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ABSTRACT

Direct numerical simulations and large-eddy simulations of turbulent planar jets are used to assess the distortion similarity (DSIM) model,
recently developed by Ferreira et al. [“Large-eddy simulations of forced isotropic turbulence with viscoelastic fluids described by the finitely
extensible nonlinear elastic rheological model with Peterlin’s closure model,” Phys. Fluids 28, 125104 (2016)] for homogeneous turbulence,
in the simulation of turbulent viscoelastic planar jets. Both a priori and a posteriori tests of the DSIM model are used and show that the sev-
eral assumptions used in the development of the DSIM model hold well in inhomogeneous free turbulent viscoelastic flows, e.g., (i) the scale
similarity of the subgrid-scale (SGS) polymer stretching and (ii) the local equilibrium of the elastic energy production and dissipation. The
DSIM model for the SGS polymer stretching term, together with the dynamic Smagorinsky model, is able to reproduce well the flow struc-
tures and the classical one-point statistics of turbulent viscoelastic planar jets. The model should be equally able to simulate other free shear
flows of viscoelastic fluids, e.g., wakes and mixing layers.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0039826

NOMENCLATURE T  Time (s)
u,v,w  Velocity in streamwise, normal, and spanwise direction
Ay, The slope of the law of variation of centerline (ms™ )
velocity (—) u;  Velocity vector (ms™")
As  The slope of the law of variation of the jet width (—) U, Peak velocity at the inlet (ms ")
A;.  The slope of the laws of variation of centerline stress U Co-flow velocity (ms™')
(=) x;  i-th space coordinate (m)
Cpyn  Coefficient of dynamic Smagorinsky model (—) X’ Fluctuation of X
C;j  Confor @ation tensor (=) . X Xlow pass filtered in space
Csm  Coefficient of classical Smagorinsky model (—) (X),  Spatial averaging of X along a-direction

E(xk)  Energy spectrum (m?s)
ACik)  Peterlin function (—)
H

Greek letter
Width of the inlet slot (m)

L Dumbbell maximum extensibility (—) [ Ratio of kinematic viscosities (—)
Ly,L,,L; Computational domain length in the x, y, z directions 0  Kronecker delta
(m) 0,  Mean flow thickness of the planar jet (m)
1y, 1y, n;  Number of grid points in the x, y, z directions A Filter size (m)
P Pressure (Pa) At Time step (m)
Re  Reynolds number (—) Ax, Ay, Az Grid spacing in the x, y, z directions (m)
S;;  Strain rate tensor (s &  Turbulent kinetic energy dissipation (m*s73)
|S|  Norm of the strain rate tensor (s~ ') n  Kolmogorov length micro-scale (m)
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k  Wave number (m™')

A Relaxation time of polymer (s)
v,  Polymer kinematic viscosity (m*s™h
vs  Solvent kinematic viscosity (m*s™h

vy Turbulent kinematic viscosity (m*s™h
p  Fluid density (kgm )

r}; Polymer stress tensor (Pa)
15 Residual stress tensor (Pa)
75 Solvent stress tensor (Pa)

ij
l//ij SGS polymer convection tensor (s
@  Vorticity vector (s ')

Subscripts and superscripts

[s]  Refers to solvent
[p] Refers to polymer

I. INTRODUCTION

In 1949, Toms' found that adding a small number of polymeric
molecules into Newtonian fluids induces severe drag reduction (DR), of
up to 80% in turbulent pipe flow, which also naturally leads to a concom-
itant reduction in heat transfer. Industrial settings where viscoelastic flu-
ids flow under turbulent conditions and lead to DR are oil transport in
pipelines and well drilling for the oil and gas industries.” Other proposals
have been put forward to use viscoelastic fluids in order to benefit from
turbulent drag and heat transfer reductions such as in district heating
and cooling systems,” firefighting equipment, and sewage systems.
Operation in these two last applications are under extreme conditions: in
firefighting, the aim is to increase the length of the jet, whereas the
increase in flow rate at constant head due to drag reduction is very useful
to increase the capacity of sewage systems during floods." Other fields of
application include the design of ships and submarines since drag reduc-
tion leads to more efficient energy use,” increasing the mixing rates in
microfluidic applications® and biofluid systems.”” Reducing the energy
consumption rate in irrigation systems and in percolation through the
soil is another motivation to use this phenomenon.” Some applications of
drag reduction with viscoelastic fluids are also encountered in medicine
during surgery when some blood analogs are used.'”'" Hence, it comes
as no surprise the wealth of research on this topic as reviewed in detail by
Lumley,"” Virk'” and more recently White and Mungal."*

Direct numerical simulation (DNS) is the most accurate existing
numerical technique to simulate turbulent flows. However, it requires
very fine computational grids, with the number of grid points on the
order of O(Re*/*), and very small time steps in order to capture all the
multiscale features of turbulent motion,>'® in addition to large mem-
ory requirements. For these reasons, DNS is not suited for fast engi-
neering calculations and is still restricted to simple flows at moderate
Reynolds numbers for assisting our understanding of the flow physics
and the development of turbulence models for engineering computa-
tions."” This is particularly true when one considers DNS of turbulent
flows of viscoelastic fluids since the computational cost of these simula-
tions is substantially higher than for DNS of Newtonian fluids due to
the additional rheological variables and corresponding governing equa-
tions and the numerical limitations imposed by fluid viscoelasticity.

Currently, the numerical simulation of engineering flows under
turbulent flow conditions relies on the use of the Reynolds-averaged
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Navier-Stokes equations (RANS) proposed by Reynolds'® due to the
low or reasonable computational cost. RANS is based on the
Reynolds decomposition of the physical variables and subsequent
averaging of the governing equations, which introduces new
unknowns that need to be modeled. There are some available RANS
models for turbulent flows of viscoelastic fluids,””* which were
developed based on wall turbulent flows. However, RANS has well
known limitations when dealing with unsteady and transient flows,
flows with separation, and rotation and flows faced with strong cur-
vatures. Moreover, although RANS models may be able to predict
the mean properties of many flows, some important flow character-
istics cannot be estimated, such as the dominating flow frequencies.
Large eddy simulation (LES) is a numerical technique that is usually
suggested as the best candidate to handle the limitations of RANS
without incurring in the massive cost of DNS. LES can be seen as
an intermediate approach between DNS and RANS, which was ini-
tially developed to simulate atmospheric flows™* and that was latter
used to simulate wall bounded flows.”” In LES, the large scales of
motion (or resolved or grid-scales, GS) are explicitly simulated,
while the effects of the small scales of motion, or subgrid-scales
(SGS), are modeled. The SGS term arises when low-pass filtering the
Navier-Stokes equations and needs to be modeled. A comprehensive
review of LES approaches can be found in Refs. 26-28.

The main role of any SGS model consists in assuring the correct
amount of kinetic energy transfer between the resolved and unresolved
scales, and is consequently heavily derived from the classical
Richardson-Kolmogorov energy cascade concept.'”*” When the turbu-
lence arises in a non-Newtonian fluid, the energy cascade mechanism
becomes considerably more complicated due to the interaction of the
velocity fluctuations with the fluid rheology variables across a large
range of space and time scales. Indeed, non-Newtonian fluids are char-
acterized by a variety of rheological constitutive equations.’””" There
are ongoing debates regarding what are the appropriate constitutive
equations needed to describe dilute polymer solutions.”””” However,
one of the simplest constitutive equations used is the finitely extensible
nonlinear elastic rheological model with Peterlin’s closure (FENE-P),
which is able to describe the main features of the rheology of dilute
polymer solutions,”””"**° such as memory effects, shear-thinning,
and bounded elastic stresses. For these reasons, the FENE-P model has
been used in many studies of turbulent viscoelastic fluid flows.” *

The interaction between the solvent and the polymer molecules
greatly complicates the Kkinetic energy cascade, particularly in the
so-called inertio-elastic turbulence, which occurs when the polymer
relaxation times are larger than the Kolmogorov time scale.””"’ For
instance, it was observed that in this regime the polymer additives dis-
sipate the main portion of the kinetic energy transferred from the large
to the small scales of motion, which may lead to the establishment of a
second, polymer induced, kinetic energy cascade.”” *’ This polymer-
induced energy cascade competes with the classical (nonlinear) energy
cascade’ "' and therefore greatly complicates the GS/SGS interactions
that play a vital role in the dynamics of turbulent flows and that need
to be understood and modeled into the SGS terms aiming to simulate
turbulence in viscoelastic fluids. Note in this respect that low-pass
filtering the rheological constitutive equation for viscoelastic fluids also
gives rise to new SGS terms there.

There are only a few studies about the SGS model in the momen-
tum equation for turbulent flows of non-Newtonian fluids. Ohta and
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Miyashita’* extended the Smagorinsky model, by considering the
effect of variable viscosity, to study turbulent channel flow of various
types of purely viscous non-Newtonian fluids based on power laws.
Thais et al.*’ proposed the first SGS model for temporal large eddy
simulations (TLES) of viscoelastic fluid flows based on the FENE-P
constitutive equation. Their SGS model was based on a temporal
approximate deconvolution method (TADM) for both the SGS terms
of the solvent and polymer stresses in momentum and conformation
tensor equations. Although the TLES model has good accuracy in DR
predictions, at least when using fine meshes, it is highly complex
because of the deconvolution procedures involved, and for this reason,
it is likely to demand considerable computational cost. Moreover, the
model is entirely based on mathematical procedures, without any
physical input from the interaction between the turbulent fluctuations
and the fluid elasticity. Wang et al.** used the TLES model in forced
homogeneous isotropic turbulence (FHIT) of FENE-P fluids at moder-
ate Taylor scale Reynolds number and verified the results with the
corresponding DNS results. Li et al.*” investigated the DR in viscoelas-
tic turbulent channel flows using the TLES model"’ by filtering their
constitutive equation, a simplified version of a multi-mode FENE-P
model.

Masoudian et al.”” carried out a priori tests in order to analyze
and evaluate the effect of the polymer additives on the SGS energy in
the filtered momentum and FENE-P constitutive equations in turbu-
lent channel flow of viscoelastic fluids. They were able to identify
which terms become negligible and which require modeling when the
filtering operation was applied to the FENE-P evolution equations.
The subgrid-scale advection term in the filtered conformation tensor
equation is an example of the former, whereas the subgrid-scale distor-
tion in the same equation is an example of the latter.

To deal with the subgrid-scale distortion in the evolution equa-
tion for the conformation tensor in LES of forced isotropic turbulence
of viscoelastic fluids, described by the FENE-P model, Ferreira et al”’
proposed the distortion similarity model (DSIM). The SGS stresses
arising in the solvent were modeled with the classical Smagorinsky
model. The DSIM model relies on two main assumptions: (i) self-
similarity of the polymer stretching term and (ii) global/local equilib-
rium of the trace of conformation tensor. The LES results from the
DSIM model show that it predicts well many detailed quantities from
forced isotropic turbulence of viscoelastic fluids, such as the solvent
dissipation reduction (SDR), the shape of the kinetic energy spectra,
and the shape and size of the coherent vortices. It is noteworthy that
in contrast to previous models the DSIM model is simple to imple-
ment and exhibits a low computational cost.

The main motivation of the present work is to assess the DSIM
model recently developed by Ferreira et al.”” in inhomogeneous turbu-
lent flow configurations. This model has been previously developed
and assessed in isotropic turbulence, and it is important to test its
performance in flows characterized by inhomogeneous conditions in
order to isolate these conditions in the results obtained from the
model. Although the ultimate goal of any newly developed subgrid-
scale model must be to accurately simulate wall bounded flows, it is
also well known that LES of wall bounded flows faces considerable
challenges that have not much to do with the core of the subgrid-scale
model,"” and the analysis of new subgrid-scale models is often blurred
when they are assessed initially in wall flows due to the restricted
“activity” of the models near walls.

l 46
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Consequently, in the present study, we assess the DSIM model in
a planar turbulent jet flow since it provides a simple configuration to
consider the effects of inhomogeneity, without facing the difficulties
that arise in the presence of solid walls. Our study is inspired from
Masoudian et al.** and uses the recently published DNS results from
Guimaraes et al."’ to assess several modeling hypotheses. Then, the
DSIM subgrid-scale model is implemented in our in-house DNS code
and its performance is assessed through a posteriori tests.

The paper is organized as follows. Sections II and ITI discuss the
flow problem and present the governing equations for flows of visco-
elastic fluids described by FENE-P model and filtered governing equa-
tions, respectively. Section I'V presents the main numerical techniques
and algorithms used in the present study. Sections V and VI assess the
model using a priori and a posteriori tests, respectively. The paper
ends with an overview of the main conclusions.

Il. FLOW PROBLEM AND GOVERNING EQUATIONS

A planar jet is a type of free shear layer flow in which a stream of
high momentum is discharged into the same or another fluid at rest;
in this work, the former situation is considered. Figure 1 shows the
Cartesian coordinate system used in the present work, where the main
flow direction (streamwise) is x, and the jet spreads in the normal
direction (y), while the flow is homogeneous in the spanwise (z) direc-
tion. U; is the uniform streamwise velocity at the inlet nozzle, U™ is
the jet co-flow velocity, and H is the inlet slot-width of the jet.
According to the classical jet theory (for a Newtonian fluid), the turbu-
lent planar jet flow in the far field is statistically two-dimensional and
is independent of Reynolds number, provided the Reynolds number is
high enough."”

The jet half-width is defined as the transverse distance between
the centerline and the location where the mean streamwise velocity
equals half the mean centerline velocity; however, in the present study,
we use a different definition for the jet shear layer thickness J(x),
introduced by Guimaraes et al.”’ It assumes that the volumetric flow
rate remains constant and is equal to V (x) = 2L,8(x)U(x), where
Uc(x) is the value of the mean velocity at the centerline and L, is the
computational domain length in the spanwise direction. Since the flow
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rate of the jet is obtained from V (x) = 2L, Jo© u(x,y)dy, the jet shear
thickness defined in Ref. 47 is

o) = |y M)

where 7(x, y) is the profile of mean streamwise velocity.

A. The governing equations of FENE-P fluids

The FENE-P model is used to describe the rheology of the dilute
polymer solutions. In this model, the effects of an ensemble of mole-
cules located at any given point are represented by dumbbells, each
consisting of a pair of beads connected by a massless nonlinear spring.

The mass conservation and momentum equations for an incom-
pressible isothermal flow are

8uk B
o (2)
81/{,' 81/[,' o opP 6‘[,‘]
p (E + U 3_xk> = ox, + B’ (3)

where u; is the velocity vector, P is the pressure, p is the fluid density,
and 7 is the total stress tensor which is calculated as the sum of a

Newtonian solvent contribution (rfj) and a polymeric contribution
(T}‘J.)IL)‘Z(),}()‘"»I
ij

T = Ifj + rg. (4)

The solvent stress 7j; is described by Newton’s law of viscosity with sol-
vent kinematic viscosity v

T?j = ZPUSSlj7 (5)

where Sj; is the rate-of-strain tensor, defined as

1 aui (914]
SIJE<8_X]+8_X,) (6)
The polymeric stress (Tg%) of the FENE-P model relies on the following
explicit equation:'”***%7!
L= PUp [f(c )Cii *f(L)é--] )
i ) kk ) Cij il

where v, is the polymer zero shear rate kinematic viscosity and Cj is
the conformation tensor. The conformation tensor expresses the ori-
entation and stretch of the set of polymer dumbbells at each point,
which is defined as

(rirj)

G (R2), ®
where #; is the end-to-end projection in i-direction of the vector con-
necting the two beads of the dumbbell. The second order moment
(ritj) is normalized by the square of its equilibrium radius <R2>0,
where < > represents an ensemble average over the configuration
space of the dumbbells. The FENE-P model also depends on 4, which
is the longest relaxation time of the polymer molecules and J;; is the
identity tensor. The Peterlin function is expressed by

scitation.org/journal/phf

1> -3

—_— 9
I _Cy &)

f(Cu) =
and its value at equilibrium is f(L) = 1, where L is the maximum
dumbbell extensibility and Cyy is the trace of the conformation tensor.
The conformation tensor obeys the following hyperbolic differential
equation:
0Cij E)C,J Bu,- u;
- = Cp—+ C—2
ot + Ox ik Ox + Gk Oxy
The first term on the left-hand side (LHS) of Eq. (10) is the local time
variation of the conformation tensor and the second term is the advec-
tion term, while the first two terms on the right-hand side (RHS)

account for the stretching and distortion of the polymer molecules.
The last term on RHS represents the storage of elastic energy in the

— % [f(Cu)Cy — f(L)85]. (10)

polymer molecules.
The two kinematic viscosity coefficients define the solvent viscos-
ity ratio ff, = ,)ﬁup = 1, where the zero-shear rate viscosity of the fluid

(vo) is the sum of solvent and polymer kinematic viscosities
vy = Vs + vp. Since the FENE-P model is used to describe dilute poly-
mer solutions, the value of f; in this work is restricted to
08< B, <1

The governing equations above are valid for DNS of a viscoelastic
flow described by the FENE-P model. However, the governing equa-
tions required for LES involve several additional SGS terms as
described in Sec. II1.

Ill. FILTERED GOVERNING EQUATIONS

To obtain the governing equation for LES of the viscoelastic flu-
ids described by the FENE-P model, one needs to filter the equations
of Sec. 11, as described in detail in Masoudian et al."® and in Ferreira
et al,”’ so that any flow variable ¢(X,t), is split into the sum of a
resolved (grid-scale-GS) @(X,t), and an unresolved (subgrid-scale-
SGS), contribution

P, 1) =9(X,t) + ¢'(%,1). (11)
The GS contribution is defined by a spatial low pass filtering operation

B 1) = J ?(%,1)Ga & — ¥)d, (12)
Q

in which Gy is the convolution kernel that determines the filter type,
and A is the filter width. In the present study, a classical top-hat (box)
convolution filter is utilized to separate the resolved and unresolved
scales of motion, which for a one-dimensional case reads as

Lo <A
GA(x): A l‘x|_2.

0 otherwise

(13)

The box filter is local in the physical space and nonlocal in the spectral
space, but the filtering operation is equivalent to a finite difference or
finite volume discretization, which are commonly used in LES of engi-
neering applications.'® By applying the low pass filter to the governing
equations, the filtered continuity and momentum equations are
obtained (Masoudian ef al.*® and in Ferreira et al.’’)
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ou

oo (14)
%_‘_—.%__l@_‘_viz—_ + ?4_7_’}; (15)
ot u] ij - paxi s 8xj [ SU} 8xj 8xj ’

where % = [t — U;1j) is the SGS tensor and the last term on the
RHS of Eq. (15) is the filtered polymer stress contribution given by

— POy [ ‘
o =22 [f(Ca)Cy — £(1)5y). (16)
Equation (16) can be re-written as
— P T A
o =2 [F(Cu) Ty + 25 — F(L)3y). (17)
in which the SGS of the filtered f (Cyi) Gy, is defined as

% = f(Cu)Cyj — f (Cu) Ty (18)

The filtered evolution equation for the conformation tensor is

ac;, —ac; om ou; 1
o 5 = G+ 0 G — — )Gy
k

TR R o Ll P ‘5’7}’ (19)

where the last term on the LHS is the filtered advection of the confor-
mation tensor, and the first two terms on the RHS are the filtered poly-
mer stretching, whereas the last term on the RHS is the filtered
polymer dissipation. Equation (19) can be re-written in a way that sin-
gles out the resolved and subgrid-scale quantities in the conformation
tensor equation as discussed previously,””*® namely,

oG - aci,-iaa,.a O

— 1 S
] Y S —
o ox ox ]k+8_xkc”‘_1[f(ckk)cﬁﬂij—%] Wity

(20)

with L defined in Eq. (18), the unresolved (SGS) conformation advec-
tion tensor defined as

ac; _ ac;
= — 2 21
lplj k 8Xk Uk 8Xk ) ( )
and the SGS polymer stretching tensor given by
8u,« 0ﬁi — 6uj 8ﬁj —
= |=—Cp — =—C; T — =L Cyl. 22
%] |:axk ik axk C] + 3xk Ck 6xk ¢ k:| ( )

Now, closures need to be developed for all SGS terms in all governing
equations. In principle the SGS stress tensor in the momentum equa-
tion may be affected by fluid rheology. However, since this is the very
first work developing models for LES of viscoelastic fluids in jets and
rf]-gs quantifies inertial effects, as a first approximation we will consider
that the closures developed for T?JSS with Newtonian fluids remain valid
and the effect of polymers on it is carried over through the filtered
velocity and rate of deformation fields. The closures used for r?jgs are
presented next.

A. Smagorinsky model (Sm)

Solution of the LES equations requires closures for all the SGS

terms. In the present work the SGS stress tensor r?jgs is modeled using

scitation.org/journal/phf

two different closures: the classical and the dynamic Smagorinsky
models. Both models were previously implemented in the present pla-
nar jet flow code (for Newtonian fluids) by Silva et al.***

The Smagorinsky model was originally developed by
Smagorinsky”* and is based on an eddy viscosity given by

v(x,1) = (Csud)IS], (23)

where [S| = (2§ij§ij) 12 is the filtered strain rate magnitude, and STJ is
the filtered rate-of-strain which is obtained by filtering Eq. (6), Cgp, is
the Smagorinsky constant,, and A is the filter size calculated by
A = (Ax x Ay x Az)*.'"® The main drawback of the classical
Smagorinsky model is that it cannot consider backward energy trans-
fer since it is a dissipative closure: the local equilibrium assumption is
not valid and the model is too dissipative. However, the Smagorinsky
model is simple, with a very low computational cost, therefore, it is
popular in the study of turbulent flows. In the present work, we take
Csm = 0.16 for the Smagorinsky constant.”**” This model, with the
same value of Cs,, was used previously by Ferreira et al. 7 for FENE-P
fluids in forced homogeneous isotropic turbulence, with very good
results.

B. Dynamic Smagorinsky model (Dyn)

To deal with the limitations of the classical Smagorinsky closure,
the dynamic Smagorinsky model was proposed by Germano et al.”
Here, the eddy viscosity is still given by Eq. (23), but with Cpy, instead
of Cs, where Cpyy, is assumed to depend on time and space and com-
puted by utilizing the Germano identity. As a result, the coefficient is
now computed in the entire domain as Cpy, (x,y,t) = ﬁ, where

represents an averaging in the homogenous flow direction, which in
T%e present planar jet flow is the z-direction. The coefficient depends
on the Leonard stress tensor

Ly = utl; — u;ll;, (24)

i)

obtained by applying a spatial test filter, of size equal to 2 A and identi-
fied by the tilde, and on

M;; = (kA)*[S[S; — A2[S]S;. (25)
For a test filter size equal to 2A, the coefficient k is assumed to be

k = /5, |S| is defined in Sec. 11T A and \§| = 2§,j\:§,j is the magni-
tude of the double filter sized of the large-scale strain rate tensor. To
prevent the existence of numerical instabilities during the simulations,
due to excessively large negative values of coefficient Cpyn, a clipping
procedure was implemented and Cpy,, > 0 was imposed everywhere.

IV. NUMERICAL METHODS

The in-house code used to solve the original governing equations
through DNS and the filtered governing equation (LES) is the same.
Recently, our in-house DNS solver has been extended by Guimaraes
et al.”’ to simulate turbulent flows of FENE-P fluids. The code was
originally developed by Reis’' and later by Lopes*® who added some
LES closures** for Newtonian fluids. The code uses a sixth-order
compact differencing scheme’” in the streamwise (x) direction and a
pseudo-spectral method™ in the normal (y) and spanwise (z) direc-
tions.”” An explicit three-step third-order low-storage Runge-Kutta
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time-stepping scheme is used for temporal discretization. For the pre-
sent studies, the new closures associated with the constitutive equa-
tions, to be discussed below, were added to the code.

Discontinuities in the polymer stresses are the main difficulty in
implementing the FENE-P model because of the growth of Hadamard
instabilities.”” Several methods have been proposed by utilizing artifi-
cial stress diffusivity or the slope limiter to handle this problem such
as in Refs. 55-59. Although they can prevent the Hadamard instabil-
ities, they may affect the computation of the polymer stresses or pro-
duce negative eigenvalues in the conformation tensor, leading to
errors in the conservation laws.”” *’ In 2006, Vaithianathan et al.*’ uti-
lized the Kurganov and Tadmor (or KT)" numerical scheme to han-
dle all mentioned issues. The KT scheme is a central difference,
second-order accurate in physical space, and independent of the time
step. The KT scheme assures that the conservation laws for conforma-
tion tensor are satisfied. Details of this procedure in the present code
are described in detail in Refs. 47, 61, and 62. The implementation of
the KT scheme in the present code was carried out by Guimaraes
et al.”” and the semi-analytical solution for the laminar planar jet flow
of FENE-P fluids of Parvar et al®”®* was also used to verify the
implementation.

V. A PRIORI TESTS: DNS OF TURBULENT PLANAR JET
FENE-P FLUID

To develop closures for the remaining SGS terms appearing in
the constitutive equation, we perform a priori tests by using the DNS
data of turbulent viscoelastic planar jet flows of Guimaraes et al."” The
physical and computational characteristics of these simulations are
now described, with more details given in Guimaraes et al"’

A hyperbolic tangent profile is used as an inlet condition for the
mean inlet velocity proﬁle,zg

_ U +Ut U -UD H 2
i(x=0,y) = ]2 x4+ ]2 Ootanh{E( —ﬁ)}, (26)

where U; is the maximum mean streamwise velocity and U™ is the jet
co-flow velocity. For the conformation tensor profiles at the inlet, con-
ditions of fully-developed channel flow were assumed with the shear
rate computed from the velocity profile of Eq. (26), as given by Pinho
et al."” Periodic boundary conditions are used for the lateral bound-
aries (y and z directions). In addition, the amplitude of noise for all
inlet velocity fluctuations of DNS is set at 10%, and the ratio between
the inlet slot-width and the momentum thickness is H/0 = 30.""*
The Reynolds number (Re) is defined by
mn
Rey = (U -vo)H U“)H, 27)
Vs
where H is the inlet slot-width of the jet and vy is the kinematic solvent
viscosity. A global Weissenberg number is also defined as the ratio
between the elastic and integral time scales, which for the turbulent jet
is given by
jl n
wi= AU Uz) (28)
H

In all simulations the Reynolds number was equal to Re = 3500, and
the ratio between the solvent and the total viscosities (f3,) was set to
ps = 0.8. The computational domain length was equal to 18H and the

ARTICLE scitation.org/journal/phf

grid size was 512 x 512 x 128 in the streamwise, normal, and spanwise
directions, respectively. The maximum extensibility of the dumbbell
was set to L? = 10%, while the relaxation time for the FENE-P fluid
flows were A = 0.4, 0.8 and 1.2 s, leading to the global Weissenberg
numbers of Wi=1.1, 22, and 3.3, respectively. A reference
Newtonian DNS was also carried out for comparison and its results
are indicated by subscript N. The main physical and computational
details of the DNS are summarized in Table T (data extracted from
Guimaraes et al.*’).

The statistical data extracted from the DNS of Guimaraes et al."’
was initially used to analyze the order of magnitude of each term in Egs.
(20)-(22), in order to simplify those equations by proposing relevant
hypothesis, named (H1)-(H6) and finally to introduce the set of LES
closures. It is important to mention that a priori tests were performed
on the available instantaneous DNS data provided by Guimaraes
et al,”” but since the number of continuous instants of time provided
was not very large, if we consider data at a specific x, y location the sam-
ple size is limited, even if data are averaged in the homogeneous direc-
tion (z), which we always do. Therefore, in order to increase the sample
size we decided to perform the tests for the assessment of all hypotheses
using the combination of all instantaneous data at the jet centerline
(y/H = 0) inside the self-similar region (10 < x/H < 18). It is such
large set of data that is used in Figs. 2-10, except for Fig. 3 where plotted
data pertain to specific x, y values shown separately.

We are looking for closures for tensor-based quantities appearing
in Eqgs. (20)-(22) and these will necessarily involve coefficients which
can be independent of the component (isotropic) or not (anisotropic).
Both types of coefficient will be investigated here through the a priori
testing, but when analyzing the isotropic coefficients we will rely on a
governing equation for the filtered trace of the conformation tensor, as
was done previously by Ferreira et al.”” for forced homogeneous isotro-
pic turbulence (FHIT). Additionally, for conciseness, when analyzing
some SGS terms we will also show plots involving the corresponding
quantities from the filtered trace equation. The equation for the evolu-
tion of the filtered trace of the conformation tensor can be written as

85,-,- _ 86,’,’

Ol — 1 — \—=
—z =2—0Ci—= |f(Ci)Cii i =00 | — Wi + Vi,
61‘ “k 8xk é)xk k 2 |:'£(_.}i2\,_i.1/ :| w + y
M~ N—— ~—— Ca
G C G

(29)

where C; and C, are the temporal and advection terms while C, and
C, are the production and dissipation of the trace of the filtered con-
formation tensor components (C;), respectively. The two remaining
terms on the RHS of Eq. (29), ;; and y;;, are the unknown subgrid-

TABLE 1. Summary of physical and computational parameters of the DNS used to
perform a priori tests, extracted from Guimaraes et al.*’. A;, Ay,, and A, are slopes
of the laws of variation of jet width (), mean centerline velocity (U;), and centerline
stress (z.) discussed later, domain size“x,ﬁiéx“ =18 x 18 x 4.5.

Wi A(s) B, L Grid points As Ay

c

A,

DNSy O 0 1.0 NA 512 x512x 128 0.110 021 NA
DNS;; 1.1 04 0.8 100 512 x 512 x 128 0.111 0.208 1.40
DNS,, 22 0.8 0.8 100 512 x 512 x 128 0.095 0.176 0.56
DNS;5 33 12 0.8 100 512 x 512 x 128 0.080 0.141 0.37
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FIG. 2. Joint Probability density function
(JPDF) Oi Cq = f(Ckk)Cii and CD
= f(C)Cj normalized by their root
mean square obtained from DNS at (a)
Wi=1.1, (b) 2.2, and (c) 3.3 with a filter
size AIAx=4. All data are from the jet
centerine (y/H=0) in the range
10 < x/H < 18.

FIG. 3. The variation of terms in Eq. (29),
averaged in the homogeneous direction,
at a number of points (30) on the jet cen-
terline (y/H=0) for 10 < x/H < 18. The
DNS data pertain to (a) Wi=1.1, (b) 2.2,
and (c) 3.3. The legend is shown as part
(d) and the filter size was A/Ax =4. Lines
are a guide to the eye.
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of the trace of the conformation tensor
and polymer stretching terms, obtained
from DNS at (a) Wi=1.1, (b) 2.2, and (c)
3.3 with a filter size A/Ax=4. All data

100 are from the jet centerline (y/H=0) in the
o PDF(y) range 10 < x/H < 18. Lines are a guide
» PDF(%) to the eye.

PDF

-1000

scale contributions from the advection and polymer stretching, respec-
tively, and y;; represents the SGS contribution to the dissipation of
elastic energy.

Next, a series of six hypothesis will be tested in order to develop
the closures needed by the filtered governing constitutive equation.

A. SGS of polymer dissipation: Hypothesis H1

The first hypothesis (H1) deals with the filtered nonlinear confor-
mation tensor term (X,-j) in the filtered conformation tensor evolution
equation and in Egs. (16)-(18) for the filtered polymer stress, which
needs to be assessed in order to develop a LES closure.”*” The term
can be decomposed as on the left side of the arrow in Eq. (30), where
the difference inside the parentheses is the SGS contribution. The
hypothesis is that the SGS term is very small and can be neglected;
therefore, the filtered term equals the GS contribution as on the right-

hand-side of the arrow in the following:
f(Cu)Cj = £ (Ci) Cy + (f(Ckk)ij )
— f(C)Cyj %f(akk)aj or z; 0.
Note that in homogeneous flows and considering the filtering proper-
ties for a box filter, one concludes that f(C) = f (Ckk). Even though

the jet flow is not homogeneous, this equality will still be assumed.
Figures 2(a)-2(c) show the joint probability density function

— f(Cu)Cy

Zij

(30)

(JPDF) of the ¢4 = f(Cx)Cii and Cp =f(Ci) C;; in the viscoelastic
turbulent planar jet flow for Wi=1.1, 2.2, 3.3 and for a filter size equal

to A/Ax = 4(for filter sizes A/Ax = 2 and 8 similar results are
observed). The two quantities are strongly correlated, and the correla-
tion coefficient is very close to 1, which means that the two quantities
are closely matched. Note that the JPDF plotted involves the trace of
the conformation tensor (Cj;), but hypothesis (H1) remains valid if the
sink terms are assessed individually. These are not shown for concise-
ness. Masoudian et al.** and Ferreira et al.”” reached similar results for
turbulent channel flow and forced isotropic turbulence of FENE-P flu-
ids, respectively. The results in Fig. 2 confirm the validity of assump-
tion H1 for a free flow in the presence of mean shear. Therefore, this
assumption is used henceforth in the present study.

B. SGS of advection: Hypothesis H2

The second hypothesis (H2) deals with the subgrid-scale advec-
tion and we analyze next the corresponding term for the trace of the
filtered conformation tensor, denoted V;, and defined according to
Eq. (21).

Hypothesis H2 assumes that the SGS contribution of the advec-
tion from the filtered conformation tensor equation is negligible when
compared with the resolved advection term. Figures 3(a)-3(c) plot the
variations of all terms of Eq. (29) averaged in the homogeneous direc-
tion; as shown (y;;) is much smaller than the other quantities and, in
particular, smaller than (C,). In Fig. 3, we consider data at an instant
of time at specific (x,y) points on the jet centerline, but within the
self-similarity region. Each data point marked in the abscissa actually
corresponds to the average of the 128 points in the homogeneous
z-direction of the domain (at that value of (% y)), i.e., in contrast to
the figures showing the joint PDFs, we are not mixing data at all

i)
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points. For clarity, only data from 30 (x, y) points are shown, but we
observe a similar behavior when considering all points in that region.
It is not shown here for conciseness, but hypothesis H2 remains valid
when comparing individually (y;) with (Cyj).

Figures 4(a)-4(c) show the probability density function (PDF) of
V; and y; at the self-similar region of the turbulent viscoelastic jet for
W, = 1.1, 2.2, 3.3, respectively, for a filter size equal to A/Ax=4.
These confirm that locally, the quantities of /; < 7;;. As shown, the
skewness of y;; is also significantly more intense than that of ¥;;, so
(Vit) 5 divection 7 0> Whereas (Vi) i, = 0. Masoudian et al** and
Ferreira et al.” also reported that 1, is negligible in DNS of turbulent
channel flows and forced isotropic turbulence of FENE-P fluids,
respectively. Therefore, the comparison shows that the SGS of polymer
stretching y;;, or 7, cannot be ignored.

It is also observed in Fig. 4 that by increasing Wi, not only the
skewness of the polymer stretching SGS, but also the tendency of

having negative quantities of it, both increase. The same behavior was
observed and reported by Ferreira et al.”” and interpreted there as a
sign of the formation of the polymer induced energy cascade at larger
Wi number, which was explained in detail by Ref. 40.

C. Scale-similarity of the subgrid-scale polymer
stretching: Hypothesis H3

One of the main characteristics of turbulent flows is the existence
of self-similarity in the inertial range of scales, which allows the com-
putation of a given subgrid-scale quantity by assessing the same quan-
tity defined at a nearby scale.”” This assumption has been previously
used in the development of many SGS models for Newtonian turbu-
lent flows™* and prompted Ferreira et al.” to develop the DSIM model
for 7;; in Eq. (22) in isotropic turbulence by applying this concept to
the computation of the SGS polymer stretching term. It is important
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FIG. 6. JPDF between the C,11 and C,
[calculated from Eg. (34)] obtained from
DNS at (a) Wi=1.1, (b) 2.2, and (c) 3.3
with a filter size A/Ax = 4. All data are
from the jet centerline (y/H=0) in the
range 10 < x/H < 18.

FIG. 7. JPDF between the C,11 and C,q,
[calculated from Eg. (34)] obtained from
DNS at (a) Wi=1.1, (b) 2.2, and (c) 3.3
with a filter size A/Ax = 4. All data are
from the jet centerline (y/H=0) in the
range 10 < x/H < 18.
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FIG. 8. JPDF functions between polymer
stretching C, and dissipation Cq terms of
the trace of the filtered conformation ten-
sor evolution equation obtained from DNS
at (@) Wi=1.1, (b) 2.2, and (c) 3.3 with a
filter size A/Ax = 4. All data are from
the jet centerline (y/H=0) in the range
10 < x/H < 18.

FIG. 9. PDF of the traces of C;, C,, C,,
and Cy at (@) Wi=1.1, (b) 2.2, and (c) 3.3
for a filter size A/Ax = 4. All data are
from the jet centerline (y/H=0) in the
range 10 < x/H < 18. Lines are a guide
to the eye.
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to assess this assumption in the present inhomogeneous flow configu-
ration. Specifically, the self-similarity of subgrid-scales was originally
proposed by Bardina et al.,” for the SGS stress tensor of the momen-
tum equation. The model assumes that the SGS stress (for a
Newtonian fluid) can be approximated by
where C is a constant of order O(1), and A is the width of the test filter,
often taken as having twice the width of the original filter. By applying
this concept to the subgrid-scale polymer stretching term [y; in Eq.
(22)], the subgrid-scale polymer stretching at the test filter width is

(31)

Ju; Oty =
L Cp —=—LCul. 32
* axk k 8xk k:| ( )

C;

oo | Ouiz
v (9xk ik 8xk i

By considering the self-similarity of the subgrid-scales computed at fil-
ter widths A and A, (here we take A = 2A) the SGS of polymer
stretching tensor is calculated by

'Vij = CyGij7 (33)

where C, is a numerical coefficient that needs to be computed. This
constitutes the assumption H3 used by Ferreira et al.”’ in homoge-
neous turbulence.

To assess this assumption in the turbulent jet flow configuration,
Figs. 5(a)-5(c) show the joint probability density functions (JPDFs) of

ral C; and advection C, terms from the
C trace of the conformation tensor transport,
obtained from DNS at (a) Wi=1.1, (b)
22, and (c) 3.3 with a filter size
A/Ax = 4. All data are from the jet cen-

terine  (#H=0) in the range
0.05 10 < x/H < 18.
0.04
003
0.02
0.01

the trace of the SGS polymer stretching terms y; and Gj; with
Wi=1.1, 2.2, and 3.3 and for filter size A/Ax =4 and 8.

The two quantities are clearly correlated, and the correlation
coefficient between y; and Gj; varies between 0.83 and 0.599, so of
order 1, depending on the filter size and Wi number. Specifically, the
correlation coefficient decreases when increasing Wi and the filter size,
which is similar to the behavior and values described in Ferreira
et al.”” The correlation coefficients and shape of the PDFs attest that
the scale-similarity assumption (H3) is also valid for inhomogeneous
free shear flows and can be used in the development of SGS closures.

The closure in Eq. (31) has the same coefficient for all tensor
components, i.e., it is an isotropic model, still to be determined. As in
Ferreira et al.”” we now investigate the possibility of using anisotropic
model coefficients C, , defined by a rewriting of assumption H3 as

Vi = Cij Gij(no summation on i and ). (34)
To investigate this issue, Figs. 6 and 7 show the JPDF between C,;
= %111 and Cyp, = ézzz, and between C,;; = C% and Gy, = é#lzz, respec-
tively, for filter size A JAx = 4.

As in Ferreira et al.”’ for homogeneous turbulence, the figures
clearly show that the correlation coefficients between C,1; and C,
and between C,;; and C,;, are approximately zero. This means that
these quantities are statistically independent, which validates the
assumption of using an isotropic C, in the DSIM SGS model, also for
the inhomogeneous flow configuration used in the present work. For
other combinations of coefficients not shown, the correlation coeffi-
cient was equally very small.

Phys. Fluids 33, 045110 (2021); doi: 10.1063/5.0039826
Published under license by AIP Publishing

33, 045110-12


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

D. Local equilibrium of the polymeric elastic energy
and statistically stationary flow: Hypothesis H4, H5,
and H6

We now investigate the hypothesis used by Ferreira et al.”” to
compute the model constant C,, defined in Eq. (34). By using Eq. (29)
and by employing the condition of statistical stationarity and homoge-
neity Ferreira et al.”” arrived at the following expression:

<2%> = <% [f(ckk)cii - 51‘:} >7 (35)

where the brackets () denote an ensemble averaging operation which
was performed in all three homogeneous directions in the homoge-
neous isotropic turbulence configuration of Ferreira et al.”” In such
context, this expression represents the “global” equilibrium of the
resolved elastic energy, i.e., in statistically stationary isotropic turbu-
lence the elastic energy produced by the interaction between the poly-
mer molecules and the turbulent velocity fluctuations is balanced by
its transfer into the polymer molecules where it is stored as elastic
energy, so that the total (resolved) elastic energy-which is proportional
t0 Cie = Cox + Eyy+6zz—remains constant. We denote this assump-
tion as H4.

It is important to clarify how this assumption can be used in the
context of the present flow configuration since it is clear that in turbu-
lent jet flows, as well as in other inhomogeneous flow configurations,
Eq. (35) will not be exactly verified. Hence, one needs to assess how
this expression, or some sort of variant of it, can be used in order to
extend the DSIM model into free shear flows.

We start by noting that statistical stationarity in the far field (fully
developed) region of the jet allows one to write also

dC;; -
() o

(we denote this assumption by H5). The brackets still refer to averag-
ing in the homogeneous direction, which in the present context is the
z-direction. By averaging Eq. (29) and considering a negligible (/;;)
(H2), together with the self-similarity assumption for the SGS polymer
stretching term (H3), this equation can be written as

<ﬁkaa%:> = <2%a‘k> - <% [f@ﬁﬁ — 51‘1} > +(C,Gy). (37)

Notice that the term on the LHS of Eq. (37) is the mean advection of
the trace of the conformation tensor, which is rigorously zero in isotro-
pic turbulence due to the homogeneity of the flow, but has to be
retained in inhomogeneous turbulent flows, such as in turbulent visco-
elastic jets. However, it is likely that this term is negligible compared to
the other terms. Indeed, whereas the advection of C;; is clearly associ-
ated with the largest scales of motion in the jet, the terms representing
the production and dissipation of C;—the first and second terms on
the RHS of Eq. (37)—are governed by the smallest scales of the flow.
We denote this assumption (neglecting the advection of C;) by Heé.
We can therefore use an expression similar to the one used by Ferreira
et al.”’ for the determination of the model constant C,, with only
minor corrections related to the averaging procedure.

By inserting all the aforementioned hypotheses into Eq. (37), the
model constant C, can be obtained from the following expression:
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where the averaging procedure now consists on a spatial average car-
ried out along the only flow direction where the flow is homogeneous
(z-direction).

Hypothesis H5 does not need to be assessed as it stems directly
from the concept of statistical stationarity, whereas hypothesis H4 and
H6 are somehow related and need to be assessed simultaneously.

In order to assess hypothesis H4-H6 dealing with local equilib-
rium assumption, Fig. 8 shows the joint probability density functions
(JPDFs) of the polymer stretching (C,) and dissipation (Cq) of the
trace of the conformation tensor defined in Eq. (29), for Wi=1.1, 2.2,
and 3.3 and filter size A/Ax = 4. The correlation coefficients between
G, and Cg are very high, at 0.84, 0.79, and 0.71 for Wi=1.1, 2.2, and
3.3, respectively, with A/Ax = 4. This confirms that, as in isotropic tur-
bulence, C, and C4 are in approximately local equilibrium, even
though the correlation coefficient slightly decreases with increasing Wi
numbers.

To complete the assessment of the H4-H6 assumptions, it is
important to shown that the other terms of Eq. (29) (terms C, and C,)
are negligible in comparison with C, and Cq4 terms.

Figure 9 shows the probability distribution functions of all terms
of Eq. (29) (Cy, Cy Cp and Cy) for A/Ax=4 and Wi=1.1, 2.2, and
3.3. The PDF of C; and C, is symmetric which explains why the local
value of the sum of these quantities is approximately 0. Finally, Fig. 10
shows the joint probability density functions between temporal varia-
tion C, and advection terms C, of the trace of the conformation tensor,
for Wi=1.1, 2.2, and 3.3 and filter size A/Ax=4. The correlation
coefficient between C, and C, is equal to —0.95, —0.94, and —0.92,
which finally confirms that all hypotheses H4, H5, and H6 are
verified.

To summarize, all the a priori tests conducted in the reference
DNS of turbulent viscoelastic jets clearly show that all the assumptions
used by Ferreira et al.”” in the development of the DSIM model in iso-
tropic turbulence are also valid in the present inhomogeneous free tur-
bulent flow configuration, and are likely valid in other free shear flows
of viscoelastic fluids such as wakes and mixing layers. In Sec. VI, we
assess the combination of all closures through a posteriori (LES) tests.

VI. A POSTERIORI TESTS: LES OF TURBULENT PLANAR
JET FENE-P FLUID

Several LES of turbulent planar jet flow of FENE-P fluid were
performed with the various closures presented, including the
Smagorinsky and dynamic Smagorinsky models for the SGS term of
momentum equation and the DSIM model for the SGS polymer
stretching term in the conformation tensor equation. The results are
assessed against the reference DNS of Guimaraes et al."” in what are
typically called a posteriori tests. The comparisons confirm that the
DSIM model, in its original formulation and, in particular, in combi-
nation with the dynamic Smagorinsky closure for the SGS stress, per-
forms well in planar turbulent jets, and arguably the same should be
true for other free shear flows. Incidentally, we did also some tests
using the Vreman®® and the shear improved Smagorinsky” closures
for the SGS stress, but no advantages were observed relative to the

C = , (38)
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dynamic Smagorinsky model; therefore, for the sake of conciseness,
such results are neither presented nor those closures introduced.

The LES were carried out with the same numerical code used in
Guimaraes et al.”” and the physical and computational parameters are
chosen as close as possible to those of the reference DNS, naturally
using coarser grids than in the DNS.

The amplitude of noise for all inlet velocity fluctuations was set at
10%, as in Guimaraes ef al;*” however, the ratio between the inlet slot-
width and momentum thickness was set to H/0 = 15,* to avoid the
Gibbs phenomena that could arise with the coarser grids used in LES.
In the following, we use subscripts “N” (Newtonian fluid), “Sm”
(Smagorinsky), and “Dyn” (dynamic Smagorinsky) to denote the vari-
ous subgrid-scale stress closures used in the computation. Subscript
“f” represents a second LES carried out using a finer grid. The main
details of the simulations are summarized in Table II, where the
reported values of As, Ay, A, were obtained using the dynamic
Smagorinsky model.

In all simulations and similarly to the DNS of Guimaraes et al.,"”
the Reynolds number was equal to Re = 3500, and the ratio of the sol-
vent to total viscosity and the maximum dumbbell extensibility were
equal to B, = 0.8 and L* = 10%, respectively. The domain size was
L,=19.2H,L, =24 H in the streamwise and normal directions, and
L, = 6H in the spanwise direction, for a “normal” grid size with
192 x 192 x 48 grid points, and a “finer” grid size with 256 x 256 x 64
points. By considering A = 0.3, 0.6, 0.9 s, the global Weissenberg
number became equal to Wi=1.1,2.2, 3.3.

A. Instantaneous vorticity and trace of conformation
tensor field

Figures 11(a)-11(d) show contours of instantaneous vorticity
magnitude normalized by (U/ — U;Z)/ H in the (x,y) plane of the tur-
bulent planar jet obtained by LES for Newtonian and viscoelastic flows
at Weissenberg numbers, Wi=1.1, 2.2, 3.3. These results were
obtained in the finer grid (LESy) and used the dynamic Smagorinsky
model.

The Newtonian contours in Fig. 11(a) are very similar to those
shown in Guimardes et al,” for the same physical conditions.
Kelvin-Helmholtz vortices emerge at about at x/H ~4 for all simula-
tions and tend to break up into smaller-scale eddies after about x/
H =6. By about x/H ~10-12, the flow seems to have attained the typi-
cal features of fully developed turbulence, with a clear display of many

TABLE II. Summary of physical and computational features of LES used in the a
posterior tests with domain size ““F% = 19.2 x 24 x 6.

Wi AMs) B, L Grid points As Ay

c

A,

LESy 0 0 1.0 NA 192 x 192 x 48 0.124 0.165 NA
LES;; 11 03 0.8 100 192 x 192 x 48 0.108 0.169 1.8
LES,, 22 0.6 0.8 100 192 x 192 x 48 0.090 0.156 0.63
LES;; 33 09 0.8 100 192 x 192 x 48 0.084 0.155 0.34
LESne O 0 1.0 NA 256 x 256 x 64 0.124 0.180 NA
LES;;¢ 1.1 03 0.8 100 256 x 256 x 64 0.122 0.187 1.65
LES;» 22 0.6 0.8 100 256 x 256 x 64 0.094 0.167 0.57
LES;5 33 09 0.8 100 256 x 256 x 64 0.085 0.154 0.38
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small-scale eddies without any preferential direction. As reported by
Guimaries et al.”’ and the other extensive studies on turbulent visco-
elastic fluids,”” ”* the main effects of increasing the Wi number in the
turbulent planar jet structure are (i) a significant suppression of small-
scale turbulent motions (compared to the Newtonian reference case),
with a concomitant considerable reduction of the vorticity magnitude
as observed by the range of values of |w™| obtained, (ii) the elongation
of the eddy structures, and (iii) a reduction of the jet spreading rate.
All of these features are clearly shown in Fig. 11. The effect of polymers
on the dampening of the vorticity magnitude can be well appreciated
in these figures since increasing Wi from 0 (Newtonian) to 3.3 causes
the maximum vorticity magnitude to decrease from |@* |y = 9.15
for the LES of the Newtonian fluid to 4.55 for the LES of FENE-P fluid.
Simultaneously, the coherent structures become more elongated and
spread at a lower rate. Similar observations were reported in
Guimardes et al.”’ and many experimental studies, e.g., Refs. 73-77.

As the detailed investigations of forced homogeneous isotropic
turbulence have shown™"*’ the increase in Wi leads to a situation in
which the polymer timescale becomes larger than the Kolmogorov
scale. Further increases in Wi result in a deviation of the large to small
scale turbulent kinetic energy transfer from the classical mechanism to
a polymer induced cascade mechanism. This is seen through both
reductions of vorticity and of small scale turbulent motion (at the
same level of vorticity). As has been previously observed in inhomoge-
neous wall turbulence,''*””* and is also seen in this jet flow,"” these
features and the strain hardening of some fluid properties, such as the
fluid extensional viscosity, lead to stronger reductions in transverse
and spanwise turbulence than in streamwise turbulence and the
enhanced turbulence anisotropy translates into more elongated
structures.

Figure 12 shows contours of the trace of conformation tensor
tr(C) which is proportional to the elastic energy stored by the stretched
polymer molecules, for Wi= 1.1, 2.2, and 3.3, at the mid-plane of the
computational domain (z=0), and at the same instant of time of
Fig. 11. To help the visualizations, the range of the color maps was
taken to be much lower than maximum tr(C) for all cases. Maxima of
tr(C) occurs in the transitional region, and when approaching the far
field tr(C) decreases. Similarly to other studies, e.g., Valente et al.”” and
Guimaraes et al.,”” it was observed that even for the most extreme sce-
nario (Wi = 3.3), tr(C)max ~4500 in the fully developed turbulence
region (at x/H~214) corresponding to tr(C)max/L* = 0.45. However,
inspection of the instantaneous fields shows that the probability of
having local values of tr(C),,,./L* is very low, and generally those val-
ues remain tr(C),, /L* < 1.

B. Classical statistics

In this section, we analyze the statistical quantities obtained from
the several LES carried out with the combined dynamic Smagorinsky
and DSIM models by comparing them with the statistics obtained in
the reference DNS.* In some simulations, the classical Smagorinsky
model was also used. The comparisons are made in terms of
Reynolds-averaged quantities, and for this purpose, the LES and DNS
data of this statistically stationary flow are averaged in time and in
space in the homogeneous direction. To denote Reynolds-averaged
quantities, in this section, we use the overbar, which here does not rep-
resent a filtered quantity.

Phys. Fluids 33, 045110 (2021); doi: 10.1063/5.0039826
Published under license by AIP Publishing

33, 045110-14


https://scitation.org/journal/phf

Physics of Fluids ARTICLE scitation.org/journal/phf

(b)

ul |

9 9

8 8

7 7

6 I 6

5 - 5

4 4

3 3

2 2

1 1

0 0 5 10 15 0

x/H x/H
(c)

* |w*|

9 9

8 8

7 7

T 6 6
= 5 5
4 4

3 3

2 2

1 1

0 5 10 15 0 0 5 10 15 0

x/H x/H

00

at Wiof (b) 1.1, (|o™|max="7.65) (€) 2.2 (| " |max =4.91), and (d) 3.3 (@™ |max = 4.55). The results were obtained in the finer grid (LES;) using the dynamic Smagorinsky
model.

FIG. 11. Contours of instantaneous vorticity normalized by (U, — U™ ) /H at the middle plane of the domain (z = 0) for (@) Newtonian (| |max = 9.15) and viscoelastic flows
3

) (b) ()
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x/H
FIG. 12. Contours of the trace of conformation tensor tr(C) for (a) Wi = 1.1, (b) 2.2, and (c) 3.3 at the mid-plane of the computational domain (z = 0), and corresponding to
the same instant of time of . The results were obtained in the finer grid (LES;) using the dynamic Smagorinsky model.
Guimaraes et al.”’ showed that in turbulent viscoelastic jets the U, (x) -2 X — X
shear layer thickness J(x) and the decay of mean centerline velocity U = Av, H ) (40)

U, (x) evolve as simple functions of the streamwise distance x
where A; and Ay, are constants and x, is the virtual jet origin, and

o(x) X — X that increasing the Wi number decreases both the shear layer thickness
——— =As| ——— (39) dth ; ;
H and the centerline velocity decay rates.
Since fluid viscoelasticity and the subgrid-scale models tend to
and delay the transition to turbulence, the comparison between the
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FIG. 13. Evolution of the shear layer thick-
. ness (a) and jet centerline velocity decay
e (b) in LES of turbulent planar jets of

J Newtonian and FENE-P fluids at
Wi=1.1, 2.2, 3.3. Closures used were
the dynamic Smagorinsky and DSIM mod-
els in the finer grid (LES4 4, LES, 45, and
LES; 31) and compared with the reference
Newtonian case (LESyy). Dashed lines
connecting symbols are a guide to the
eye, and the solid straight lines show the
rate laws obtained by DNS at low and
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different models is done through the analysis of the spreading and
decay rates, as measured by A; and Ay, and not through the evolution
of 6(x) and U,(x) from the jet inlet.

Figures 13(a) and 13(b) show the streamwise variation of the jet
half-width and centerline velocity decay, respectively, for the simula-
tions carried out with the finer grid. The corresponding values of A;
and Ay, in the region 9 <x/H< 18, are listed in Table I. The decay
rates A5 and Ay, for the Newtonian LES (LESyy) are within the ranges
of 0.092 < As< 0.118 and 0.093 <Ay < 0.220, that have been
reported in previous experimental® ** and numerical (DNS)™ studies,
for Newtonian turbulent jets. Regarding the viscoelastic LES and in
agreement with the DNS of Guimaries et al,” the present LES show
that increasing the Weissenberg number postpones the transition to
fully developed turbulence and reduces the values of A5 and Ay, at

(a) ) Wi=1.1 _ (b)

high Wi.

high Wi. Indeed, up to Wi=1.1, the values of A5 and Ay, remain
close to the Newtonian values; however, for Wi = 2.2 and 3.3, both A;
and Ay, are considerably reduced, while still obeying a linear scaling
law with A; = 0.101, and 0.082, and Ay, = 0.171, and 0.160, respec-
tively. Moreover, the results are qualitatively consistent with several
experimental studies, e.g., Refs. 84 and 85.

To study the differences from the SGS model used to compute
the SGS stresses, Figs. 14 and 15 show the spreading and velocity decay
rates, respectively, obtained in the LES of the turbulent jet, using the
classical Smagorinsky and the dynamic Smagorinsky models. It is clear
that the dynamic Smagorinsky model performs better than the
Smagorinsky closure, in particular, for the finer grids.

Figures 16(a)-16(c) also analyze the effect of the SGS stress clo-
sures on the transverse profiles of the normalized mean streamwise

Wi=2.2

* DNS FENE-P Wi
* LES Newtonian
o LES Sm FENE-P
o LES,. Sm FENE-P

1.51| « LES Dyn FENE-P
o LES, Dyn FENE-P

IH

JH

FIG. 14. Effect of the SGS stress model
on the evolution of shear layer thickness
in the streamwise direction for the turbu-

(c) Wi=33

JIH

lent planar jet flows of FENE-P fluid for
different SGS stress closures at Wi of (a)
1.1, (b) 2.2, and (c) 3.3. The DSIM closure
is used for the SGS polymer stretching in
the conformation equation and the
Smagorinsky  (Sm) and  dynamic
Smagorinsky (Dyn) for the SGS stress in
the momentum equation.
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FIG. 15. Effect of SGS stress model on
the evolution of jet centerline velocity
decay in streamwise direction for the x
planar jet flow of FENE-P fluid for different
SGS stress closures at Wi of (a) 1.1, (b)
2.2, and (c) 3.3. The DSIM closure is
used for the SGS polymer stretching in
the conformation equation and the
Smagorinsky ~ (Sm) and  dynamic
Smagorinsky (Dyn) for the SGS stress in
the momentum equation.

FIG. 16. Effect of SGS stress model on
the ftransverse profiles of streamwise
mean velocity normalized by the center-
line mean velocity at x/H=12 for Wi of
(a) 1.1, (b) 2.2, and (c) 3.3. The DSIM clo-
sure is used for the SGS polymer stretch-
ing in the conformation equation and the
Smagorinsky  (Sm) and  dynamic
Smagorinsky (Dyn) for the SGS stress in
the momentum equation.
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velocity by comparing these profiles at x/H = 12 with the results
from the reference DNS. As expected the mean streamwise profiles
collapse, which is consistent in the self-similar region of the flow, but
with the dynamic Smagorinsky closure performing better than the
classical Smagorinsky model (results closer to the DNS data of Ref.
47). Moreover, in agreement with the DNS of Guimaraes et al.,"”” the
effect of increasing Wi number on %/ U, (x) is negligible.

Figures 17-19 show the corresponding streamwise evolutions of
the normal components of the Reynolds stress tensor on the center-
line, here represented as root mean square (rms) of the velocity fluctu-
ations \/i%), \;‘3% ,and V w'? predicted by LES, and normalized by
the mean centerline velocity U, (x). The figures include data from the
reference DNS (Guimaraes et al."’). The rms of the velocity fluctua-
tions of LES follow closely the corresponding DNS results, particularly
when the combination of dynamic Smagorinsky and DSIM closures
are used. For Wi <1.1, the normal Reynolds stresses gradually increase
along the transition region to a peak at the beginning of the self-
similar region (x/H ~ 11), and further downstream their values slightly
decrease as the flow attains the fully developed turbulent flow region.
However, for Wi>2.2, the magnitude of the Reynolds stresses
decreases considerably, compared with the turbulent Newtonian jet.
Generally speaking, as reported by Guimaraes et al," the role of the
polymers in the velocity fluctuations can be summarized as postpon-
ing the transition to turbulence and by reducing the Reynolds stresses
in the self-similar region due to depletion of the small scales of motion
caused by a preferential transfer of kinetic energy into the polymer
molecules, instead of the classical multi-scale transfer into the solvent
via the Richardson-Kolmogorov energy cascade. This tendency to the
attenuation of the Reynolds stresses is also reproduced by the present

(a) Wi=1.1 (b)
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LES, particularly for the combination of the dynamic Smagorinsky
and the DSIM model.
Figures 20-22 show the corresponding effects, now on the trans-
\y@proﬁles of the rms of the velocity fluctuations Vir? , V2 , and
w'* predicted by LES. These are normalized by the centerline mean
velocity U.(x), and the reference DNS profiles are also shown. In the
self-similar region (x/H = 12), the rms profiles do not collapse as
seen previously with the mean velocity profiles, but are close to the
DNS profiles, in particular when relying on the dynamic Smagorinsky
for the SGS stress. In all cases the DSIM closure was used for the SGS
stretching term in the constitutive equation.

C. Assessment of the self-similar theory of viscoelastic
turbulent planar jets

In this section, we assess the performance of LES in the reproduc-
tion of the main theoretical results derived by Guimaraes et al.”” for
the far field region of viscoelastic turbulent planar jets. In their theory,
Guimaraes et al.”” considered Townsend’s hypothesis of self-preserva-
tion"® together with the ideas put forward by Lumley”” to describe the
flow features of turbulent flows of viscoelastic fluids. In short,
Lumley”” defines characteristic velocity (#*) and length (r*) scales as

Ut =/, (41)
=/, (42)

where ¢ is the mean viscous dissipation rate of the solvent calculated

FIG. 17. Effect of SGS stress model on
the evolution of the root-mean square of
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the streamwise velocity fluctuations \/;’;
along the centerline, normalized by the
centerline mean velocity for Wi of (a) 1.1,
(b) 2.2, and (c) 3.3. The DSIM closure is
used for the SGS polymer stretching in
the conformation equation and the
Smagorinsky ~ (Sm) and  dynamic
Smagorinsky (Dyn) for the SGS stress in
the momentum equation.
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FIG. 18. Effect of SGS stress model on
the evolution of the root-mean square of

the transverse velocity fluctuations \/v7
along the centerline, normalized by the
centerline mean velocity for Wi of (a) 1.1,
(b) 2.2, and (c) 3.3. The DSIM closure is
used for the SGS polymer stretching in
the conformation equation and the
Smagorinsky  (Sm) and  dynamic
Smagorinsky (Dyn) for the SGS stress in
the momentum equation.

FIG. 19. Effect of SGS stress model on
the evolution of the root-mean square of

the spanwise velocity fluctuations \/ﬁ
along the centerline, normalized by the
centerline mean velocity for Wi of (a) 1.1,
(b) 2.2, and (c) 3.3. The DSIM closure is
used for the SGS polymer stretching in
the conformation equation and the
Smagorinsky  (Sm) and  dynamic
Smagorinsky (Dyn) for the SGS stress in
the momentum equation.

Phys. Fluids 33, 045110 (2021); doi: 10.1063/5.0039826
Published under license by AIP Publishing

33, 045110-19


https://scitation.org/journal/phf

Physics of Fluids

@ o5

/Ue

0.2

L
gons

0.1

0.05

Wi=1.1
* DNS FENE-P
* LES Newtonian|

o LES Sm FENE-P
o LES, Sm FENE-P
© LES Dyn FENE-P
o LES, Dyn FENE-P

ARTICLE

(b) Wi=2.2

Wi=33

0.25

JU.

) /U,

< 0.15

Wi=1.1
= DNS FENE-P
* LES Newtonian

o LES Sm FENE-P
o LES, Sm FENE-P

@ LES Dyn FENE-P
o LES, Dyn FENE-P

(b) Wi=22

Wi=33

scitation.org/journal/phf

FIG. 20. Effect of SGS stress model on
the mean profiles of the rms of the

streamwise velocity fluctuations \/u7 )
normalized by the centerline mean veloc-
ity, at x/H = 12 for Wi of (a) 1.1, (b) 2.2,
and (c) 3.3. The DSIM closure is used for
the SGS polymer stretching in the confor-
mation equation and the Smagorinsky
(Sm) and dynamic Smagorinsky (Dyn) for
the SGS stress in the momentum
equation.

FIG. 21. Effect of SGS stress model on
the mean profiles of the rms of the trans-

verse velocity fluctuations \/v’2, normal-
ized by the centerline mean velocity, at
x/H =12 for Wi of (a) 1.1, (b) 2.2, and
(c) 3.3. The DSIM closure is used for the
SGS polymer stretching in the conforma-
tion equation and the Smagorinsky (Sm)
and dynamic Smagorinsky (Dyn) for the
SGS stress in the momentum equation.
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FIG. 22. Effect of SGS stress model on
the mean profiles of the rms of the span-
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and ng is the fluctuating rate-of-strain tensor, obtained from
1{0u o',
So==4r 7). 44
i 9 <8xj * 0x; (44)

As in Sec. VI B, the overbar denotes averaging in time and in space in
the homogeneous direction.
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FIG. 23. Mean profiles of polymer shear stress, normalized as in Guimaraes
et al.,"” for several Weissenberg numbers Wi at x/H=12. SGS stress closed by
the dynamic Smagorinsky model.

wise velocity fluctuations W , normal-
ized by the centerline mean velocity, at
x/H =12 for Wi of (a) 1.1, (b) 2.2, and
(c) 3.3. The DSIM closure is used for the
SGS polymer stretching in the conforma-
tion equation and the Smagorinsky (Sm)
and dynamic Smagorinsky (Dyn) for the
SGS stress in the momentum equation.

One of the results obtained by Guimaraes et al.” in the develop-
ment of the theory for viscoelastic planar jets was the identification of
the reference velocity and time scales that characterize the flow statis-
tics in the self-similar far field region. In particular, they found that the
profiles of polymer stress collapse into the same curve when normal-
ized by Ty et = pUZ (x)r*(dd(x)/dx) /(u*(x)5(x)). They also showed
that for sufficiently high Wi numbers these normalized profiles are
universal.
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SGS stress closed by the dynamic Smagorinsky model.
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Figure 23 shows mean profiles of polymer shear stress normal-
ized by Tp f at x/H=12 for several Weissenberg numbers Wi. It is
clear that the polymer stresses obtained from the present LES, using
the dynamic Smagorinsky and the DSIM closures, collapse at high
Weissenberg numbers, in agreement with the theory developed by
Guimaraes et al.*’

Guimardes et al."’ also derived the scaling of the decay of the
maximum polymer stresses, which is described by the following

relation:
~2/5
o T " (45)
WipUpdo(x)/dx “\H )’

where A, is a scaling factor. Figure 24 shows the streamwise evo-
lution of the normalized maximum polymer shear stresses
obtained by LES, with the SGS stresses given by the dynamic
Smagorinsky model. It is clear the present results also display the
theoretical —5/2 scaling law in the self-similar far-field region,
and thus agree with the turbulent viscoelastic jet theory."’
Moreover, the constant A;, decreases with increasing Wi numbers
displaying values that are consistent with the DNS data of
Guimaraes et al.,” particularly for the higher Wi numbers, e.g.,
Wi >2 (compare the values of this factor in Tables I and II).

Finally, we assess also the proposed scaling relations for the
Reynolds shear stress in viscoelastic turbulent planar jets.
Guimardes et al."’ ascertained that the Reynolds shear stress
should be normalized as u/'v/ /(U?d3(x)/dx) for similar values of
the Deborah number

De = i (46)
te

in order to obtain the corresponding self-similar profiles. In Eq. (46),
te = 0(x)/U,(x) is a convective time scale characteristic of the large

energy-carrying eddies.
Figure 25 shows profiles of normalized Reynolds shear stresses
for the present LES at a single location (x/H=12) and Wi=1.1, 2.2,
and 3.3 [Fig. 25(a)], and at different locations x/H = 10, 11, 12, for Wi
= 2.2 and 3.3 [Fig. 25(b)], but which correspond to approximately the
same Deborah numbers (De~1.0-1.3). Again, the profiles of the
Reynolds stresses normalized as in Guimaraes et al.*’ collapse into the
same profile [Fig. 25(b)], clearly indicating that the present LES

1.5 2 2.5 3

recover the expected theoretical profiles observed in the reference
DNS.

VIl. CONCLUSIONS

In the present work, the DSIM model developed by Ferreira
et al.” for LES of turbulent viscoelastic flows is assessed and tested for
the first time in an inhomogeneous turbulent flow configuration. The
flow analyzed is a turbulent planar jet, for which a reference DNS
exists and a new theory has been recently developed to explain the
flow statistics at the far field fully developed turbulent regime
(Guimaraes et al.*’) The procedure consists in classical a priori tests
which are based on applying a box filter, with filter sizes A/Ax =2, 4,
and 8 to separate the resolved and unresolved/subgrid-scale compo-
nents of the flow, using the reference DNS of viscoelastic turbulent
planar jets carried out by Guimaraes et al.*’

The analysis revisited all the assumptions previously used by
Ferreira et al.”” in isotropic turbulence and considered their validity in
turbulent viscoelastic free flows. It turns out that all of these assump-
tions, and most notably the assumptions of (i) scale similarity of the
subgrid-scale polymer stretching terms and (ii) the local equilibrium
of the elastic energy production and dissipation, hold remarkably well
in the present configuration.

The DSIM model for the SGS polymer stretching term in the
constitutive equation, together with the Smagorinsky and dynamic
Smagorinsky model for the SGS stress in the momentum equation,
was used to carry out LES of the same jets simulated in Guimaraes
et al”’ although using much coarser grids. The combined dynamic
Smagorinsky model and DSIM model gave the best results and dem-
onstrated the ability to predict the flow structures and the classical one
point statistics in the flow with reasonable accuracy.

Future work will focus on the extension of the present model for
LES of wall-bounded flows.
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