Probability Theory
 LMAC, MMA

Duration: $\mathbf{3 0}$ minutes

- Write your number and name below.
- Add your answers on this and the following page.
- Please justify all your answers.
- This test has one page and three questions. The total of points is 4.0.

Number:

Name:

1. Let X be a r.v. with p.f. $P(X=x)=\frac{3}{\pi^{2} x^{2}}$, for $x \in \mathbb{Z} \backslash\{0\}$.

After having derived the p.f. of X^{+}and of X^{-}, show that $E\left(X^{+}\right)=E\left(X^{-}\right)=+\infty$ and therefore: (i) $X \notin L^{1}$; (ii) $E(X)$ does not exist.

- R.v.

X
$P(X=x)=P(X=-x)=\frac{3}{\pi^{2} x^{2}}, \quad x \in \mathbb{R}_{X}=\mathbb{Z} \backslash\{0\} \quad$ (symmetric around zero, (\star))

- Positive part of X

$$
\left.\begin{array}{rll}
X^{+} & = & \max \{X, 0\} \\
P\left(X^{+}=x\right) & = & P(\max \{X, 0\}=x)
\end{array} \quad \begin{array}{rl}
P(X \leq 0)=P(X \leq-1)=P(X \geq 1) \stackrel{(\star)}{=} \frac{1}{2}, & x=0 \\
P(X=x)=\frac{3}{\pi^{2} x^{2}}, & x \in \mathbb{N}
\end{array}\right\}
$$

- Negative part of X

$$
\begin{aligned}
X^{-} & =-\min \{X, 0\}=\max \{-X, 0\} \\
P\left(X^{-}=x\right) & =P(\max \{-X, 0\}=x)= \begin{cases}P(X \geq 0)=P(X \geq 1) \stackrel{(\star)}{=} P(X \leq-1)=\frac{1}{2}, & x=0 \\
P(X=-x) \stackrel{(\star)}{=} P(X=x)=\frac{3}{\pi^{2} x^{2}}, & x \in \mathbb{N}\end{cases} \\
X^{-} & \sim X^{+} \\
E\left(X^{-}\right) & =E\left(X^{+}\right)=+\infty
\end{aligned}
$$

- Conclusion

Since $E\left(X^{+}\right)=E\left(X^{-}\right)=+\infty$, we can add that:
(i) $E(|X|)=E\left(X^{+}\right)+E\left(X^{-}\right) \nless+\infty$ and thus $X \notin L^{1}$, that is, X is not an integrable r.v.;
(ii) $E(X)$ does not exist, according to the conventions when X is non-integrable.
2. State Minkowski's moment inequality.

Illustrate this inequality, when $p=3$ and the random vector (X, Y) has independent components that are uniformly distributed in the interval $[0,1]$.

- Statement of the Minkowski's moment inequality
$X, Y \in L^{p}, p \in[1,+\infty) \Rightarrow E^{\frac{1}{p}}\left(|X+Y|^{p}\right) \leq E^{\frac{1}{p}}\left(|X|^{p}\right)+E^{\frac{1}{p}}\left(|Y|^{p}\right)$

- Random vector

$(X, Y), \quad X \stackrel{\text { i.i.d. }}{\sim} Y \sim \operatorname{uniform}(0,1), \quad f_{X}(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}$

- Transformation of (X, Y)

$$
Z=X+Y, \quad f_{Z}(z) \stackrel{\text { Prop. } 3.98}{=} \begin{cases}z, & 0 \leq z \leq 1 \\ 2-z, & 1<z \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

- Requested illustration $(p=3)-$ Since $X \Perp Y$ and $X \sim Y$ we get:

$$
\begin{aligned}
E^{\frac{1}{p}}\left(|X+Y|^{p}\right)=\left[\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|x+y|^{p} \times f_{X, Y}(x, y) d y d x\right]^{\frac{1}{p}} & \leq E^{\frac{1}{p}}\left(|X|^{p}\right)+E^{\frac{1}{p}}\left(|Y|^{p}\right) \\
{\left[\int_{-\infty}^{+\infty}|z|^{p} \times f_{Z}(z) d z\right]^{\frac{1}{p}}=\left[\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|x+y|^{p} \times f_{X}(x) \times f_{Y}(y) d y d x\right]^{\frac{1}{p}} } & \leq 2 \times\left[\int_{-\infty}^{+\infty}|x|^{p} \times f_{X}(x) d x\right]^{\frac{1}{p}} \\
{\left[\int_{0}^{1} z^{3} \times z d z+\int_{1}^{2} z^{3} \times(2-z) d z\right]^{\frac{1}{3}}=\left[\int_{0}^{1} \int_{0}^{1}(x+y)^{3} d y d x\right]^{\frac{1}{3}} } & \leq 2 \times\left[\int_{0}^{1} x^{3} d x\right]^{\frac{1}{3}} \\
\left(\left.\frac{z^{5}}{5}\right|_{0} ^{1}+\left.\frac{z^{4}}{2}\right|_{1} ^{2}-\left.\frac{z^{5}}{5}\right|_{1} ^{2}\right)^{\frac{1}{3}}=[\ldots] & \leq 2 \times\left(\left.\frac{x^{4}}{4}\right|_{0} ^{1}\right)^{\frac{1}{3}} \\
\left(\frac{1}{5}+8-\frac{1}{2}-\frac{32}{5}+\frac{1}{5}\right)^{\frac{1}{3}} & \leq 2 \times\left(\frac{1}{4}\right)^{\frac{1}{3}} \\
\left(\frac{3}{2}\right)^{\frac{1}{3}} \simeq 1.144714 & \leq 2 \times\left(\frac{1}{4}\right)^{\frac{1}{3}} \simeq 1.259921 .
\end{aligned}
$$

3. Admit that $(X, Y, Z) \sim \operatorname{normal}_{3}(\underline{\mu}, \Sigma)$, where $\underline{\mu}$ and Σ are such that: $\mu_{X}=\mu_{Y}=\mu_{Z}=0 ; \sigma_{X}^{2}=\sigma_{Y}^{2}=\sigma_{Z}^{2}=1$, $\operatorname{corr}(X, Y)=\operatorname{corr}(X, Z)=0$, and $\operatorname{corr}(Y, Z)=\rho=0.5$.
What is the probability that $\frac{X+Y}{2}$ does not exceed $(Z+1)$?

- Random vector (X, Y, Z)
$(X, Y, Z) \sim \operatorname{normal}_{3}(\underline{\mu}, \Sigma), \quad$ where: $\quad \underline{\mu}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] ; \quad \Sigma=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & \rho \\ 0 & \rho & 1\end{array}\right]$.
- Requested probability and auxiliary r.v.
$P[(X+Y) / 2 \leq Z+1]=P(W=X+Y-2 Z \leq 2)$
$W=X+Y-2 Z=\mathbf{C} \times\left[\begin{array}{c}X \\ Y \\ Z\end{array}\right]+\underline{b}, \quad$ where: $\quad \mathbf{C}=\left[\begin{array}{lll}1 & 1 & -2\end{array}\right] ; \quad \underline{b}=[0]$.
$W^{T h .} \underset{\sim}{4.216} \operatorname{normal}(E(W), V(W)), \quad$ where:
$E(W)=\mathbf{C} \underline{\mu}+\underline{b}=0 ;$
$V(W)=\mathbf{C} \Sigma \mathbf{C}^{\top}=\left[\begin{array}{lll}1 & 1 & -2\end{array}\right] \times\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & \rho \\ 0 & \rho & 1\end{array}\right] \times\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]=\left[\begin{array}{lll}1 & 1-2 \rho & \rho-2\end{array}\right] \times\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]=6-4 \rho$.
Hence,

$$
\begin{aligned}
P(W=X+Y-2 Z \leq 2) & =\Phi\{[2-E(W)] / \sqrt{V(W)}\} \\
& =\Phi[(2-0) / \sqrt{6-4 \rho}] \\
& \stackrel{\rho=0.5}{=} \Phi(1)=0.8413 .
\end{aligned}
$$

