Duration: $\mathbf{3 0}$ minutes

- Write your number and name below.
- Add your answers on this and the following page.
- Please justify all your answers.
- This test has One page and three questions. The total of points is 4.0.

Number:

 Name:1. Let two fair dice be tossed (independently) and $\Omega=\{(i, j): i, j=1, \ldots, 6\}$ be the associated sample space.

Consider the events:

- $A=\{$ points of the first die $=1,2$ or 3$\}$,
- $B=\{$ points of the first die $=3,4$ or 5$\}$,
- $C=\{$ the sum of points of the two dies $=9\}$.

Show that $P(A \cap B \cap C)=P(A) \times P(B) \times P(C)$ and yet these three events are not mutually independent.

- Events and probabilities

Since the 36 elementary events of the sample space are equiprobable, we get

$$
\begin{aligned}
A & =\{(i, j): i=1,2,3, j=1,2,3,4,5,6\} \\
P(A) & =\# A \times \frac{1}{36}=\frac{3 \times 6}{36}=\frac{1}{2} \\
B & =\{(i, j): i=3,4,5, j=1,2,3,4,5,6\} \\
P(B) & =\# B \times \frac{1}{36}=\frac{3 \times 6}{36}=\frac{1}{2} \\
C & =\{(i, j): i, j=1,2,3,4,5,6, i+j=9\}=\{(3,6),(4,5),(5,4),(6,3)\} \\
P(C) & =\# C \times \frac{1}{36}=\frac{4}{36}=\frac{1}{9}
\end{aligned}
$$

- Requested proof

$$
\begin{aligned}
A \cap B \cap C & =(3,6) \\
P(A \cap B \cap C) & =P((3,6))=\frac{1}{36}=P(A) \times P(B) \times P(C)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{9}=\frac{1}{36} \\
A \cap B & =\{(3, j): j=1,2,3,4,5,6\} \\
P(A \cap B) & =\#(A \cap B) \times \frac{1}{36}=\frac{6}{36}=\frac{1}{6} \quad \neq P(A) \times P(B)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4},
\end{aligned}
$$

thus, the 3 events are not pairwise independent and therefore not mutually independent.
2. Let X and Y two i.i.d. r.v. with common standard normal distribution.

Derive the p.d.f. of $W=\frac{X}{Y}$.

- Random vector and range

$(X, Y), \quad X \stackrel{\text { indep. }}{\sim} Y \sim \operatorname{normal}(0,1)$
$\mathbb{R}_{X, Y}=(\mathbb{R})^{2}$

- Transformation of (X, Y) and its range
$W=g(X, Y)=\frac{X}{Y}$

$$
\mathbb{R}_{W}=g\left(\mathbb{R}_{X, Y}\right)=\mathbb{R}
$$

- P.d.f. of W

$$
\begin{aligned}
f_{W}(w)= & f_{X / Y}(w) \\
& \stackrel{y}{\cong} Y \int_{-\infty}^{+\infty} f_{X}(w y) \times f_{Y}(y) \times|y| d y \\
= & \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{w^{2} y^{2}}{2}\right) \times \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) \times|y| d y \\
= & -\int_{-\infty}^{0} \frac{1}{2 \pi} \exp \left[-\frac{y^{2}}{2} \times\left(w^{2}+1\right)\right] \times y d y+\int_{-\infty}^{0} \frac{1}{2 \pi} \exp \left[-\frac{y^{2}}{2} \times\left(w^{2}+1\right)\right] \times y d y \\
= & \frac{1}{2 \pi} \frac{1}{w^{2}+1} \int_{-\infty}^{0}(-y)\left(w^{2}+1\right) \times \exp \left[-\frac{y^{2}}{2} \times\left(w^{2}+1\right)\right] d y \\
& -\frac{1}{2 \pi} \frac{1}{w^{2}+1} \int_{0}^{\infty}(-y)\left(w^{2}+1\right) \times \exp \left[-\frac{y^{2}}{2} \times\left(w^{2}+1\right)\right] d y \\
= & \frac{1}{2 \pi} \frac{1}{w^{2}+1} \times\left.\exp \left[-\frac{y^{2}}{2} \times\left(w^{2}+1\right)\right]\right|_{-\infty} ^{0}-\frac{1}{2 \pi} \frac{1}{w^{2}+1} \times\left.\exp \left[-\frac{y^{2}}{2} \times\left(w^{2}+1\right)\right]\right|_{0} ^{\infty} \\
= & \frac{1}{\pi \times\left(1+w^{2}\right)}, \quad w \in \mathbb{R} .
\end{aligned}
$$

3. Let $\left\{X_{i}: i \in \mathbb{N}\right\}$ be a Bernoulli process with parameter p and $S_{n}=\sum_{i=1}^{n} X_{i}$.

Derive the p.f. of ($S_{m} \mid S_{n}=k$), for $n \in \mathbb{N}, m=1, \ldots, n$, and $k=0,1, \ldots, n$.

- Stochastic process

$\left\{X_{i}: i \in \mathbb{N}\right\} \sim B P(p)$
$X_{i} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(p), \quad i \in \mathbb{N}$
$p=P$ (success), $\quad p \in(0,1)$

- R.v.
$S_{n}=\sum_{i=1}^{n} X_{i}=$ number of successes in the first $n \operatorname{Bernoulli}$ trials $\sim \operatorname{binomial}(n, p), \quad n \in \mathbb{N}$
- Requested p.f.
$P\left(S_{m}=x \mid S_{n}=k\right)=\frac{P\left(S_{m}=x, S_{n}=k\right)}{P\left(S_{n}=k\right)}$, where:

$$
\begin{aligned}
P\left(S_{n}=k\right) & =\binom{n}{k} p^{k}(1-p)^{n-k} ; \\
P\left(S_{m}=x, S_{n}=k\right) & =P\left(\sum_{i=1}^{m} X_{i}=x, \sum_{i=m+1}^{n} X_{i}=k-x\right) \\
\text { disj.block theo. } & P\left(\sum_{i=1}^{m} X_{i}=x\right) \times P\left(\sum_{i=m+1}^{n} X_{i}=k-x\right) \\
& \left.=\quad \begin{array}{l}
P_{\text {binomial }(m, p)}(x) \times P_{\text {binomial }(n-(m+1)+1, p)}(k-x) \\
\\
= \\
\\
= \\
\binom{m}{x} p^{x}(1-p)^{m-x} \times\binom{ n-m}{k-x} p^{k-x}(1-p)^{(n-m)-(k-x)} \\
\\
\end{array} \begin{array}{c}
m \\
x
\end{array}\right)\binom{n-m}{k-x} p^{k}(1-p)^{n-k} .
\end{aligned}
$$

Thus,

$$
P\left(S_{m}=x \mid S_{n}=k\right)=\frac{\binom{m}{x}\binom{n-m}{k-x} p^{k}(1-p)^{n-k}}{\binom{n}{k} p^{k}(1-p)^{n-k}}=\frac{\binom{m}{x}\binom{n-m}{k-x}}{\binom{n}{k}},
$$

[for $x \in\{\max \{0, k-(n-m)\}, \ldots, \min \{k, n\}\}]$.

