1.

a)

Two bits were received from each mobile station, which must be decoded separately.

$$
\begin{aligned}
& R_{S 1}^{1}=K_{S 1} \cdot R_{B S}^{1}=(+1,+1,-1,+1) \cdot(0,0,+3,-2)=-5 \rightarrow " 0 " \\
& R_{S 1}^{2}=K_{S 1} \cdot R_{B S}^{2}(+1,+1,-1,+1) \cdot(+2,0,-2,+2)=+6 \rightarrow " 1 " \\
& R_{S 2}^{1}=K_{S 2} \cdot R_{B S}^{1}=(+1,+1,+1,-1) \cdot(0,0,+3,-2)=+5 \rightarrow " 1 " \\
& R_{S 2}^{2}=K_{S 2} \cdot R_{B S}^{2}(+1,+1,+1,-1) \cdot(+2,0,-2,+2)=-2 \rightarrow " 0 "
\end{aligned}
$$

b)

Without noise:

$$
\begin{aligned}
R_{B S}^{1}=D_{S 1}^{1} \times & K_{S 1}+D_{S 2}^{1} \times K_{S 2} \\
& =(-1) \times(+1,+1,-1,+1)+(+1) \times(+1,+1,+1,-1) \\
& =(0,0,+2,-2) \\
R_{B S}^{1}=D_{S 1}^{2} \times & K_{S 1}+D_{S 2}^{2} \times K_{S 2} \\
& =(+1) \times(+1,+1,-1,+1)+(-1) \times(+1,+1,+1,-1) \\
& =(0,0,-2,+2) \\
R_{B S} & =R_{B S}^{1} \mid R_{B S}^{2}=(0,0,+2,-2,0,0,-2,+2)
\end{aligned}
$$

Now we must only subtract from the actually received sequence in order to get the noise:

$$
\begin{gathered}
N=(0,0,+3,-2,+2,0,-2,+2)-(0,0,+2,-2,0,0,-2,+2) \\
=(0,0,+1,0,+2,0,0,0)
\end{gathered}
$$

c)

In order to present good characteristics against multipath fading, a key must be significantly orthogonal to rotated versions of itelf. Regarding $K_{S 1}$:

$$
\begin{aligned}
& K_{S 1} \cdot\left(K_{S 1} \gg 1\right)=(+1,+1,-1,+1) \cdot(+1,+1,+1,-1)=0 \\
& K_{S 1} \cdot\left(K_{S 1}>2\right)=(+1,+1,-1,+1) \cdot(-1,+1,+1,+1)=0 \\
& K_{S 1} \cdot\left(K_{S 1} \gg 3\right)=(+1,+1,-1,+1) \cdot(+1,-1,+1,+1)=0
\end{aligned}
$$

As such, signals from S1 can endure a delay spread up to 3 chip times. Similar results can be obtained for $K_{S 2}$.
2.
a)

Single hop:

$$
\begin{gathered}
P_{t}^{1-h o p}[d B m]=P_{r}[d B m]+P L_{0}-G_{t}[d B i]-G_{r}[d B i]+10 \cdot \alpha \cdot \log _{10}\left(\frac{2 d}{d_{0}}\right) \\
P_{t}^{1-h o p}=\frac{P_{r} \cdot 10^{\frac{P L_{0}}{10}} \cdot\left(\frac{2 d}{d_{0}}\right)^{\alpha}}{G_{t} \cdot G_{r}}=\frac{P_{r} \cdot 10^{\frac{P L_{0}}{10}} \cdot(2 d)^{3}}{G_{t} \cdot G_{r}}
\end{gathered}
$$

With two hops we have, for each hop:

$$
P_{t}^{2-h o p}=\frac{P_{r} \cdot 10^{\frac{P L_{0}}{10}} \cdot d^{3}}{G_{t} \cdot G_{r}}
$$

We can now divide the power used for one hop by the power used for two hops:

$$
\frac{\mathrm{P}_{t}^{1-h o p}}{2 \cdot \mathrm{P}_{t}^{2-h o p}}=\frac{\frac{P_{r} \cdot 10^{\frac{P L_{0}}{10}} \cdot 2^{3} \cdot d^{3}}{G_{t} \cdot G_{r}}}{2 \frac{P_{r} \cdot 10^{\frac{P L_{0}}{10}} \cdot d^{3}}{G_{t} \cdot G_{r}}}=\frac{2^{3} \cdot d^{3}}{2 \cdot d^{3}}=4>1
$$

b)

There will be two concurrent signals at C , plus termal noise. The signal from B constitutes the useful signal, while the signal from A will constitute interference. The first step is to calculate the power received for each of these signals. Since the transmit power corresponds to the minimum, the received power from B is equal to the receiver sensitivity: -80 dBm . We only have to calculate the received power from A. We know that at 100 m from A, the power is -80 dBm . We can use this reference distance and power and proceed to calculate the received power at C , which is located at 200 m from A:

$$
\begin{aligned}
& P_{r}^{A}[d B m]=P_{t}[d B m]-P L_{0}-10 \cdot \alpha \cdot \log _{10}\left(\frac{d}{d_{0}}\right)=-80-10 \cdot 3 \cdot \log _{10}\left(\frac{200}{100}\right) \\
& \approx-89.0 \mathrm{dBm}
\end{aligned}
$$

The interference plus noise power is thus:

$$
I+N=10^{\frac{-89}{10}}+2000000 \times 10^{\frac{-20}{10}} \mathrm{~mW} \approx-89.0 \mathrm{dBm}
$$

The SINR is then:

$$
P_{r}^{B}[d B m]-(I+N)[d B m] \approx 9.0 d B=8.0
$$

c)

We must first calculate the BER, which requires the Q function. Knowing that $R=B$ (since $r=0$):

$$
\begin{aligned}
B E R_{B P S K}= & \left(\sqrt{\frac{2 \cdot E_{b}}{N_{0}}}\right)=Q\left(\sqrt{\frac{2 \cdot \operatorname{SINR} \cdot B}{R}}\right)=Q\left(\sqrt{\frac{2 \cdot 8.0 \cdot 2000000}{2000000}}\right) \\
& \approx 3.17 \times 10^{-5}
\end{aligned}
$$

Now, we can calculate the FER:

$$
F E R=1-\left(1-B E R_{B P S K}\right)^{20 \times 8} \approx 4.94 \times 10^{-2}
$$

3.

a)

$$
\text { Packet size }(l)=64 \mathrm{kbps} \times 40 \mathrm{~ms}=2560 \text { bits }=320 \text { bytes }
$$

$$
\begin{gathered}
T_{\text {packet }}=D I F S+\text { Backoff }+P H o+\frac{(M A C h+R T P / U D P / I P+\text { data })}{R} \\
+S I F S+P H o+\frac{A C K}{R}= \\
=0.034+0.067+\left(0.096+\frac{34 \times 8+40 \times 8+320 \times 8}{2000}\right)+0.016+0.096 \\
+\frac{14 \times 8}{2000} \approx 1.94 \mathrm{~ms} \\
\text { Throughput }=\frac{320 \times 8}{1.94} \mathrm{kbps} \approx 1320 \mathrm{kbit} / \mathrm{s}
\end{gathered}
$$

b)
$N=\lfloor 1320 / 64\rfloor=21$ streams \rightarrow Since each call is bi-directional $\rightarrow 10$ telephones
c)
$F E R_{M A C}=\left(F E R_{P H Y}\right)^{1+4}=0.03^{5}=2.43 \times 10^{-8}$
4.
a)

$$
\frac{R}{W}=4 \Leftrightarrow W=\frac{R}{4} \Leftrightarrow W=\frac{12000000}{4}=3 \mathrm{MHz}
$$

b)

The provided bitrate value is a diversion, since we can always trade-off bandwidth for capacity. We just have to apply the Shannon-Heartley theorem, taking into account that $\frac{C}{W} \approx 10$ for $\frac{E_{b}}{N_{0}}=20$:

$$
C=W \cdot(1+S N R) \Leftrightarrow \frac{C}{W}=(1+S N R) \Leftrightarrow S N R=2^{10}-1=1023
$$

c)

1 symbol $=2$ bits

$$
1-P_{M}=(1-B E R)^{2} \Leftrightarrow B E R \approx 5 \times 10^{-6}
$$

