
Advanced Plasma Physics
MEFT 2021/22

Problem Class 3

[SOLUTION]

Clearly present your approximations and enclose all pertinent calculations. Try to solve the
problems yourself. Follow the instructions of the Lecturer.

Problem 1. The Kortweg-de Vries equation. Let us consider the propagation of nonlin-
ear ion-acoustic waves in uniform, unmagnetized plasmas. For that, we should rely on a fluid
description of the problem (consider one-dimensional electrostatic waves, for simplicity)
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a) At the scale of the ion motion, the electrons are not at rest. On the contrary, they move so
fast that they follow the ions adiabatically, therefore being in thermal equilibrium. Show that
the linearized Poisson equation yields(
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The linearized Poisson equation for the electron-ion plasma is given by
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As λDe =
√
kBTeε0/e2n0, we obtain the result above.

b) Make use of the equations of motion for the ions to show that, in the limit Ti � Te, we obtain

ω =
csk√

1 + k2λ2De

. (1)



From the continuity equation, we get
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Moreover, from the momentum conservation equation,
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Upon Fourier transforming the Poisson equation in the previous point, we get(
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Putting everything together, we have
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c) We now come back to the original equations, but keeping the nonlinearity appearing in the
momentum conservation equation (the so-called convective term). Show that
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where F [A(x, t)] ≡ Ã(k, ω) is the Fourier transform of a certain quantity A(x, t).

From the force equation, now accounting for the convective term, we have(
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By Fourier transforming both sides of the equation, we have
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d) We are interested in the region of the ion spectrum where the dispersion starts loosing its
acoustic character, kλDe ' 1. For that, we replace ω in the denominator of Eq. (2). Then,
we expand the denominator in the second factor of the RHS to first order. Upon replacing

k → −i ∂
∂x

(momentum operator in quantum mechanics, right?), show that Eq. (2) reduces to
the Kortweg-de Vries equation,
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We now apply an inverse Fourier transform to the problem, but replace ω ' csk in the
denominator of the RHS of the equation,

F−1
{
F
[(

∂

∂t
+ u1

∂

∂x

)
u1

]}
= F−1

{
−i
ω2
pi

csk
k2λ2De

(
1− 1

2
k2λ2De

)
ũ1
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e) Make use of the Mathematica script available at our webpage to observe what happens in the
following cases: i) neglecting the nonlinear term, ii) neglecting the dispersive term. Discuss
with your colleagues the physics of both numerical solutions.

Making use of the Mathematica notebook to solve the Kortweg-de Vries (K-dV) equation
numerically, we obtain the following solutions
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By neglecting the nonlinear ter, (case i)), we observe that dispersion starts to dominate the
dynamics as the wave propagates (the wave packet spreads). Conversely, by neglecting the
dispersive term (case ii)), the wave undergoes steeping as it propagates. In the situation
where both terms are taken into account, numerical solutions produce solitons, i.e. the wave
propagates without any deformation.
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https://fenix.tecnico.ulisboa.pt/disciplinas/FPA/2021-2022/1-semestre/additional-support-material


f) Simulate the case of two solitons colliding against each other. Observe the features of such
collisions. Do the wavepackets break at anytime? What happens to the original form of the
solitons after the collision? Maybe you are ready to explain to your colleagues why these
nonlinear waves receive the name of solitons.

Let us consider two solitons, initially located at different positions, x = 0 and x = 25λDe
(light blue line). The leftmost soliton is faster than the second one. At the collision point
(blue line), their amplitudes equal. After this time, the faster soliton leaves the slower soliton
behind (darker blue line). Interestingly, the shape of both solitons remain unchanged after
the collision. This is why these nonlinear waves receive the name “soliton”: they are solitary
waves that behave like particles.
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Problem 2. Trievelpiece-Gould waves. Consider a plasma produced at the interior of a
cylindrical container of radius a. Let us assume, for definiteness, that such a container is metallic.
In the following calculations, we make use of the cylindrical coordinates (r, θ, z), and consider
waves propagating along the column axis, i.e. the z− direction.

a) Start by showing that the Poisson equation can be written as(
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where Φ = Φ(r, θ, z) = φ(r, θ)ϕ(z), and ni(x, y, z) and ne(x, y, z) are the 3D ionic and electronic
densities, respectively.

This is obvious. This simply follow by splitting the Laplace operator into its terms,
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b) Consider the homogeneous Poisson (or Laplace) equation, resulting from the plasma approxi-
mation. Making use of the separation of variables above, show that the transverse component
of the potential satisfies the Helmholtz equation
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where q is some arbitrary constant.

We can make use of the variable separation method to solve the homogeneous Poisson
equation, (
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where we assume quasi-neutrality. The latter equation can be recast in a more appealing
form as
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To get this last step, we observe that the RHS of the equation is a function of z alone, while
the LHS is a function of (x, y) = (rθ). As such, the only nontrivial solutions is attainable
if both members are equal to some arbitrary constant, that we call q2 (the square comes
for convenience - q then has the good physical units of wavector, and thus q2 has the same
units of the Laplace operator).

c) For symmetry reasons, we may expect φ(r, θ) to display radial symmetry. As such, it can be
decomposed as
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The solution to the Helmholtz equation obtained in the last point is now straightforward.
In polar coordinates, the transverse Laplacian reads
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Using the proposed decomposition, we have
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Multiplying the whole equation by r2 and defining x = qr, the job is done.

d) Make use of the appropriate boundary conditions to show that the formal profile of the trans-
verse potential is given by
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where kn,` = αn,`/a and αn,` is the nth zero of the `th Bessel function of the first kind, J`(x).

The general solution to the Bessel equation is given in terms of the Bessel function,

R`(x) = A`J`(x) = A`J`(qr),

where A` is some arbitrary coefficient. The presence of a metallic boundary at r = a forces
the potencial to vanish at that point. As such,
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e) We now restrict the discussion to the first harmonic, i.e. ` = 0, corresponding to the lowest
excitation along the transverse direction (i.e. the potential vanishes only at the border of the
container). In what follows, we show that the longitudinal electron waves inherit the structure
of the transverse potential. First, convince yourself that the resulting potential along the z−
direction reads (
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where kn ≡ αn,0/a. Then, work out the fluid equations to obtain the dispersion relation of the
Trivelpiece-Gould waves
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where ve =
√
kBTe/me. Plot the dispersion relation for the first and second harmonics (n = 0

and n = 1) and explain what is happening physically. What is apparently strange with these
waves? Does it remind you of something?



If we assume quasi-neutrality along the transverse direction, the only fluctuations possible
are along the z−direction. From the Poisson equation, we have(
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We now repeat the process that allows us to derive the dispersion relation from fluid equa-
tions, by taking ne = n0 + n1, ni = n0. The difference is, now, the inclusion of the electron
pressure explicitly in the momentum conservation equation,
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Considering the lowest mode, ` = 0, we have
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In the cold plasma limit, we have

ω = ωpe
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6= ωpe (!)

This is very similar to the case of ion-acoustic waves, if we replace kn by 1/λDe. The
reason why electrons now display acoustic behaviour comes from the shielding imposed by
the metallic cylinder containing the plasma. In other words, the metallic cylinder acts as a
capacitor, which establishes a local relation between the charge and the potential,
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where V = πa2L is the volume. In unbounded plasmas, the relation between the potential
and the density is nonlocal (governed by the Poisson equation with kn = 0)
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