
INSTITUTO SUPERIOR TÉCNICO

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

ORGANIZAÇÃO DE COMPUTADORES

LEIC

Primeiro Trabalho de Laboratório: Hierarquia de Memória

Version 1.0.3

IDENTIFICAÇÃO DO GRUPO:

Número: Nome:

2022/2023

1 Introduction

The objective of this assignment is to design an optimized cache architecture targeted for a specific
embedded application: a video encoder. This architecture shall be optimized in order to (i) minimize the
monetary cost of the system, and (ii) improve performance by reducing the overall cache miss penalty
time associated to the execution of the video encoding algorithm.

The rest of this section briefly describes the targeted application (Section 1.1), presents the require-
ments and restrictions for the memory hierarchy architecture (Section 1.2), and introduces DineroIV [1],
the cache simulator that will be adopted to assess the performance of the memory hierarchy architec-
ture (Section 1.3). In Section 2, guides the design of a cache structure that best matches the application
requirements.

To facilitate the analysis, the kit supplied provides a program to generate a trace file which records
the accesses to data memory generated by the execution of the encoding algorithm. A trace is a finite
sequence of memory references usually obtained by the interpretive execution of a program or set of
programs. This trace file will be the input to the necessary cache simulations by DineroIV.

Students MUST deliver the report of this work until the second lab of the third week

1.1 Targeted Application

The application whose performance we wish to improve is a video encoder, more specifically, a motion

estimation algorithm. This algorithm is usually the most computationally intensive operation of a MPEG-
x video encoding system. It aims to improve the efficiency of video compression by exploiting both the
temporal and spacial redundancy within an image sequence. To achieve this, the motion estimation
algorithm reduces the residual information between contiguous frames by tracking and compensating
movement using previously encoded images.

For this assignment, we will work with a real implementation of a motion estimation algo-
rithm. The C source code file of this implementation is available at the course webpage (file
motion_estimation.c). Further details of motion estimation can be found on the Appendix A.

1.2 Memory Hierarchy Architecture

To improve the performance of the video encoder, it is necessary to design a dedicated memory hierarchy,
to speed-up data accesses, taking into account the following set of requirements and restrictions.

The memory hierarchy consists of a dedicated SDRAM memory called frame memory and a set of
on-chip and off-chip SRAM cache memories. The frame memory is responsible for accommodating the
8-bit pixel values of the video frames that will be considered for the motion estimation operation. To
accommodate the video frames, this memory must have a capacity of 128 kBytes. Each pixel value is
stored in its own memory address using a raster format (from left to right and from top to bottom). The
cache memories interconnect the SDRAM memory and the motion estimation processor.

The characteristics of the memory devices that can be used in the design of this memory hierarchy
are specified in the table below (1MB = 220Byte).

Device Technology Access Time [ns] Price [e / MByte]

Cache L1 SRAM (on-chip) 2× [0.7 + 0.35× log2(#ways)] 10

Cache L2 SRAM (off-chip) 10× [0.7 + 0.55× log2(#ways)] 0.4

Frame Memory SDRAM 140 0.01

Table 1: Characteristics of the available memory devices.

Due to current market restrictions, the overall price of the desired memory hierarchy (frame memory
and caches) cannot exceed e 0.020.

To design an optimal memory architecture, you should investigate a configuration that provides the
best performance benefits for the targeted application while abiding by the price restrictions stated above.

Lab. I - Pág. 2 de 15

Thus, a configuration is optimal when it produces the lowest cost value for the following normalized cost
function. This function weighs both these factors by multiplying the Mean Access Time by the Cost of

the memory hierarchy (Frame memory + Caches).

Cost Function = Mean Access Time [ns]×Price of the memory hierarchy [e] (1)

Students shall analyze multiple cache configurations, and choose the memory architecture that best
satisfies the requirements. The procedure for conducting this analysis is described in Section 2. Some of
the configuration options that will be explored are [2]:

• number of cache levels (only L1 or L1+L2);

• cache size;

• associativity;

• write policy (write-through vs write-back).

Next we describe the simulation environment that will be used in order to gauge the performance of
the memory architecture so that the mean access time can be obtained.

1.3 Simulation Environment

To evaluate the performance of the memory architecture we will use DineroIV [1], a trace-driven cache
simulator. DineroIV is capable of simulating a complete memory hierarchy consisting of various caches
interconnected between the processor and the primary memory.

To perform a simulation, DineroIV takes a parameter set and a trace file as inputs. The parameter
set specifies the characteristics of the caches to be simulated, for example the cache size, the block size,
and the number of associativity ways. The trace file contains all memory references accessed by the
program under evaluation. These traces specify whether a memory reference is an instruction fetch, a
data read (LOAD), or a data write (STORE). For each reference, DineroIV simulates the behavior of the
specified cache configuration and generates hits and misses as appropriate. At the end of the simulation,
it produces a set of statistics which summarizes the performance of the simulation, including number of
references, misses and memory traffic generated by the processor.

To show a concrete usage example, consider the following execution of DineroIV, which is launched
from the command line:

dineroIV -l1-usize 8k -l1-ubsize 8

-l2-usize 128k -l2-ubsize 16 < trace.xdin

In this example, DineroIV simulates a caching architecture comprising a cache L1 and a cache L2.
The cache L1 has 8 kBytes and a block size of 8 bytes. The cache L2 has 128 kBytes and a block size of
16 bytes. The trace file that contains the read/write memory access patterns is provided in file trace.xdin.

DineroIV is extensively described in its user manual [3]. Nevertheless, we summarize the most
relevant parameters for the purpose of this assignment. The basic command to run DineroIV is:

dineroIV [options] < tracefile

where the most relevant parameters are:
-lN-Tsize P - Sets the cache size of the specified level N cache to P bytes
-lN-Tbsize P - Sets the block size of the specified level N cache to P bytes
-lN-Tassoc U - Sets the associativity of the specified level N cache to U
-lN-Tccc - Computes Compulsory/Capacity/Conflict miss rates for the specified level N

cache

Lab. I - Pág. 3 de 15

where:
T - is the cache type (u=unified, i=instruction, d=data);
N - is the cache level (1 = N), where level 1 is closest to the processor;
U - is an unsigned decimal integer;
P - is like U, but must be a power of 2, with an optional scaling suffix character (one of kKmMgG,

for multiplication by 0x400, 0x100000, or 0x40000000).

Since DineroIV requires a trace file containing the sequence of memory accesses to be performed, for
this assignment it is necessary to generate such a trace file for the motion estimation algorithm described
in Section 1.1. To this end, the supplied implementation (program motion_estimation.c) includes
two special functions (frame_memory_read() and frame_memory_write()) which register data
memory accesses on the trace file (trace.log). This information will then enable the simulation of
several cache configurations in order to obtain the one that offers the best performance levels within an
acceptable cost.

2 Procedure

2.1 Understanding the Program

Without delving into the details of the signal processing application, analyze the flow of the C program.
Observe the data access patterns and identify the critical sequence of accesses which may have a larger
impact on the performance of the system.

2.2 Generation of the trace file

a) Open a Linux terminal and download the source file of the motion estima-
tion algorithm (motion_estimation.c), as well as the input pixel data file
(table_tennis_qcif_3frames.yuv), from the course webpage. Copy them into
your working directory and compile the source file, by issuing the command:

gcc motion_estimation.c -o motion_estimation

b) Run the compiled executable file:
./motion_estimation

The executed motion estimation program will generate two output files:

results.log - with information about the result of the motion estimation procedure;
trace.log - with the trace of all frame memory addresses that were accessed during the

program execution.

NOTE: The trace.log file occupies a significant amount of disk space (about 153 MBytes). In
the event of any problem concerned with disk quota restrictions, run the above executable
in the /tmp directory of your Linux terminal.

Lab. I - Pág. 4 de 15

2.3 Cache L1

2.3.1 Theory of cache

1. Explain the different types of cache misses: compulsory, capacity, and conflict.

2. Explain the different types of cache writing-policies.

2.3.2 Cache L1: dimension and block size

a) Consider a memory hierarchy composed of a single cache memory (L1), which interconnects the
SDRAM frame memory and the CPU. Considering the characteristics of the available memory de-
vices (see Table 1), and the maximum total cost of the memory hierarchy, determine the maximum
storage space of cache L1.

NOTES:

• the size of any of the memory modules (frame buffer, any cache) must be an integer power of 2:
L1_size = 2MAX;

• do not forget to consider the cost of the 128 kByte frame memory.

b) Consider three different dimensions for the L1 data cache: L1_size ∈ {2MAX, 2MAX−1, 2MAX−2}.
For each of these dimensions, and assuming a direct mapping configuration, use the dineroIV
simulator to evaluate the resulting average data miss-rate considering the following block sizes:
Block_size ∈ {8, 16, 32, 64}.

Fill the following table with the obtained data:

L1_size = L1_size = L1_size =

Block size = 8 Bytes

Block size = 16 Bytes

Block size = 32 Bytes

Block size = 64 Bytes

Lab. I - Pág. 5 de 15

c) For each L1 cache size, plot the variation of the miss-rate with the size of the block.

M
is

s-
R

at
e

[%
]

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

d) By considering the obtained results, select two L1 cache configurations (dimension and block size)
that offer the best trade-off between the cost of the device and the resulting average miss-rate.
Label in the previous plot the two configurations chosen.

L1_config_1 L1_config_2

Cache size: Cache size:

Block size: Block size:

Miss-Rate: Miss-Rate:

Cost = Price × Miss-Rate: Price × Miss-Rate:

2.3.3 Cache L1: set associativity

a) For each of the two L1 cache setups previously selected, evaluate the compulsory, capacity, con-

flict and total miss-rates when the following configurations are considered: set associativity of 1
(direct-mapped), 2, 4, 8.

Fill the following table with the obtained data:

L1_config_1 L1_config_2

Miss-Rate 1-way 2-ways 4-ways 8-ways 1-way 2-ways 4-ways 8-ways

Compulsory

Capacity

Conflict

TOTAL

Lab. I - Pág. 6 de 15

b) For each L1 cache setup, draw a plot with the variation of the obtained compulsory, capacity,
conflict and total miss-rates for the considered set associativity ways.

L1_config_1: L1_config_2:
C

om
pu

ls
or

y,
C

ap
ac

it
y,

C
on

fl
ic

tM
is

s-
R

at
es

[%
]

0 1 2 3 4 5 6
0

1

2

3

4

5

6

T
O

TA
L

M
is

s-
R

at
e

[%
]

C
om

pu
ls

or
y,

C
ap

ac
it

y,
C

on
fl

ic
tM

is
s-

R
at

es
[%

]

0 1 2 3 4 5 6
0

1

2

3

4

5

6

T
O

TA
L

M
is

s-
R

at
e

[%
]

c) Comment the results above.

d) Write the expression that provides the mean access time as a function of the L1 cache hit
(

pL1H
)

and miss
(

pL1M
)

rates, the L1 cache hit
(

tL1H
)

and miss
(

tL1M
)

access times, and the time penalty
associated to each associativity level, as expressed in Table 1. Consider a non-blocking critical-

word-first load policy, where the bus occupancy rate has a lower impact in the performance of the
cache.

e) Evaluate the mean access time of each configuration, considering the obtained miss-rates and the
time penalty associated to each associativity level. Evaluate the resulting cost function, as defined
in Eq. 1 (including the frame memory).

Fill the following table with the obtained data:

L1_config_1 L1_config_2

1-way 2-ways 4-ways 8-ways 1-way 2-ways 4-ways 8-ways

Miss-Rate

Access time

Price

Cost Function

Lab. I - Pág. 7 de 15

f) Draw conclusions:

2.3.4 Cache L1: write policy

a) By analyzing the sequence of memory accesses generated by the motion estimation algorithm (see
Fig. 3), select the best setup for the cache writing-policy: write-back versus write-through, write-

allocate versus write-not-allocate. Justify. (Note that the number of writes is much smaller than
the number of reads.)

2.3.5 Cache L1: final selection

a) By considering the obtained results, select the L1 cache setup that offers the best compromise
between the cost of the device and the resulting average access time.

L1_Config

Cache dimension:

Block size:

Associativity:

Write-policy:

Miss-Rate:

Access time:

Price:

Cost Function:

2.4 Cache L2

Consider now that the obtained SRAM on-chip L1 cache is connected to a SRAM off-chip L2 cache in
order to obtain a memory hierarchy composed of two caches (L1+L2), which interconnect the SDRAM
frame memory and the CPU. After specifying the L1 cache we continue the design evaluating and speci-
fying a L2 cache. (The real design process would be more complex since it would require the evaluation
of several combinations of L1 and L2 caches.)

Lab. I - Pág. 8 de 15

2.4.1 Cache L2: dimension

a) Considering the maximum cost of the whole memory hierarchy, as well as the price of L1 cache
and the 128 kByte frame memory, determine the maximum storage space of L2 cache (an integer
power of 2), considering the characteristics of the available memory devices (see Table 1).

b) For the obtained maximum storage space for L2 cache, adopting a direct mapping configuration,
use dineroIV simulator to evaluate the resulting average data miss-rate considering the following
block sizes: (1× L1_block), (2× L1_block), (4× L1_block) and (8× L1_block).

Fill the following table with the obtained data:

Block Size Miss-Rate

Block size = (1× L1_block)

Block size = (2× L1_block)

Block size = (4× L1_block)

Block size = (8× L1_block)

c) Plot the variation of the miss-rate with the size of the block.

M
is

s-
R

at
e

[%
]

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

d) From the obtained results, select the block size that offers the best trade-off between the resulting
average miss-rate and the time penalty associated with each data fetch from the primary memory.
Justify.

Lab. I - Pág. 9 de 15

L2 Block Size =

2.4.2 Cache L2:

a) Evaluate the compulsory, capacity, conflict and total miss-rates for the direct-mapped L2 data
cache.

Fill the following table with the obtained data:

Miss-Rate

Compulsory

Capacity

Conflict

TOTAL

b) Plot the variation of the obtained compulsory, capacity, conflict and total miss-rate.

C
om

pu
ls

or
y,

C
ap

ac
it

y,
C

on
fl

ic
tM

is
s-

R
at

e
[%

]

0 1 2 3 4 5 6
0

1

2

3

4

5

6

T
O

TA
L

M
is

s-
R

at
e

[%
]

c) Write the expression which provides the mean access time as a function of the L1 and L2 cache
hit (pL1H , pL2H) and miss (pL1M , pL2M) rates, L1 and L2 cache hit (tL1H , tL2H) and miss (tL1M , tL2M) access
times, and the time penalty, as expressed in table 1.

d) Evaluate the mean access time provided by the chosen configuration, considering the obtained
miss-rate and the time penalty. Evaluate the resulting cost function, as defined in Eq. 1.

Fill the following table with the obtained data:

Lab. I - Pág. 10 de 15

Miss-Rate

Access time

Price

Cost Function

2.5 Memory Hierarchy Configuration

a) By considering the obtained results, fill the following table with the selected characteristics for L1
and L2 cache memories, as well as the corresponding performance results of the overall memory
hierarchy.

Cache L1 Cache L2 Frame-Memory

Dimension [Bytes]: 128× 1024

Block size [Bytes]: −

Associativity: −

Write-policy: −

Local Miss-Rate [%]: −

Price [e]:

Global Miss-Rate [%]:

Global Access time [ns]:

Total Price [e]:

COST FUNCTION [ns×e]:

References

[1] dineroIV. Webpage. "http://www.cs.wisc.edu/~markhill/DineroIV", October 2017.

[2] David Patterson and John Hennessy. Computer Organization and Design: The Hardware/Software

Interface. Morgan Kaufmann, 4th edition, 2011.

[3] Jan Edler and Mark D. Hill. dineroIV User Manual, 1997.

Lab. I - Pág. 11 de 15

A Block-based Motion Estimation Algorithm

In this appendix, we provide more details on the motion estimation program used in this assignment.
First, we clarify the purpose and context in which motion estimation is used, namely to improve the
efficiency of video compression in popular video encoding standards. Then, we provide an overview
of the key insight behind motion estimation which consists in reducing temporal redundancy of video
frames. Lastly, we present the motion estimation algorithm implemented in motion_estimation.c.

A.1 MPEG-x and H.26x Video Encoding

Recently, there has been a general proliferation of advanced video services and multimedia applications,
where video compression standards, such as MPEG-x or H.26x, have been developed to store and broad-
cast video information in digital form. The main goal of such video compression algorithms is to exploit
both the spatial and the temporal redundancy within an image sequence in order to achieve the maximum
compression as possible.

In video coding it is well established that video data tends to have a high degree of spatial and
temporal redundancy. While spatial redundancies can be extensively exploited through the usage of the
transform based algorithms (such as the Discrete Cosine Transform - DCT), temporal redundancies are
usually exploited through the usage of prediction schemes. In fact, even in the presence of motion, we
can easily expect a high degree of temporal redundancy between the pixels of a given region A in one
image and the corresponding pixels, moved to region X , in the following image.

A.1.1 Reducing the Temporal Redundancy

Temporal redundancy is usually exploited by only encoding the difference between consecutive frames.
Hence, if we denote the two contiguous frames in Fig. 1 by I(t0 − 1) and I(t0), a first approach to
implement such prediction method would be to compress the differences frame ∆I = I(t0)− I(t0 − 1).

However, as it can be seen in Fig. 1, such differences frame may still contain a large amount of
information. The reason for this fact is mainly due to the presence of motion, which introduces a certain
displacement to every region of frame I(t0 − 1) into a new region at frame I(t0).

One way to reduce the magnitude of this residual information in the differences frame ∆I is to track
and compensate such movement using the previously encoded images. The process of computing the
changes among frames is usually referred to by temporal prediction with Motion Compensation (MC).
Motion compensation is thus defined as the process of compensating for the displacement of moving
objects from one frame to another. In practice, motion compensation is preceded by Motion Estimation

(ME), the process of tracking and finding the corresponding pixels among consecutive frames.
Intuitively, one might expect that the ideal procedure for reducing the temporal redundancy level is

the one that tracks every pixel from one frame to the following frame. However, this would be very com-
putationally intensive, and such methods would not provide reliable tracking due to the presence of noise
in the frames. Instead of tracking individual pixels from frame to frame, video coding standards only
allow tracking of information for M ×M pixel regions, commonly referred to as Macroblocks (MB).
The macroblock dimension of 16 × 16 pixels is generally chosen, because it offers a good compromise
between efficiently providing temporal redundancy reduction and requiring moderate computational re-
quirements.

Hence, the result of such a prediction scheme will be a synthesized frame Î(t0) = MC(I(t0 − 1)),
obtained with the macroblocks of the previous frame I(t0 − 1), displaced by the corresponding Motion

Vectors (MV). The differences frame, obtained by subtracting the current frame I(t0) with the motion
compensated frame Î(t0), will be defined as:

∆Î(t0) = I(t0)− Î(t0) (2)

⇔ ∆Î(x, y, t0) = I(x, y, t0)− I(x− u, y − v, t0 − 1) (3)

where I(x, y, t0) are the pixel values at spatial location (x, y) in the current frame I(t0), and I(x−u, y−
v, t0−1) are the corresponding pixel values at spatial location (x−u, y−v) in the previous or reference

Lab. I - Pág. 12 de 15

I(t0-1) I(t0)

∆I = I(t0) - I(t0-1)

Î(t0) = MC(I(t0-1))

∆Î = I(t0) - Î(t0)

MOTION

VECTORS

MOTION

COMPENSATION

MOTION

ESTIMATION

Figure 1: Reduncing the temporal redundancy using the motion compensation algorithm.

L
ab.

I
-

P
ág.13

de
15

frame I(t0 − 1). The coordinates (u, v) are the output of the motion estimator and define the relative
motion of a block from one frame to another. Hence, they are referred to as the motion vector for the
macroblock at (x, y). I(x − u, y − v, t0 − 1) is refereed to as the motion-compensated prediction of
I(x, y, t0) and ∆Î(x, y, t0) is the prediction residual for I(x, y, t0).

As it can be seen in Fig. 1, such a residual frame will contain a significantly smaller amount of
information. It is this differences or residual frame, as well as the computed motion vectors, that are
encoded and transmitted to the video decoding system.

A.1.2 Motion Estimation

Motion estimation is usually the most computational intensive operation of any MPEG-x video encoding
system. Fig. 2 illustrates this operation, as it is posed in most video coding standards. Given an Nh×Nv

sized reference frame (previous image) and an M ×M macroblock in the current frame, the objective of
motion estimation is to determine the M×M block in the reference frame that better matches (according
to a given criterion) the characteristics of the macroblock in the current frame. As it was referred before,
the current picture is defined as the frame (or image) at time instant t0. The reference picture is defined
as the frame (or image) at time instant t0 − 1.

The location of each macroblock is defined by the (x, y) coordinates of its top-left corner pixel.
Ideally, the whole reference picture would be searched for the best match; however, this is usually com-
putationally impractical. Instead, the search is restricted to a [−p,+p] search region around the original
location of the macroblock under processing in the current picture.

Matching Criterion

Let the pixels of the macroblock in the current frame be denoted as C(x, y) and the pixels in the
reference frame be denoted as R(x, y). The Sum of Absolute Differences (SAD) cost function is defined
as:

SAD (i, j) =
M−1
∑

k=0

M−1
∑

l=0

|C (x+ k, y + l)−R (x+ i+ k, y + j + l)| ; −p ≤ i, j ≤ p (4)

The best matching macroblock is defined as the macroblock R (x+ i, y + j) for which the SAD(i, j)
measure is minimized. The coordinates (i, j) will then define the corresponding motion vector.

Since the matching procedure is carried out by considering rectangular regions, in video coding
terminology such processing scheme is referred to as Block-Matching Algorithms (BMA).

(-p,-p) (M+p,-p)

(M+p,M+p)

M
+

2
p

+
1

M+2p+1

(M-1,0)

(M-1,M-1)

Search
Area

Best
Match

Previous Image

(0,0) (M-1,0)

(M-1,M-1)

Current Image

(0,M-1)

M

M

(-p,M+p)

Motion
Vector

(0,0)

Figure 2: Motion estimation process.

Lab. I - Pág. 14 de 15

Full-Search Block-Matching Motion Estimation Algorithm

/* ME algorithm for all macroblocks of the Nh ×Nv image */

for lin = 0 to ⌊Nv/M⌋ do

for col = 0 to ⌊Nh/M⌋ do

/* Computation of the MV of the MB defined by its upper-left corner (lin×M, col×M) */

Best_SAD ⇐ ∞ /* Minimum SAD initialization */

/* Searches all position of the search window defined within the previous image */

for i = −p to p do

for j = −p to p do

/* Processing of all the M ×M pixels of the candidate MB under processing */

SAD ⇐ 0 /* SAD measure initialization */

for k = 0 to (M − 1) do

for l = 0 to (M − 1) do

SAD + = | C (lin×M + k, col×M + l)−R (lin×M + i+ k, col×M + j + l) |
end for

end for

/* Comparison between the obtained SAD and the minimum SAD computed so far */

if SAD (i, j) < Best_SAD then

Best_SAD = SAD
MV (lin, col) = (i, j)

end if

end for

end for

end for

end for

Figure 3: Full-search block-matching motion estimation algorithm.

Given Eq. 4, the most straightforward method to find the optimal motion vector for each macroblock
is to compute SAD(i, j) at each location of the search space. This approach is referred to as the Full-
Search Block-Matching (FSBM) algorithm.

For each motion vector there are (2p+1)2 search locations. At each search location (i, j) the whole
set of M×M pixels is compared. Each pixel comparison requires three operations, namely, a subtraction,
an absolute-value calculation and one addition. Thus, the total number of operations per macroblock is
(2p + 1)2 ×M2 × 3 arithmetic operations. For a picture resolution of Nh × Nv and a frame rate of F
pictures per second, the overall complexity is NhNvF

M2 × (2p+ 1)2 ×M2 × 3 operations per second. For
typical values usually adopted in broadcast digital TV (4CIF format: Nh = 704 pixels, Nv = 576 pixels,
F = 30), M = 16 and p = 16, the full-search block-matching algorithm requires about 39.74 GOPS
(Giga operations per second).

The pseudo-code implementation of the full-search block-matching algorithm to compute all the
motion vectors MV(x, y) of an entire Nh × Nv pixels image is illustrated in Fig. 3. The C source
code file of a real implementation of this algorithm can be obtained at the course webpage (file
motion_estimation.c).

Lab. I - Pág. 15 de 15

