

Mestrado em Engenharia Electrotécnica e de Computadores

Redes Móveis e Sem Fios

Exame – 1^a parte

7 de Julho de 2021

Duração 1h30

In order to avoid grading mistakes, please answer each question <u>on a different page</u> and keeping the order as much as possible.

- In a mobile network using CDMA, there are two mobile stations (A and B) trying to transmit to a common base station. Station A is transmitting the bit sequence "01" with spreading factor 4, using key -1, -1, +1, +1. Station B is transmitting simultaneously a single bit "1" with spreading factor 8. The chip rate is the same for both stations. The used convention is to represent "0" as +1 and "1" as -1. The decoding thresholds are +1 and -1, respectively for logical "0" and logical "1".

 - b) Check if the data from station A is correctly received if station B is using the key -1, +1, +1, -1, -1, +1, +1, -1, +1, +1, -1, the noise is +2, -1, 0, 0, +1, 0, 0, 0 and the signals are received with the same power. (1,5 val)
 - c) Provide two advantages of pseudo-noise sequences over perfectly orthogonal codes in the context of DSSS. (2,0 val)
- 2) Consider a point-to-point UHF radio link operating in a 10 MHz wide channel centered at 1 GHz, with 8-PSK modulation. Each communication endpoint is equipped with a parabolic antenna with physical area 11m², mounted on a mast 5m high. The terrain is flat between the antennas. The noise power spectral density is 170 dBm/Hz. The transmit power is 500 mW. The receiver sensitivity is -77,85 dBm. The roll-off factor of the employed output filters is 0.
 - a) Calculate the FER for 30-byte frames when the received power is equal to the receiver sensitivity. (1,5 val)
 - b) Knowing that the effective aperture (A_e) of a parabolic antenna is related to its face area (A) as $A_e = 0.56A$, calculate the maximum communication range (1,5 val)
 - c) Draw the constellation diagram of the 8-PSK modulation. (1,0 val)
 - d) What is the bandwidth efficiency attained by the system when using the 8-PSK modulation? (1,0 val)
- 3) Consider an IEEE 802.11a sensor network with one Access Point and micro cameras operating at 54.0 Mbps. Each camera generates video with an expected image size of 2000 bytes, and a frame rate of 25 images/s. The RTP+UDP+IP headers together have a length of 40 octets and RTS/CTS is not being used. Additional data are as follows: SIFS=10us, DIFS=20us, PHY overhead = 54us, MAC DATA header and trailer = 34 bytes, MAC ACK=14 bytes, avg. Backoff =100us, maximum MPDU payload size (fragmentation threshold) is 1500 bytes. The maximum number of frame retransmissions is 7.
 - a) Calculate the total duration of the transaction of one image, including overheads, assuming that there are no frame losses. (2,0 val)
 - b) What is the maximum number of micro cameras supported in the network? (1,0 val)
 - c) What is the total video throughput of the ensemble of micro cameras calculated in b)? (1,0 val)
 - d) Calculate the effective DATA frame loss rate at the MAC layer, considering that the physical frame loss rate is 3% and assuming that ACK frame losses are negligible. (1,0 val)

- 4) Consider the IPv4 network represented in the picture below, as well as the routing tables of each router and host.
 - a) What is the path followed by a packet transmitted by H1 towards H2? Justify. (2,0 val)
 - b) Traffic generated by a host destined to an address outside the subnet where it is attached must be transmitted through a router attached to the host's subnet. Which protocol allows a host to find routers in the subnet where it is located? (1,0 val)
 - c) Explain the function of the ICMP redirect message. (1,0 val)
 - d) Explain how an IPv6 station can avoid bypass the DHCP to obtain a link-local IPv6 address. (1,0 val)

Propagation Models				
Antenna Apperture and Gain	$A_{eff} = \eta \cdot A_{phy} = \frac{\lambda^2}{4\pi} G$			
Log-distance Model	$P_{r} [dBm] = P_{t} [dBm]$ $- PL_{0}$ $+ G_{t} [dBi]$ $+ G_{r} [dBi]$ $- 10 \cdot \alpha$ $\cdot log_{10} (d)$ $/d_{0})$			
Friis Free Space Model	$\boldsymbol{P}_r = \boldsymbol{P}_t \cdot \frac{\boldsymbol{G}_t \cdot \boldsymbol{G}_r \cdot \boldsymbol{\lambda}^2}{(4 \cdot \boldsymbol{\pi} \cdot \boldsymbol{d})^2}$			
Two-Ray Model	$P_r = P_t \cdot \frac{G_t \cdot G_r \cdot (h_t \cdot h_r)^2}{d^4}$ $d_c = \frac{4 \cdot \pi \cdot h_t \cdot h_r}{\lambda}$			
Fresnel Zone Radius	$r(F_n) = \sqrt{\frac{n \cdot \lambda \cdot d_1 \cdot d_2}{d_1 + d_2}}$			

Maximum Channel Capacity				
Shannon-Heartley Theorem	$C = B \cdot log_2\left(1 + \frac{S}{N}\right)$			
Nyquist Rate (applicable in baseband)	$C = 2 \cdot B \cdot \log_2(M)$			

Modulation Performance (B)				
ASK	$B = (1+r) \cdot R_b$			
M-PSK	$B = \left(\frac{1+r}{\log_2(M)}\right) \cdot R_b$			
M-FSK	$B = \left(\frac{(1+r) \cdot M}{\log_2(M)}\right) \cdot R_b$			

Modulation Performance (BER)

-		
BASK	$BER_{ASK} = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$	
BFSK	$BER_{BFSK} = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$	(
DBPSK	$BER_{DBPSK} = 0.5 \cdot e^{-\frac{E_b}{N_0}}$	
BPSK	$BER_{BPSK} = Q\left(\sqrt{\frac{2 \cdot E_b}{N_0}}\right)$	
QPSK	$BER_{QPSK} = Q\left(\sqrt{\frac{2 \cdot E_b}{N_0}}\right)$	

TABLE OF THE **Q** FUNCTION

0	5.000000e-01	2.4	8.197534e-03	4.8	7.933274e-07
0.1	4.601722e-01	2.5	6.209665e-03	4.9	4.791830e-07
0.2	4.207403e-01	2.6	4.661189e-03	5.0	2.866516e-07
0.3	3.820886e-01	2.7	3.466973e-03	5.1	1.698268e-07
0.4	3.445783e-01	2.8	2.555131e-03	5.2	9.964437e-06
0.5	3.085375e-01	2.9	1.865812e-03	5.3	5.790128e-08
0.6	2.742531e-01	3.0	1.349898e-03	5.4	3.332043e-08
0.7	2.419637e-01	3.1	9.676035e-04	5.5	1.898956e-08
0.8	2.118554e-01	3.2	6.871378e-04	5.6	1.071760e-08
0.9	1.840601e-01	3.3	4.834242e-04	5.7	5.990378e-09
1.0	1.586553e-01	3.4	3.369291e-04	5.8	3.315742e-09
1.1	1.356661e-01	3.5	2.326291e-04	5.9	1.817507e-09
1.2	1.150697e-01	3.6	1.591086e-04	6.0	9.865876e-10
1.3	9.680049e-02	3.7	1.077997e-04	6.1	5.303426e-10
1.4	8.075666e-02	3.8	7.234806e-05	6.2	2.823161e-10
1.5	6.680720e-02	3.9	4.809633e-05	6.3	1.488226e-10
1.6	5.479929e-02	4.0	3.167124e-05	6.4	7.768843e-11
1.7	4.456546e-02	4.1	2.065752e-05	6.5	4.016001e-11
1.8	3.593032e-02	4.2	1.334576e-05	6.6	2.055790e-11
1.9	2.871656e-02	4.3	8.539898e-06	6.7	1.042099e-11
2.0	2.275013e-02	4.4	5.412542e-06	6.8	5.230951e-12
2.1	1.786442e-02	4.5	3.397673e-06	6.9	2.600125e-12
2.2	1.390345e-02	4.6	2.112456e-06	7.0	1.279813e-12
2.3	1.072411e-02	4.7	1.300809e-06		