating the difference of the resulting hit-rates (∆HitRate) and the obtained speedups.

3.2.3 Second Optimization: Blocked (tiled) matrix multiply [2]

Despite the good results that may be obtained with the matrix transposition method, in many applications
this approach can not be applied, either because the matrix is too large or the available memory is too
small. Hence, other alternatives, which do not require the extra copy procedure, should be studied.

The search for an alternative processing scheme should start with a close examination of the involved
math and the operations performed by the original implementation. Trivial math knowledge shows that
the order of the several additions to obtain each element of the result matrix is irrelevant, as long as

Lab. II - Pág. 7 de 22

each addend appears exactly once. This understanding will lead to solutions which reorder the additions
performed in the inner loop of the original code.

According to the original algorithm, the adopted order to access the elements of matrix mul2 is:
(0,0), (1,0), ... , (N -1,0), (0,1), (1,1), Although the elements (0,0) and (0,1) are in the same cache
line, by the time the inner loop completes one round, this cache line has long been evicted. For this
example, each round of the inner loop requires, for each of the three matrices, 1024 cache lines, which
is much more than what is available in most processors’ caches.

One possible solution is to simultaneously handle more than one iteration of the middle loop, while
executing the inner loop. In this case, several values which are guaranteed to be in cache will be used, thus
contributing to a reduction of the L2 cache miss-rate. Hence, to maximize the speedup provided by this
technique, it is necessary to adapt the dimension of the sub-matrix under processing to the cache block
size, by taking into account the size of each matrix element. As a hypothetical example, considering that
a short operand occupies 2-Bytes, this means that a 64-Byte cache block will accommodate 32 matrix
elements, thus defining the optimal size for the sub-matrix line to be 32 (see Fig. 4).

Figure 4: Blocked matrix multiplication.

As far as the C code is concerned, it now looks like this:

#define SUB_MATRIX_SIZE (CACHE_LINE_SIZE / sizeof (short))

for (i = 0; i < N; i += SUB_MATRIX_SIZE) {

for (j = 0; j < N; j += SUB_MATRIX_SIZE) {

for (k = 0; k < N; k += SUB_MATRIX_SIZE) {

for (i2 = 0, rres = &res[i][j], rmul1 = &mul1[i][k];

i2 < SUB_MATRIX_SIZE;

++i2, rres += N, rmul1 += N) {

for (k2 = 0, rmul2 = &mul2[k][j]; k2 < SUB_MATRIX_SIZE; ++k2, rmul2 += N) {

for (j2 = 0; j2 < SUB_MATRIX_SIZE; ++j2) {

rres[j2] += rmul1[k2] * rmul2[j2];

}

}

}

}

}

}

The most visible change is that the code has six nested loops now. The outer loops iterate with
intervals of SUB_MATRIX_SIZE (the cache line size CACHE_LINE_SIZE divided by sizeof(short)).
This divides the matrix multiplication in several smaller problems which can be handled with more cache
locality. The inner loops iterate over the missing indexes of the outer loops. There are, once again, three
loops. The k2 and j2 loops are in a different order. This is done because, in the actual computation, only
one expression depends on k2 but two depend on j2.

a) Change to directory mm3/ and analyze the code of the program mm3.c. Identify its source code
with the program described above.

Change the program source code in order to comply the algorithm parameterization (sub-matrix
line size) with the block size (CLS) that was determined in Section 3.1.

How many matrix elements can be accommodated in each cache line?

b) Compile this program using the provided Makefile and execute it. Fill the table with the obtained
data.

Lab. II - Pág. 8 de 22

c) Evaluate the resulting L1 data cache Hit-Rate.

d) Compare the obtained results with those that were obtained for the straightforward implementation,
by calculating the difference of the resulting hit-rates (∆HitRate) and the obtained speedup.

e) Compare the obtained results with those that were obtained for the matrix transpose implementa-
tion by calculating the difference of the resulting hit-rates (∆HitRate) and the obtained speedup.
If the obtained speedup is positive, but the difference of the resulting hit-rates is negative, how
do you explain the performance improvement? (Hint: study the hit-rates of the L2 cache for both
implementations; You may use the following PAPI events PAPI_L2_DCH (or PAPI_L2_DCM)
and PAPI_L2_DCA. Run papi_avail to check for available events and understand their meaning.)

References

[1] Performance Application Programming Interface (PAPI). Webpage. "http://icl.cs.utk.
edu/papi", December 2008.

[2] Ulrich Drepper. What every programmer should know about memory. Technical report, Red Hat,
Inc., November 2007.

[3] PAPI User’s Guide.

[4] PAPI Programmer’s Reference.

Lab. II - Pág. 9 de 22

Second Lab Assignment: System Modeling and Profiling

STUDENTS IDENTIFICATION:

Number: Name:

2 Exercise

Please justify all your answers with values from the experiments.

1. What is the cache capacity of the computer you used (please write the workstation name)?

Array Size

t2-t1

accesses a[i]

mean access time

Consider the data presented in Figure 1. Answer the following questions (2, 3, 4) about the machine used
to generate that data.

2. What is the cache capacity?

3. What is the size of each cache block?

4. What is the L1 cache miss penalty time?

Lab. II - Pág. 10 de 22

3 Procedure

3.1.1 Modeling the L1 Data Cache

a) What are the processor events that will be analyzed during its execution? Explain their meaning.

b) Plot the variation of the average number of misses (Avg Misses) with the stride size, for each
considered dimension of the L1 data cache (8kB, 16kB, 32kB and 64kB).
Note that, you may fill these tables and graphics (as well as the following ones in this report)
on your computer and submit the printed version.

Lab. II - Pág. 11 de 22

Array Size Stride Avg Misses Avg Cycl Time

8kBytes

1
2
4
8

16
32
64
128
256
512

1024
2048
4096

16kBytes

1
2
4
8

16
32
64
128
256
512

1024
2048
4096
8102

Array Size Stride Avg Misses Avg Cycl Time

32kBytes

1
2
4
8
16
32
64

128
256
512

1024
2048
4096
8102
16384

64kBytes

1
2
4
8
16
32
64

128
256
512

1024
2048
4096
8102
16384
32768

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220
0

0.2

0.4

0.6

0.8

1.0

Lab. II - Pág. 12 de 22

c) By analyzing the obtained results:

• Determine the size of the L1 data cache. Justify your answer.

• Determine the block size adopted in this cache. Justify your answer.

• Characterize the associativity set size adopted in this cache. Justify your answer.

Lab. II - Pág. 13 de 22

3.1.2 Modeling the L2 Cache

a) Describe and justify the changes introduced in this program.

b) Plot the variation of the average number of misses (Avg Misses) with the stride size, for each
considered dimension of the L2 cache.

Lab. II - Pág. 14 de 22

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220
0

0.2

0.4

0.6

0.8

1.0

c) By analyzing the obtained results:

• Determine the size of the L2 cache. Justify your answer.

• Determine the block size adopted in this cache. Justify your answer.

• Characterize the associativity set size adopted in this cache. Justify your answer.

Lab. II - Pág. 15 de 22

3.2 Profiling and Optimizing Data Cache Accesses

3.2.1 Straightforward implementation

a) What is the total amount of memory that is required to accommodate each of these matrices?

b) Fill the following table with the obtained data.

Total number of L1 data cache misses ×106

Total number of load / store instructions completed ×106

Total number of clock cycles ×106

Elapsed time seconds

c) Evaluate the resulting L1 data cache Hit-Rate:

Lab. II - Pág. 16 de 22

3.2.2 First Optimization: Matrix transpose before multiplication [2]

a) Fill the following table with the obtained data.

Total number of L1 data cache misses ×106

Total number of load / store instructions completed ×106

Total number of clock cycles ×106

Elapsed time seconds

b) Evaluate the resulting L1 data cache Hit-Rate:

c) Fill the following table with the obtained data.

Total number of L1 data cache misses ×106

Total number of load / store instructions completed ×106

Total number of clock cycles ×106

Elapsed time seconds

Comment on the obtained results when including the matrix transposition in the execution time:

d) Compare the obtained results with those that were obtained for the straightforward implementation,
by calculating the difference of the resulting hit-rates (∆HitRate) and the obtained speedups.

∆HitRate = HitRatemm2 −HitRatemm1:

Speedup(#Clocks) = #Clocksmm1/#Clocksmm2:

Speedup(Time) = Timemm1/Timemm2:

Comment:

Lab. II - Pág. 17 de 22

3.2.3 Second Optimization: Blocked (tiled) matrix multiply [2]

a) How many matrix elements can be accommodated in each cache line?

b) Fill the following table with the obtained data.

Total number of L1 data cache misses ×106

Total number of load / store instructions completed ×106

Total number of clock cycles ×106

Elapsed time seconds

c) Evaluate the resulting L1 data cache Hit-Rate:

d) Compare the obtained results with those that were obtained for the straightforward implementation,
by calculating the difference of the resulting hit-rates (∆HitRate) and the obtained speedup.

∆HitRate = HitRatemm3 −HitRatemm1:

Speedup(#Clocks) = #Clocksmm1/#Clocksmm3:

Comment:

e) Compare the obtained results with those that were obtained for the matrix transpose implementa-
tion by calculating the difference of the resulting hit-rates (∆HitRate) and the obtained speedup.
If the obtained speedup is positive, but the difference of the resulting hit-rates is negative, how
do you explain the performance improvement? (Hint: study the hit-rates of the L2 cache for both
implementations;)

Lab. II - Pág. 18 de 22

∆HitRate = HitRatemm3 −HitRatemm2:

Speedup(#Clocks) = #Clocksmm2/#Clocksmm3:

Comment:

3.2.3 Comparing results against the CPU specifications

Now that you have characterized the cache on your lab computer, you are going to compare it against the
manufacturer’s specification. For this you can check the device’s datasheet, or make use of the command
lscpu. Comment the results.

Lab. II - Pág. 19 de 22

A PAPI - Performance Application Programming Interface

The PAPI project [1] specifies a standard Application Programming Interface (API) for accessing hard-
ware performance counters available in most modern microprocessors. These counters exist as a small
set of registers that count Events, defined as occurrences of specific signals related to the processor’s
function (such as cache misses and floating point operations), while the program executes on the pro-
cessor. Monitoring these events may have a variety of uses in the performance analysis and tuning of
an application, since it facilitates the correlation between the source/object code structure and the effi-
ciency of the actual mapping of such code to the underlying architecture. Besides performance analysis,
and hand tuning, this information may also be used in compiler optimization, debugging, benchmarking,
monitoring and performance modeling.

PAPI has been implemented on a number of different platforms, including: Alpha; MIPS R10K and
R12K; AMD Athlon and Opteron; Intel Pentium II, Pentium III, Pentium M, Pentium IV, Itanium 1 and
Itanium 2; IBM Power 3, 4 and 5; Cell; Sun UltraSparc I, II and II, etc.

Although each processor has a number of events that are native to that specific architecture, PAPI
provides a software abstraction of these architecture-dependent Native Events into a collection of Preset
Events, also known as predefined events, that define a common set of events deemed relevant and useful
for application performance tuning. These events are typically found in many CPUs that provide per-
formance counters. They give access to the memory hierarchy, cache coherence protocol events, cycle
and instruction counts, functional unit, and pipeline status. Hence, preset events may be regarded as
mappings from symbolic names (PAPI preset name) to machine specific definitions (native countable
events) for a particular hardware resource. For example, Total Cycles (in user mode) is mapped into
PAPI_TOT_CYC. Some presets are derived from the underlying hardware metrics. For example, Total
L1 Cache Misses (PAPI_L1_TCM) is the sum of L1 Data Misses and L1 Instruction Misses on a given
platform. The list of preset and native events that are available on a specific platform can be obtained
by running the commands papi_avail and papi_native_avail, both provided by the papi source
distribution.

Besides the standard set of events for application performance tuning, the PAPI specification also
includes both a high-level and a low-level sets of routines for accessing the counters. The high level
interface consists of eight functions that make it easy to get started with PAPI, by simply providing the
ability to start, stop, and read sets of events. This interface is intended for the acquisition of simple but
accurate measurement by application engineers [3, 4]:

• PAPI_num_counters – get the number of hardware counters available on the system;
• PAPI_flops – simplified call to get Mflops/s (floating point operation rate), real and processor

time;
• PAPI_ipc – gets instructions per cycle, real and processor time;
• PAPI_accum_counters – add current counts to array and reset counters;
• PAPI_read_counters – copy current counts to array and reset counters;
• PAPI_start_counters – start counting hardware events;
• PAPI_stop_counters – stop counters and return current counts.

The following is a simple code example of using the high-level API [3, 4]:

Lab. II - Pág. 20 de 22

#include <papi.h>

#define NUM_FLOPS 10000
#define NUM_EVENTS 1

int main(){
int Events[NUM_EVENTS] = {PAPI_TOT_INS};
long_long values[NUM_EVENTS];

/* Start counting events */
if (PAPI_start_counters(Events, NUM_EVENTS) != PAPI_OK)
handle_error(1);

do_some_work();

/* Read the counters */
if (PAPI_read_counters(values, NUM_EVENTS) != PAPI_OK)

handle_error(1);

printf("After reading the counters: %lld\n",values[0]);

do_some_work();

/* Add the counters */
if (PAPI_accum_counters(values, NUM_EVENTS) != PAPI_OK)

handle_error(1);

printf("After adding the counters: %lld\n", values[0]);

do_some_work();

/* Stop counting events */
if (PAPI_stop_counters(values, NUM_EVENTS) != PAPI_OK)
handle_error(1);

printf("After stopping the counters: %lld\n", values[0]);
}

Possible output:

After reading the counters: 441027
After adding the counters: 891959
After stopping the counters: 443994

The fully programmable low-level interface provides more sophisticated options for controlling the
counters, such as setting thresholds for interrupt on overflow, as well as access to all native counting
modes and events. Such interface is intended for third-party tool writers or users with more sophisticated
needs.

The PAPI specification also provides access to the most accurate timers available on the platform in
use. These timers can be used to obtain both real and virtual time on each supported platform: the real
time clock runs all the time (e.g., a wall clock), while the virtual time clock runs only when the processor
is running in user mode.

In the following code example, PAPI_get_real_cyc() and PAPI_get_real_usec() are used to
obtain the real time it takes to create an event set in clock cycles and in microseconds, respectively [3, 4]:

Lab. II - Pág. 21 de 22

#include <papi.h>

int main(){
long long start_cycles, end_cycles, start_usec, end_usec;
int EventSet = PAPI_NULL;

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
exit(1);

/*Create an EventSet */
if (PAPI_create_eventset(&EventSet) != PAPI_OK)

exit(1);

/* Gets the starting time in clock cycles */
start_cycles = PAPI_get_real_cyc();

/* Gets the starting time in microseconds */
start_usec = PAPI_get_real_usec();

do_some_work();

/* Gets the ending time in clock cycles */
end_cycles = PAPI_get_real_cyc();

/* Gets the ending time in microseconds */
end_usec = PAPI_get_real_usec();

printf("Wall clock cycles: %lld\n", end_cycles - start_cycles);
prinf(“Wall clock time in microseconds: %lld\n”, end_usec - start_usec);

}

Possible output:

Wall clock cycles: 100173
Wall clock time in microseconds: 136

Lab. II - Pág. 22 de 22

