
Deep Learning (IST, 2021-22)

Practical 2: Perceptron

André Martins, Andreas Wichert, Luis Sá-Couto

Question 1

Consider the following linearly separable training set:

x(1) = [−1
0

] ,x(2) = [0
0.25

] ,x(3) = [1
1

] ,x(4) = [1
−1]

y(1) = −1, y(2) = +1, y(3) = +1, y(4) = −1.

1. Initialize all weights to zero (including the bias). Assume sign(z) = +1 iff z ≥ 0, and −1 if
z < 0. Use a learning rate of one. Apply the perceptron learning algorithm until convergence.
How many epochs does it take to converge?

Solution: We start by adding a constant feature of 1 to the inputs, leading to:

x(1) =
⎡⎢⎢⎢⎢⎢⎣

1
−1
0

⎤⎥⎥⎥⎥⎥⎦
,x(2) =

⎡⎢⎢⎢⎢⎢⎣

1
0

0.25

⎤⎥⎥⎥⎥⎥⎦
,x(3) =

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
,x(4) =

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦

The weight vector is initialized as w = [0,0,0], where the first dimension corresponds to the
bias (intercept) parameter.

First epoch (3 mistakes in total):

• w = [0,0,0]⊺

• ŷ(1) = sign(w⊺x(1)) = sign(0) = +1 ≠ y(1) – mistake!

• Perceptron update: w ←w + y(1)x(1) = [0,0,0]⊺ − [1,−1,0]⊺ = [−1,1,0]⊺

• ŷ(2) = sign(w⊺x(2)) = sign(−1) = −1 ≠ y(2) – mistake!

• Perceptron update: w ←w + y(2)x(2) = [−1,1,0]⊺ + [1,0,0.25]⊺ = [0,1,0.25]⊺

• ŷ(3) = sign(w⊺x(3)) = sign(1.25) = +1 = y(3) – correct, no update.

• ŷ(4) = sign(w⊺x(4)) = sign(0.75) = +1 ≠ y(4) – mistake!

• Perceptron update: w ←w + y(4)x(4) = [0,1,0.25]⊺ − [1,1,−1]⊺ = [−1,0,1.25]⊺

Second epoch (1 mistake in total):

• w = [−1,0,1.25]⊺

1

• ŷ(1) = sign(w⊺x(1)) = sign(−1) = −1 = y(1) – correct, no update.

• ŷ(2) = sign(w⊺x(2)) = sign(−0.6875) = −1 ≠ y(2) – mistake!

• Perceptron update: w ←w + y(2)x(2) = [−1,0,1.25]⊺ + [1,0,0.25]⊺ = [0,0,1.5]⊺

• ŷ(3) = sign(w⊺x(3)) = sign(1.5) = +1 = y(3) – correct, no update.

• ŷ(4) = sign(w⊺x(4)) = sign(−1.5) = −1 = y(4) – correct, no update.

Third epoch (2 mistakes in total):

• w = [0,0,1.5]⊺

• ŷ(1) = sign(w⊺x(1)) = sign(0) = 1 ≠ y(1) – mistake!

• Perceptron update: w ←w + y(1)x(1) = [0,0,1.5]⊺ − [1,−1,0]⊺ = [−1,1,1.5]⊺

• ŷ(2) = sign(w⊺x(2)) = sign(−0.625) = −1 ≠ y(2) – mistake!

• Perceptron update: w ←w + y(2)x(2) = [−1,1,1.5]⊺ + [1,0,0.25]⊺ = [0,1,1.75]⊺

• ŷ(3) = sign(w⊺x(3)) = sign(2.75) = +1 = y(3) – correct, no update.

• ŷ(4) = sign(w⊺x(4)) = sign(−0.75) = −1 = y(4) – correct, no update.

Fourth epoch (0 mistakes in total):

• w = [0,1,1.75]⊺

• ŷ(1) = sign(w⊺x(1)) = sign(−1) = −1 = y(1) – correct, no update.

• ŷ(2) = sign(w⊺x(2)) = sign(0.4375) = 1 = y(2) – correct, no update.

• ŷ(3) = sign(w⊺x(3)) = sign(2.75) = +1 = y(3) – correct, no update.

• ŷ(4) = sign(w⊺x(4)) = sign(−0.75) = −1 = y(4) – correct, no update.

Since there were no updates for a full epoch, no updates would happen for subsequent
epochs, i.e, the perceptron algorithm converged in 3 epochs with 6 mistakes in total. The
trained weight vector is w = [0,1,1.75]⊺.

2. Draw the separation hyperplane.

Solution: The trained weight vector isw = [0,1,1.75]⊺, resulting in the following separating
boundary, which corresponds to the line with equation w0 +w1x1 +w2x2 = 0:

Page 2

3. What is the perceptron output for the query point [0 1]⊺?

Solution: We have ŷ = sign(w⊺xnew) = sign([0,1,1.75]⊺[1,0,1]) = sign(1.75) = +1.

4. Change the initialization of weights and biases to be random with a standard normal distri-
bution N(0,1). Try multiple times. Does it always converge?

Solution: The data is separable, hence, due to the mistake bound, after a sufficient number
of epochs, the perceptron will always converge. However, the separating hyperplane may be
different. Here is an example – w = [−0.20824551,0.27894765,1.33227645]⊺:

Question 2

1. Generate a balanced dataset with 30 examples in R2 and 3 classes. Assume each of the 10
inputs associated to class k ∈ {0,1,2} is generated as x ∼ N(µk, σ2kI), with σ0 = σ1 = σ2 = 1,
µ0 = [0,0]⊺, µ1 = [0,3]⊺, and µ2 = [2,2]⊺. Plot the data.

Solution: Here is an example of a plot (this may vary, since data is generated randomly):

Page 3

2. Implement the multi-class perceptron algorithm and run 100 iterations. Initialize all the
weights to zero and use a learning rate of one. What is the training accuracy (fraction of
points that are correctly classified)?

Solution: With the data above, we get a training accuracy of 86.7%. Of course, depending
on the generated dataset, the problem can be easier or harder.

Question 3

The perceptron can learn a relatively large number of functions. In this exercise, we focus on
simple logical functions.

1. Show graphically that a perceptron can learn the logical NOT function. Give an example
with specific weights.

Solution: The NOT function receives as input a logical value x ∈ {−1,+1} and outputs its
logical negation y ∈ {−1,+1}. We can enumerate all possible inputs and their inputs:

• For x = −1 the output is y = +1

• For x = +1 the output is y = −1

To show that a perceptron can learn a given function we just need to show that all points
that require a positive output (+1) can be separated from all points that require a negative
output by an hyperplane.

Since we are working with 1-dimensional inputs, an hyperplane is, in this case, a point.

So, is there a point that accurately separates the points? Yes, any point between −1 and +1
will achieve this.

An example hyperplane is given by the weight −1 and bias 0, leading to ŷ = −x.

Page 4

2. Show graphically that a perceptron can learn the logical AND function for two inputs. Give
an example with specific weights.

Solution: The AND function receives as input a pair of logical values x ∈ R2 and outputs
its logical conjuntion y ∈ {−1,+1}. We can enumerate all possible inputs and their inputs:

• For x = [−1 −1]⊺ the output is y = −1

• For x = [−1 +1]⊺ the output is y = −1

• For x = [+1 −1]⊺ the output is y = −1

• For x = [+1 +1]⊺ the output is y = +1

To show that a perceptron can learn a given function we just need to show that all points
that require a positive output (+1) can be separated from all points that require a negative
output by an hyperplane.

Since we are working with 2-dimensional inputs, an hyperplane is, in this case, a line.

So, is there a weight vector that defines a boundary line that accurately separates the points?

Yes, for instance w = [−1 1 1]⊺ achieves:

Page 5

3. Show graphically that a perceptron can learn the logical OR function for two inputs. Give
an example with specific weights.

Solution: The OR function receives as input a pair of logical values x ∈ R2 and outputs its
logical conjuntion y ∈ {−1,+1}. We can enumerate all possible inputs and their inputs:

• For x = [−1 −1]⊺ the output is y = −1

• For x = [−1 +1]⊺ the output is y = +1

• For x = [+1 −1]⊺ the output is y = +1

• For x = [+1 +1]⊺ the output is y = +1

To show that a perceptron can learn a given function we just need to show that all points
that require a positive output (+1) can be separated from all points that require a negative
output by an hyperplane.

Since we are working with 2-dimensional inputs, an hyperplane is, in this case, a line.

So, is there a weight vector that defines a boundary line that accurately separates the points?

Yes, for instance w = [1 1 1]⊺ achieves:

4. Show graphically that a perceptron can not learn the logical XOR function for two inputs.

Solution: The XOR function receives as input a pair of logical values x ∈ R2 and outputs
its logical conjuntion y ∈ {−1,+1}. We can enumerate all possible inputs and their inputs:

• For x = [−1 −1]⊺ the output is y = −1

• For x = [−1 +1]⊺ the output is y = +1

• For x = [+1 −1]⊺ the output is y = +1

• For x = [+1 +1]⊺ the output is y = −1

Page 6

To show that a perceptron can learn a given function we just need to show that all points
that require a positive output (+1) can be separated from all points that require a negative
output by an hyperplane.

Since we are working with 2-dimensional inputs, an hyperplane is, in this case, a line.

So, is there a weight vector that defines a boundary line that accurately separates the points?

No... If we plot the points we see right away that no line can separate the positive instances
from the negative ones:

Question 4

Now it’s time to try the perceptron on real data and see what happens.

1. Load the UCI handwritten digits dataset using scikit-learn:

from sklearn.datasets import load_digits
data = load_digits()

This is a dataset containing 1797 8x8 input images of digits, each corresponding to one
out of 10 output classes. You can print the dataset description and visualize some input
examples with:

print(data.DESCR)

import matplotlib.pyplot as plt
plt.gray()
for i in range(10):

plt.matshow(data.images[i])
plt.show()

Randomly split this data into training (80%) and test (20%) partitions. This can be done
with:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42)

Page 7

2. Run your implementation of the multi-class perceptron algorithm on this dataset. Measure
the training and test accuracy.

Solution: We got a training accuracy of 100% and a test accuracy of 95.3%. But results
may differ depending on the random split.

3. Use scikit-learn’s implementation of the perceptron algorithm. This can be done with

from sklearn.linear_model import Perceptron
clf = Perceptron(fit_intercept=False, shuffle=False)
clf.fit(X_train, y_train)
print(clf.score(X_train, y_train))
print(clf.score(X_test, y_test))

Compare the resulting accuracies.

Solution: Results were slightly different, with a training accuracy of 97.4% and a test
accuracy of 95.8%, possibly due to small differences in the implementation or data shuffling.

Page 8

