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Why Generalized Linear Models?

! Why using GZLM?
Ø We shall see that these models extend the linear modelling framework 

to models where:
Ø The dependent variable may not be continuous 
Ø The effect of independent variables may not be linear
Ø The expected value of the errors terms might not be 0.

Ø GZLM unify all non linear models, used to explain the situation were the 
linear normal regression was not able to explain the relation under 
analysis

Ø GZLMs are most commonly used to model binary or count data, so we 
will focus on models for these types of data.
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𝑉𝐴𝑅 𝑦! = 𝜎"

𝐸 𝜀! = 0
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When do GZLM come into play?

! With MLR:
Ø 𝑌! = Β𝑋 + 𝜀, where X is a vector of predictors and B is a vector of 

coefficients 𝛽
Ø 𝐸 𝑌! = )Β𝑋 because 𝐸 𝜀! = 0 and 𝑉𝐴𝑅 𝑦! = 𝜎"

Ø Etc.
! When such conditions are not met, 

Ø When 𝐸 𝜀! ≠ 0 or 𝑉𝐴𝑅 𝑌! ≠ 𝜎"

! you use GZLM where…
Ø The variation (probabilistic distribution) in the response variable Yi can 

be explained in terms of the values of X 
Ø We want to find some link function g(.), that mediates the response 

variable (Yi) and the regressors Xi, such that
𝐸 𝑔(𝑌!) = )Β𝑋, where g(.) is the link function.
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Recap on linear models and generalizing

! Distributions of the Yi’s: 𝑌!~𝑁 𝜇! , 𝜎"

! Function of the explanatory variable, xi’s: 𝛼 + 𝛽𝑥!
! Connection between explanatory variable and the distribution of Yi:

𝜇! = 𝐸 𝑌! = 𝛼 + 𝛽𝑥!
! We will now generalize the distribution of the Yi variables according 

to different distributions, besides the normal distribution

𝛼 + 𝛽𝑥!
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Components of the GZLM

A generalized linear model is made up of a linear predictor:

𝜂! = 𝛽# + 𝛽$𝑥$! +⋯+ 𝛽%𝑥%!

And two functions
Ø a link function that describes how the mean, E(Yi) = μi, depends on 

the linear predictor: 
𝑔 𝜇! = 𝜂!

Ø a variance function that describes how the variance, var(Yi) depends on 
the mean

𝑣𝑎𝑟 𝑌! = ∅𝑉 𝜇!
where ∅ is a dispersion parameter and is constant across the observations i
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Components of the GZLM

! Distribution of the Yi’s
Ø Linear models: 𝑌!~𝑁 𝜇!, 𝜎"

Ø GZLM: 𝑌!~𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑎𝑚𝑖𝑙𝑦
! Linear predictor = function of the covariates (explanatory variables)

Ø Linear models: 𝜂! = 𝛼 + 𝛽𝑥!
Ø GZLM: e.g. 𝜂! = 𝛼 + 𝛽𝑥!+ 𝛾𝑧!

𝜂! = 𝛼 + 𝛽𝑥!+ 𝛾𝑥!"

! Link function = connection between the linear predictor 
and 𝐸 𝑌! = 𝜇!

Ø Linear models: 𝜂! = 𝜇! ⇒ 𝜇! = 𝛼 + 𝛽𝑥!
Ø GZLM: e.g. 𝜂! = 𝑙𝑛 𝜇! ⇒𝜇! = 𝑒 #$%&!+ '&!

"

Inverse function
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Structure of Generalized Linear Models

Random 
Component

Link 
Function

Systematic 
Component

𝑌!~𝑒𝑥𝑝. 𝑓𝑎𝑚𝑖𝑙𝑦 𝑔 𝜇! = 𝜂! 𝜂! = 𝛽" +%
#!
𝛽#𝑥#!
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Fundamental condition for using GZLM
! Response variable distribution must be a member of the

Exponential Family
Ø It corresponds to a u function that belongs to the exponential family with 

a single parameter 𝜃 and a probability distribution function (pdf) such as

𝑓 𝑢, 𝜃 = 𝑠 𝑢 . 𝑡 𝜃 . exp 𝑎 𝑢 . 𝑏 𝜃 , where s, t, a, b are known functions

or
𝑓 𝑢, 𝜃 = exp{𝑎 𝑢 . 𝑏 𝜃 + 𝑑 𝑢 + 𝑐(𝜃)}

where    𝑑 𝑢 = ln 𝑠 𝑢 and 𝑐 𝜃 = ln 𝑡 𝜃
• When 𝒂 𝒖 = 𝒖, the distribution is said to be in canonical form.

• 𝒃 𝜽 is called the natural parameter of the distribution function.
• For each function of the Exponential Family, one parameter is of interest. 

The remaining are said nuisance parameters.
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Members of the Exponential Family:
Normal Distribution

! Normal distribution: N(µ, s2)

𝑓 𝑢, 𝜇 = $
"&'!

. 𝑒𝑥𝑝(
"
!
#$%
&

!

, with −∞ ≤ 𝜇 ≤ ∞

𝑓 𝑢, 𝜇 = 𝑒𝑥𝑝 𝑢.
𝜇
𝜎" +

−𝜇"

2𝜎" −
1
2 𝑙𝑛 2𝜋𝜎" −

−𝑢"

2𝜎"

Random
variable

Interest 
parameter

𝑎 𝑢 𝑏 𝜇 𝑐 𝜇 𝑑 𝑢

Natural parameter
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Members of the Exponential Family:
Binomial Distribution

! Binomial distribution: Bin(n, p)

𝑓 𝑢, 𝑝 = 𝑛
𝑢 . 𝑝). (1 − 𝑝)*(), n=0,1,2,....,n trials

= 𝑛
𝑢 .

𝑝
1 − 𝑝

)
. (1 − 𝑝)*

𝑓 𝑢, 𝜇 = 𝑒𝑥𝑝 𝑢. 𝑙𝑛
𝑝

1 − 𝑝 + 𝑛𝑙𝑛(1 − 𝑝) − 𝑙𝑛 𝑛
𝑢

Random
variable Interest 

parameter

𝑎 𝑢 𝑏 𝑝 𝑐 𝑝 𝑑 𝑢

Natural parameter
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Members of the Exponential Family:
Poisson Distribution

! Poisson distribution: P(l)

𝑓 𝑢, 𝜆 = +$'.-#

)!
, u=0,1,2,....,n observations

𝑓 𝑢, 𝜇 = 𝑒𝑥𝑝 𝑢. 𝑙𝑛 𝜆 − 𝜆 − 𝑙𝑛 𝑢!

Random
variable Interest 

parameter

𝑎 𝑢 𝑏 𝜆 𝑐 𝜆 𝑑 𝑢

Natural parameter
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Calibration of GZLM
! Suppose we have a set of independent observations, where

Ø Yi, Xi,      for i=1,2,…n  observations
and Xi is a vector of regressors = X1, X2, …. Xp

and Yi is a response variable (dependent variable) we want to 
estimate and that belongs to some Exponential Family 
distribution where a(Y)=Y

Ø The joint pdf can be written as:

𝑓 𝑌(, 𝑌", … , 𝑌), 𝜃, 𝜙 =Z
!*(

)

𝑒𝑥𝑝 𝑌!. 𝑏 𝜃! + 𝑐 𝜃! + 𝑑(𝑌!)

= 𝑒𝑥𝑝 [
!*(

)
𝑌! .[

!*(

)
𝑏 𝜃! +[

!*(

)
𝑐 𝜃! +[

!*(

)
𝑑 𝑌!

Ø The variation of Yi (through the link function) can be explained in 
terms of the regressors Xi, based on the calibrated coefficients b

Ø NOT THE VALUES OF Yi THEMSELVES!!!!
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Calibration of GZLM

! For Xi, a vector of regressors = X1, X2, …. Xp

Ø We hope to find a set of parameters b=(b1, b2,…, bp) that fits the 
regressor values to a link function g(𝜇!) that transforms the response 
variable (Yi) such that, in the case of the normal distribution – N(µ, s2), 

𝐸 𝜇! = 𝜇! = 𝑔 𝜇! = Β𝑋

Ø When the response variable Yi follows a normal distribution, the GZLM 
is equal to the MLR

𝐸 𝑌! = 𝜇+! = Β𝑋 + 𝐸 𝜖 = Β𝑋, as 𝐸 𝜖 =0

Link function
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Calibrating regressions
Maximum Likelihood Estimation (MLE) - Recap

! Obtain the likelihood:
𝐿 𝜇 = 𝑓 𝑦$ . 𝑓 𝑦% … 𝑓 𝑦&

! Log it – to make it easier to differentiate
𝑙𝑛 𝐿 𝜇

! Differentiate and set the derivative equal to zero:
'
'(

𝑙𝑛 𝐿 𝜇 = 0 ⇒ 5𝜇 = ⋯

! Check its maximum:
'!

'(!
𝑙𝑛 𝐿 𝜇 < 0 ⇒ 𝑚𝑎𝑥
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Calibrating GLZM
Maximum Likelihood Estimation (MLE)

! Obtain the likelihood:
𝐿 𝜇$ , 𝜇% , … , 𝜇& = 𝑓 𝑦$ . 𝑓 𝑦% … 𝑓 𝑦&

! Log it – to make it easier to differentiate
𝑙𝑛 𝐿 𝜇$ , 𝜇% , … , 𝜇&

! Use the link function to replace the 𝜇!/𝑠:
𝑙𝑛 𝐿 𝛽$ , 𝛽% , 𝛽) , …

! Differentiate and set the derivative equal to zero:
'
'*"

𝑙𝑛 𝐿 𝛽$ , 𝛽% , 𝛽) , … = 0 ⇒ ;𝛽$ = ⋯

'
'*!

𝑙𝑛 𝐿 𝛽$ , 𝛽% , 𝛽) , … = 0 ⇒ ;𝛽% = ⋯

! Obtain the vector of 𝜷𝒊 that fit the model estimates to the link 
function 𝑔 𝜇!
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Link functions and Inverse functions

! If the random component of Yi follows a normal distribution
Ø The corresponding natural parameter is: 𝑏 𝜇 ! = 𝜇 !
Ø The link function is: 𝑔 𝜇! = 𝜇 ! (Identity link)
Ø Then: 𝑔 𝜇! = β, + β(𝑥 (+β"𝑥 " +⋯ = Β𝑋
Ø And inversely: 𝜇 ! = Β𝑋

! If the random component of Yi follows a binomial distribution
Ø The corresponding natural parameter is: 𝑏 𝜇 ! = 𝑙𝑛 -!

(.-!

Ø The link function is: 𝑔 𝜇! = 𝑙𝑛 -!
(.-!

(logit link – or logistic)

Ø Then: 𝑔 𝑝! = 𝑙𝑛 -!
(.-!

= β, + β(𝑥 (+β"𝑥 " +⋯ = Β𝑋

Ø And inversely: E 𝑌! = 𝑝! =
/&-($%)

($/&-($%)
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q The distribution of the dependent variable has the form of the bell-
shaped symmetrical curve centered in the mean. 

q This implies the dependent variable is continuous.

Normal distribution (standardized)

Generalized Linear Models
Normal distribution
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q It is used for dependent variables that are positively skewed and 
have values always greater than 0. 

q Values must be greater than 0 or are dropped. It has been used to 
model diffusion processes, insurance claims, etc

Generalized Linear Models
Inverse Gaussian (Wald Distribution)

If  λ tends to infinity, the distribution 
becomes like a Normal distribution
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q This is an alternative for positively skewed dependent variables. It 
is highly sensitive to the shape parameter. 
q When the shape parameter is greater than 1, the gamma distribution is 

bell-shaped but positively skewed as shown in the figure below. 
q When the shape parameter is 1, the gamma distribution is exponentially 

declining. 
q When the shape parameter is less than 1, the gamma distribution is 

also exponentially declining and asymptotic to the axes
q The gamma distribution has been used in 

survival analysis and modeling 
duration-of-event data.

Generalized Linear Models
Gamma
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q This distribution is used when the dependent variable has a finite 
number of categories, such as text string values, or is ordinal. 

q The distribution among categories, not shown, is arbitrary.

Generalized Linear Models
Multinomial
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! Used when the dependent variable is binary. 
q The count of events in a fixed number of trials also has a binary 

distribution. Examples of binomial data are attributes “present/not 
present”, “innovation adopted/not adopted”, or “success/failure” 
data. 

q It is assumed that the two values have a fixed rather than changing 
probability of occurrence (as in coin-flipping), even if that probability 
is not known

Generalized Linear Models
Binomial
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q The Poisson distribution is also used for count data and is preferred 
when events are rare, as in modeling accidents, wars, or 
epidemics 

q The binomial distribution is used when the dependent variable 
corresponds to data counts of successes per given number of 
trials

q The Poisson distribution is used to count successes per given 
number of time units

Generalized Linear Models
Poisson (COUNT DATA)
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Generalized Linear Models
Poisson (COUNT DATA)

Ø A rule of thumb is to use a Poisson rather than binomial distribution when n
is ≥ 100, the probability of each event is below 0.05 

Ø The Poisson distribution is also used when "events" can be counted but 
non-occurrence of events cannot be counted (unreported).

! In Poisson distributions, the mean equals the variance 
Ø Presence of homoscedasticity since variance doesn’t change over data 

and l is assumed constant
Ø As such, there is no over-dispersion of data.

! All values are non-negative integers
Ø Thus, count data, which cannot be negative, are better represented by 

Poisson than normal distributions



Phd in Transportation / Transport Demand Modelling 26/42

q It is like the Poisson distribution, also used for count data, but it is used 
when the variance is larger than the mean => over-dispersion of data. 

q Typically, this is characterized by "there being too many 0's." 
• As such, not all cases have an equal probability of experiencing the rare event, 

but instead, events may be clustered. 
• The negative binomial model is therefore sometimes called the "over 

dispersed Poisson model" . Values must still be non-negative integers.
q The negative binomial is specified by an ancillary /dispersion parameter k 

(sometimes referred to as a or y). 
• When k=0, the negative binomial is equal to the

Poisson distribution.

Generalized Linear Models
Negative binomial
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Generalized Linear Models
Systematic component 

! The linear predictor

q Quantity that incorporates the information about the independent 
variables into the model

q For a matrix of n observations and of p variables, the linear predictor h
can be expressed as:

q Where
v each          is the value of the jst IV for the ist observation
v belong to a vector of unknown parameters to be estimated

å
=

=
p

j
jjii x

1
bh

jix

jb
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Generalized Linear Models
Link function

! It provides the relationship between the linear predictor and the 
mean of the distribution function
Ø The way the two previous components relate to each other
Ø In fact, the link function is a transformation of the response 

variable

! It is a monotonous and differentiable function g(µi) that transforms   
in         where     𝑔 𝜇! = 𝜂!

! Inversely, µi can be obtained with (inverse function)

where        is the expected value of
and are the predictors or explanatory variables

iµ ih

[ ] ( ) iippiii eXXgYE ++++== - bbbµ ...110
1

iµ iY

ijX
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! It is used to maintain a linear relationship between the coefficients 
and predictors on the right-hand side of the model equation and the 
dependent variable transformed by the link function on the left-hand 
side of the equation

! The choices of the link function depend on the natural 
parameter of the original distribution of the dependent variable 
Yi

Generalized Linear Models
Link function
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q Normal distribution: Identity function

Generalized Linear Models
Link function
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q Poisson distribution: Log function
Ø Loglinear models: assume a Poisson distribution and use a log link 

function

Generalized Linear Models
Link function
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! Many other distributions:  Power functions

Generalized Linear Models
Link function
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Common relations between distributions and link functions

Canonical Link Functions
Distribution Name Link Function – hi 0 g(µi ) µi - Mean (Inverse) Function

Normal
Identity

Exponential InverseGamma
Inverse 

Gaussian Inverse squared

Poisson Log

Binomial LogitMultinomial

Generalized Linear Models
Link function
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GZLM for count of events 
Poisson Regression Model

! The Poisson Distribution is commonly used to describe the count 
of events occurring at random in time or space

! The Poisson condition is that 𝑬 𝒀𝒊 = 𝑽𝑨𝑹 𝒀𝒊 = 𝝀𝒊 or that 
! Examples:

v The number of cars passing through an intersection during a certain hour
v The number of calls for emergency ambulance service during a tour of duty
v The number of fires arising in a neighborhood
v Number of vehicles waiting in a queue
v Auto breakdowns in an express way in rush hour
v Number of heart attack deaths per week in a county
v Number of homes destroyed by a fire during the summer
v Number of accidents in a road section or intersection
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! The most common relationship between the explanatory and the 
Poisson parameter is the log-linear model (because the logarithm of 
this function produces the  linear combination of explanatory 
variables)

v The expected number of accidents per period is given by 

XiLn
or

e

i

Xi
i

bl

l b

=

=

)(

)(

)(][ Xi
ii eyE bl ==

÷
÷
ø

ö
ç
ç
è

æ
+== å

=

p

j
iji xYiE

1
0exp][ bbl

Inverse function

GZLM for count of events 
Poisson Regression Model
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! Poisson model
Ø For the case of count data (e.g., accidents), a variable Qi is added and 

corresponds to the unit of exposure (e.g., vehicles per year)
Ø It is also referred to as the offset value

GZLM for count of events 
Poisson Regression Model

𝐸 𝑌! = 𝑄!×𝑒𝑥𝑝 𝛽# ++
12$

%
𝑥!1𝛽1
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q Estimation by standard maximum likelihood methods, with the 
likelihood function given as 

q Maximum likelihood estimates produce Poisson parameters witch are 
consistent, asymptotically normal, and asymptotically efficient

å
=

-+-=

Õ=

n

i
iiii

i

iy
ii

yLNXyXEXPLL

or
y

XEXPXEXPEXPL

1
)]!()([)(

!
)]()][([)(

bbb

bbb

GZLM for count of events 
Poisson Regression Model - MLE
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q Elasticity is computed on the parameter estimation to evaluate the 
marginal effects of the independent variables
Ø Effect of a 1% change in the variable on the expected frequency λi

Ø Computed for each observation and then a single average is reported
Ø Continuous variables

Ø Count data

)(
1)(

k

ki
xik EXP

EXPE
b

bl -
=

ikk
ik

ik

i

ii
ikx

x
x
xE b
dl

dll =´=

GZLM for count of events 
Poisson Regression Model
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GZLM for count of events 
Negative Binomial Regression

! When the Poisson condition is violated (i.e., 𝐸 𝑌! ≠ 𝑉𝐴𝑅 𝑌! ), two 
situations can occur:

§ 𝐸 𝑌" > 𝑉𝐴𝑅 𝑌" (dispersed)
§ 𝐸 𝑌" < 𝑉𝐴𝑅 𝑌" (over dispersed)

! As such, the link function is rewritten
§ from for each observation , with

Ø where ei is the dispersion term

)( XiEXPi bl =

)( iXiEXPi ebl +=
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GZLM for count of events 
Negative Binomial Regression

q Therefore the variance differ from the mean through the addition of a 
quadratic term to the variance that represents over dispersion

q The Poisson model is regarded as a limited model of the negative 
binomial as K approaches 0. 

q This K parameter is called the over dispersion parameter.

2)()var( iii KY ll +=
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GZLM for count of events 
Negative Binomial Regression- MLE

! Negative Binomial pdf

Ø where Г is a Gamma Function and K is an estimated parameter 
representative of dispersion

q The corresponding likelihood function is:

K

i

iy

i
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GZLM for count of events 
Negative Binomial Regression

! Negative Binomial with log link

Ø Specifies a negative binomial distribution (with the ancillary K 
parameter = 1) with a log link function
Ø It is used to modeling count data that violates the Poisson assumption of 

equality of mean and variance. 
Ø Also, negative binomial regression is thought to be more stable than 

Poisson regression for small datasets.
Ø An error term ξ of Gamma distribution and variance K2 is added to the 

Poisson Regression

å
=

++=
p

j
ijiji x

1
0)log( xbbl
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GZLM for count of events 
Negative Binomial Regression

! Tests on over dispersion - Lagrange Multiplier test (in SPSS)
Ø The Lagrange multiplier test may be used to test if a negative 

binomial model is significantly different from a Poisson model
Ø Since the negative binomial model is the same as the Poisson model 

when the binomial model's ancillary (dispersion) parameter, K=0, the 
Lagrange multiplier test analyses the null hypothesis that K = 0

! A significant Lagrange test coefficient (i.e., p-value > 0,05) indicates that K 
cannot be assumed to be different from 0, and hence a Poisson model 
would be preferred over a negative binomial model (negative binomial 
models have one more parameter, k)
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