

Mestrado em Engenharia Electrotécnica e de Computadores

Redes Móveis e Sem Fios Exame de Recurso – 1ª parte 4 de Julho de 2017 Duração 1h30

In order to avoid grading mistakes, please answer each question <u>on a different page</u> and keeping the order as much as possible.

- In a mobile network using CDMA with 4-symbol chip sequences, there are two mobile stations trying to transmit to a base station with keys S1=+1, +1, -1, +1, S2=+1, +1, +1, -1. The time of one bit corresponds to 4 chips and the keys of the stations are synchronized. Assume that the logical value "0" is represented by -1 and logic value "1" is represented by +1. The decoding thresholds are -1 and +1, respectively for logical "0" and logical "1". The sequence that was received at the base station was the following: 0, 0, +3, -2, +2, 0, -2, +2.
 - a) Assuming that the noise was too low to destroy the data, calculate which data bits were received from S1 and S2. (1,5 val)
 - b) Quantify the noise. (1,0 val)
 - c) Do the used keys present good characteristics regarding the mitigation of multipath fading? Suggestion: Calculate maximum delay spread (measured as chip intervals) that will be eliminated during reception, considering the transmission of a single station. (2,0 val)
- 2) Consider a Wireless Sensor Network (WSN) operating in a Log-distance path loss model environment, with $\alpha = 3$ and measured path loss of 50 dB measured at 1 m. All antennas are isotropic.
 - a) Consider three nodes A, B and C in a WSN, forming a linear topology with A located on the left, B located d meters to the right of A, and C located d meters to the right of B. Node A wishes to transmit a message to node C. Demonstrate mathematically that it is globally more power efficient to perform the multihop transmission A → B → C, in comparison with the single-hop transmission A → C. Assume that energy is only consumed by transmission and that the received power corresponds to the receiver sensitivity in all cases. (1,5 val)
 - b) Consider the linear topology D ↔ A ↔ B ↔ C. B transmits to C, but A transmits to D at the same time. Both transmissions are performed at the minimum transmit power. The thermal noise spectral density is -201 dBm/Hz. The receiver sensitivity is -80 dBm. Calculate the SINR at C, for a signal bandwidth of 2 MHz. (2,0 val)
 - c) Under the conditions of b), calculate the FER for packets of 200 bytes, BPSK modulation and a roll-off factor of 0. In case you did not answer b), consider SINR=8.0 (linear units). (1,5 val)
- 3) Consider an IEEE 802.11b network with WiFi telephones operating at 2.0 Mbps. The telephones are using a G.711 codec at 64kbps with an inter-packet interval of 40ms. The RTP+UDP+IP headers together have a length of 40 octets and RTS/CTS is not being used. Additional data are as follows: SIFS=16us, DIFS=34us, PHY overhead = 96us, MAC DATA header and trailer = 34 bytes, MAC ACK=14 bytes, avg. Backoff=67us. The maximum number of frame retransmissions is 4.
 - a) Calculate the maximum throughput that can be offered to voice applications by this WLAN, assuming that there are no frame losses. (2,5 val)
 - b) What is the maximum number of WiFi telephones supported in the network? (1,5 val)
 - c) Calculate the effective DATA frame loss rate at the MAC layer, considering that the physical frame loss rate is 3% and assuming that ACK frame losses are negligible. (2,0 val)

4) Consider the chart below, which relates bandwidth efficiency and $\frac{E_b}{N_9}$ for different signal encoding techniques, for a symbol error rate $P_M = 10^{-5}$. In the chart, *R* represents the achieved bitrate, *W* represents the required bandwidth and *C* represents the maximum bitrate capacity according to the Shannon-Heartley theorem.

- a) How much bandwidth is needed to achieve a bitrate of 12 Mbit/s with PSK at $\frac{E_b}{N_0} = 18$ dB? Note: round values to the closest integer. (1,5 val)
- b) Which SNR is needed to achieve 400 kbit/s with $\frac{E_b}{N_0} = 20 \text{ dB}$ and the best possible signal encoding technique? (1,5 val)
- c) What is the bit error rate achieved with 4-PSK (QPSK) when the symbol error rate is $P_M = 10^{-5}$? Assume that bit errors are independent, and the probabilities of changing 1 for 0 and 0 for 1 are the same (BSC channel). Suggestion: take into account the number of bits per symbol. (1,5 val)

Propagation Models				
Log-distance Model	$P_{r} [dBm] = P_{t} [dBm]$ $-PL_{0}$ $+ G_{t} [dBi]$ $+ G_{r} [dBi]$ $- 10 \cdot \alpha$ $\cdot log_{10} (d$ $/d_{0})$			
Friis Free Space Model	$\boldsymbol{P}_r = \boldsymbol{P}_t \cdot \frac{\boldsymbol{G}_t \cdot \boldsymbol{G}_r \cdot \boldsymbol{\lambda}^2}{(4 \cdot \boldsymbol{\pi} \cdot \boldsymbol{d})^2}$			
Two-Ray Model	$P_r = P_t \cdot \frac{G_t \cdot G_r \cdot (h_t \cdot h_r)^2}{d^4}$ $d_c = \frac{4 \cdot \pi \cdot h_t \cdot h_r}{\lambda}$			
Fresnel Zone Radius	$r(F_n) = \sqrt{\frac{n \cdot \lambda \cdot d_1 \cdot d_2}{d_1 + d_2}}$			

Maximum Channel Capacity				
Shannon-Heartley Theorem	$C = B \cdot log_2\left(1 + \frac{S}{N}\right)$			
Nyquist Rate (applicable in baseband)	$C = 2 \cdot B \cdot \log_2(M)$			

Modulation Performance (B)				
ASK	$B = (1+r) \cdot R_b$			
M-PSK	$B = \left(\frac{1+r}{\log_2(M)}\right) \cdot R_b$			
M-FSK	$B = \left(\frac{(1+r)\cdot M}{\log_2(M)}\right)\cdot R_b$			

Modulation Performance (BER)				
BASK	$BER_{ASK} = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$			
BFSK	$BER_{BFSK} = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$			
DBPSK	$BER_{DBPSK} = 0.5 \cdot e^{-\frac{E_b}{N_0}}$			
BPSK	$BER_{BPSK} = Q\left(\sqrt{\frac{2 \cdot E_b}{N_0}}\right)$			

QPSK	BER _{QPSK}	
	$= Q\left(\sqrt{\frac{2 \cdot E_b}{N_0}}\right)$	
Q function	$Q(k) = P(X > \mu +$	
	$k\sigma)=rac{1}{\sqrt{2\pi}}\int_{k}^{+\infty}e^{-\lambda^{2}/2}d\lambda$	

TABLE OF THE *Q* FUNCTION

0	5.000000e-01	2.4	8.197534e-03	4.8	7.933274e-07
0.1	4.601722e-01	2.5	6.209665e-03	4.9	4.791830e-07
0.2	4.207403e-01	2.6	4.661189e-03	5.0	2.866516e-07
0.3	3.820886e-01	2.7	3.466973e-03	5.1	1.698268e-07
0.4	3.445783e-01	2.8	2.555131e-03	5.2	9.964437c-06
0.5	3.085375e-01	2.9	1.865812e-03	5.3	5.790128c-08
0.6	2.742531e-01	3.0	1.349898e-03	5.4	3.332043e-08
0.7	2.419637e-01	3.1	9.676035e-04	5.5	1.898956e-08
0.8	2.118554e-01	3.2	6.871378e-04	5.6	1.071760e-08
0.9	1.840601e-01	3.3	4.834242e-04	5.7	5.990378e-09
1.0	1.586553e-01	3.4	3.369291e-04	5.8	3.315742e-09
1.1	1.356661e-01	3.5	2.326291e-04	5.9	1.817507e-09
1.2	1.150697e-01	3.6	1.591086e-04	6.0	9.865876e-10
1.3	9.680049e-02	3.7	1.077997e-04	6.1	5.303426e-10
1.4	8.075666e-02	3.8	7.234806e-05	6.2	2.823161e-10
1.5	6.680720e-02	3.9	4.809633e-05	6.3	1.488226e-10
1.6	5.479929e-02	4.0	3.167124e-05	6.4	7.768843e-11
1.7	4.456546e-02	4.1	2.065752e-05	6.5	4.016001e-11
1.8	3.593032e-02	4.2	1.334576e-05	6.6	2.055790e-11
1.9	2.871656e-02	4.3	8.539898e-06	6.7	1.042099e-11
2.0	2.275013e-02	4.4	5.412542e-06	6.8	5.230951e-12
2.1	1.786442e-02	4.5	3.397673e-06	6.9	2.600125e-12
2.2	1.390345e-02	4.6	2.112456e-06	7.0	1.279813e-12
2.3	1.072411e-02	4.7	1.300809e-06		