
19th January 2022
Lecturers: F. Nabais, H. Terças

Advanced Plasma Physics
MEFT 2021/22

Problem Class 5

Clearly present your approximations and enclose all pertinent calculations. Try to solve the
problems yourself. Follow the instructions of the Lecturer.

Problem 1. Two-stream instability in 2D plasmas. Consider a two-dimensional plasma
composed of electrons and ions. The electrons stream in the plasma with velocity u0 = u0x̂.
Remember that the two-dimensional Green’s function is given by G(ρ) =

e

4πε0|ρ|
, such that the

electrostatic potential reads

φ (ρ) =

∫ [
ni
(
ρ′
)
− ne

(
ρ′
)]
G
(
ρ− ρ′

)
dρ′

a) Start from the fluid equations governing the motion of the electrons to show that the dielectric
function reads

ε(ω, k) = 1− gek

(ω − ku0)2
− gik

ω2
,

where gα =
e2n0
2ε0mα

is the effective acceleration for the species α = {e, i}.

b) Repeat the procedure you worked out in Week 2 to show that the dynamical instability happens
provided the condition ku0 < ωc, where

ωc = ku0
(gi/ge)

1/3

1 + (gi/ge)1/3
' ku0

(
me

mi

)1/3

.

c) Replace this condition to show that the dynamical instability takes place in the spectral range
given by

k ≤ ge
u20

[
1(

1− (gi/ge)1/3
)2 +

(
gi
ge

)1/3
]
' ge
u20

[
1 + 3

(
me
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)1/3
]
.

Compare with the result you obtained for the 3D case.
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d) The most unstable mode is the one that resonates with the 2D electron plasma wave, ku0 '√
gek, i.e. occurs for kmax ' ge/u

2
0. Assuming that ω �

√
gekmax = ge/u0, show that the

maximum growth rate is expected to be

γ = Im(ω) '
√
3

24/3

(
me

mi

)1/3 ge
u0
.

Comparing with what you know for the 3D case, comment on the sensitivity of the growth rate
with the mass ratio me/mi and the relation between ωpe and ge/u0.

e) With help of Mathematica, plot the dispersion relation numerically, observing the behaviour of
both Re(ω) and Im(ω). Discuss with your colleagues, by putting some numbers on it (choose
a ratio of me/mi ∼ 10−1 and normalize the frequency as ω → ωu0/ge and the wavector as
k → ku20/ge, for the numerical evaluations) and conclude if the analytical estimates are better
or worse when compared with the 3D case.



Problem 2. MHD waves. As discussed in the class, the magnetohydrodynamics (MHD) model
allows for a remarkable simplification in the treatment of phenomena in magnetized plasmas, as
the two-fluid model can be effectively reduced to a single fluid equation. The MHD model is valid
is the magnetic field is sufficiently strong, such that electrostatic effects can be neglected (i.e. the
electron-ion fluid moves as a whole, therefore meeting the quasi-neutrality condition identically,
∇ · E = 0). It is instructive to understand which waves can a plasma support within the MHD
framework. Here, we will adopt a generic formulation of the such waves.

a) Consider the basic MHD equations,

∂ρ

∂t
+∇ · (ρu) = 0,

Du

Dt
=

J×B

ρ
− ∇P

ρ
, E+ u×B = ηJ− ∇P e

en0
,

where η = meνei/(n0e
2) is the plasma resistivity due to electron-ion collision at rate νei,

D/Dt = ∂/∂t + u ·∇u stands for the material derivative, ρ = mini +mene ' n0(me + ne)
is the plasma (mass) density, u = (miui +meue)/(me +mi) is the plasma velocity field and
J = e(niui − neue) ' en0(ui − ue) is the plasma current. Combine Faraday’s and Ampère’s
laws to show that the magnetic field is governed by the following equation

∂B

∂t
= ∇×

(
u×B+

η

µ0
∇×B − ∇Pe

en0

)
.

b) Let us now focus on the special class of ideal MHD waves, by setting η → 0, and recast the
velocity field in terms of the displacement vector ξ,

u =
∂ξ

∂t
.

Linearize the ideal MHD equations (i.e. make X = X0 + δX, where X is any relevant physical
quantity) to obtain

δρ

ρ0
= −∇ · ξ, δP

P0
= −γ∇ · ξ, ∂

∂t
δB = (B0 ·∇)

∂ξ

∂t
−B0

(
∇ · ∂ξ

∂t

)
,

where γ is the adiabatic index. [Hint: no need to linearize the momentum equation at this
point...]

c) Decompose the previous equations into their parallel and perpendicular components, (i.e.,
define X‖ =

(
b̂ ·X

)
b̂, with b̂ = B0/B0, and X⊥ = X−X‖) to show that

δB‖

B0
= ∇‖ξ⊥,

δB⊥
B0

= −∇⊥ · ξ⊥,

where ∇‖ = b̂ ·∇‖.

d) Now proceed to the linearization of the momentum equation, and combine with the previous
results, to obtain

ρ0
∂2ξ

∂t2
= γP0∇ (∇ · ξ) + 1

µ0

[
B2

0∇⊥ (∇⊥ · ξ) +B2
0∇2
‖ξ⊥

]
.

By diving everything by ρ0, show that the wave equation reads



∂2ξ

∂t2
= C2

s∇ (∇ · ξ) + V 2
A

[
∇⊥ (∇⊥ · ξ) +∇2

‖ξ⊥

]
,

where Cs =
√
γP0/ρ0 is the sound speed and VA = B0/(µ0ρ0) is the Alfvén speed.

e) Consider propagation along the magnetic field lines, k ‖ B0 = B0ẑ. For definiteness, assume
then that the displacement field is defined in the ŷ direction (you could consider the generic
case, but this simplifies a bit the calculations). Obtain the dispersion relation for the shear
Alfvén waves,

ω = VAk.

Show that these waves correspond to incompressible electromagnetic modes.

f) Similarly, consider now the compressional sector, ξ = (ξx, 0, ξz). Obtain the dispersion relation
for the magnetosonic waves,

ω± =
1

2
k2
[
C2
s + V 2

A ±
√

(C2
s + V 2

A)
2 − 4C2

sV
2
A cos θ2

]
, cos θ =

k‖√
k2‖ + k2⊥

,

with the ± signs standing for the fast and slow magnetosonic modes. For the case of ξx = 0,
we simply get ω = Csk, which clearly means that the wave is compressive (why)?.


