LABORATORIO NACIONAL
DE ENGENHARIA CIVIL

Phd Program in Transportation

Transport Demand Modeling

Carlos Roque
Postdoctoral Research Fellow at LNEC
(croque@Inec.pt)

Session 1

Hazard-Based Duration Models
Nonparametric, Semiparametric and Parametric models

Phd in Transportation / Transport Demand Modelling 1



Outline of the Module on Hazard-Based
Duration Models
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Our objectives for this session:

Background information: statistical analysis of road safety data
Characteristics of duration data

Nonparametric models

Semiparametric models

Fully Parametric models

Build your first Kaplan-Meier estimate (using R)

Build your first Cox proportional-hazards model (using R)
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How big is the road safety problem?

a Have you ever been injured in a crash?

a Have any of your family members or friends been injured or killed in a
crash?

Q Do you know someone who has been injured or killed in a crash?
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Key facts about road safety
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Subjective safety

Motorists’ complaints
Experts’ judgement

Perspectives on road safety &
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How safe is this road?
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How do we evaluate alternatives?

Phd in Transportation / Transport Demand Modelling 7



Good news

Q There is a lot of information on substantive safety
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O Many study results are problematic
> Poor study design & analysis
> Highly variable results
> Limited reproduction of results
> Most sources are regarding normative safety
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System approach

i

O Understand the system as a whole.
> Understand interactions between different components.

> Consider not only underlying factors, but also role of different agencies and
actors in prevention efforts.

Road and transport system
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Major risk factors

Q Factors influencing exposure to risk Ifi
> economic factors
> demographic factors
> land-use planning practices
> traffic mix
> road function versus design and layout

Q Risk factors influencing crash involvement
> speed

alcohol or drugs

fatigue

gender

vehicle defects

age

vulnerable road users
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Major risk factors
Q Risk factors influencing crash severity

> speed 'ﬁ
> seat-belts, child restraints iNsTiToTo
> helmets
> Non-crash protective roadside objects

> insufficient vehicle crash protection

> alcohol and other drugs

Q Risk factors influencing post-crash outcome of injuries
> delay in detecting crash
> delay in transport to a health facility
> fire resulting from collision
> leakage of hazardous materials
> alcohol and other drugs
> rescue, extraction, evacuation
> poor trauma care and rehabilitation
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Measuring objective safety

Q Why Analyze?
i
> ldentify crash-prone locations
> Hoping that data analysis will suggest effective countermeasures
> Evaluate the effectiveness of an implemented countermeasure

> ...

QO Traditional Analysis Approaches:
> Models of crash frequency over some specified time and space

> Models of crash-injury severity (which is conditional the crash having
occurred)

> Some modeling approaches have combined the two (frequency and
severity)
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Crash Data Modeling

Q Crash Frequency Models i
> Study crash frequency over some specified time and space
> Various count-data and other methods have been used

> Explanatory variables:
= Traffic conditions
= Roadway conditions
= Weather conditions

Q Crash Severity Models
> Study injury severities of specific crashes
> Various discrete-outcome and other methods have been used
> Explanatory variables:
= Traffic Conditions, Roadway conditions, Weather conditions

= Specific crash data: Vehicle information, Occupant information, Crash specific
characteristics

14
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Q Traditional Crash Data
> Available mostly from police and possibly other reports
> Provide basic data on the characteristics of the crash
= Road conditions
Estimates of injury severity
Occupant characteristics (age, gender)
Vehicle characteristics
Crash description, primary cause, etc.

Q Emerging Data Sources
> Data from driving simulators
> Data from naturalistic driving
> Data from automated vehicles
> Data from other sources

Phd in Transportation / Transport Demand Modelling
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Emerging data sources

O Naturalistic Driving Data ]
> Extensively instrumented conventionally operated vehicles

a Simulator Data Heies
> Massive amounts of data collected from driving simulators

O Automated Vehicle Data

> Including automated vehicle performance and response of drivers of
conventional vehicles

a Others
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Methodological Barriers
O Unobserved Heterogeneity

> Many factors influencing the frequency and severity of crashes are simply |ﬁ
not observed

Q Endogeneity
> Factors correlated with frequency and severity of crashes

Q Temporal Correlation

> Crashes in occurring near the same or similar times will share correlation
due to unobserved factors associated with time (precise weather conditions,
similar sun angle, etc.)

Q Spatial Correlation

> Crashes in close spatial proximity will share correlation due to unobserved
factors associated with space (unobserved visual distractions, sight
obstructions, etc.)

a Omitted Variables

> Many crash frequency models use few explanatory variables (some only
use traffic)
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Duration Models %

3 In many instances, one encounters the need to study the elapsed time
until the occurrence of an event or the duration of an event. Data such as
these are referred to as duration data, and are encountered often in the
field of transportation research.

> Examples include the time until a vehicle accident occurs, the time between
vehicle purchases, the time devoted to an activity (shopping, recreational,
etc.), the time until the adoption of new transportation technologies, or the

distance traveled until a vehicle stops.
O To study duration data, hazard-based models are applied to study the
conditional probability of a time duration ending at some time ¢, given that
the duration has continued until time t.

> Hazard-based duration models can account for the possibility that the
likelihood of a driver becoming involved in an accident may change over

time.
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Duration Models 2"

Q Cumulative distribution function F(1):

F(t) = P(T < t)

IIIII
RRRRRRRR

> where P denotes probability, T is a random time variable, and t is some
specified time.

Q The density function corresponding to this distribution function (the first
derivative of the cumulative distribution with respect to time) is:
dF(t)

=4

19
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Duration Models %

A And the hazard function Is:
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h(t) = 1- F@t) |

> where h(t) is the conditional probability that an event will occur between
time tand t + dt, given that the event has not occurred up to time t.

t<T <t+6|T >t
h(t):éhr%pr( 3+| )

a The cumulative hazard H(t) is the integrated hazard function, and
provides the cumulative rate at which events are ending up to or before

time t.
H(t) = [ h(t)dt
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Q The survivor function (the probability that a duration is greater than or I
equal to some specified time {) is: it

S(t) = P(T >t)

Q If one of these functions is known any of the others are readily obtained.
S(t) =1-F®)=1-[ f(t)dt= EXP[-H(t)]
d d
f(£) = —F(t)= h(1)EXP[-H()]=~=-5(1)

H(t) = [ h(t)dt=-LN[S(t)]

f(t)  f(t) d
" =TT - At
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Duration Models
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lllustration of hazard (h(t)), density (f(t)),tcumulative distribution (F(t)), and survivor
functions (S(t)).

Source: Washington et al. (2011)
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Duration Models
dh,(t)/dt < 0 for all t.

dh, (8)/dt > 0 and dh(t)/ct < 0 i
i+ dhs(t)/dt> 0 for all
h(t)
hy(t)
" hs(2)
. hy(t)
< o

0 | ] I ! |

/) D 3 4 .

dhy(t)/dt =0

llustration of four alternate hazard functions.
Source: Washington et al. (2011)
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Duration Models %’

QA In addition to duration dependence, hazard-based duration models
account for the effect of covariates on probabilities. g

> Proportional hazards models
> Accelerated lifetime models

O The proportional-hazards approach assumes that the covariates,
which are factors that affect the probability that an event will occur, act
multiplicatively on some underlying hazard function.

h(t[X) = h(HEXP(BX)

> where h,(t) denotes the underlying (or baseline) hazard function, X is the
covariate vector and B is a vector of estimable parameters

> h(t) is separable into h,(f) and the effects of Xs
> h,(f) depends on t but not on individual characteristics
> Absolute differences in X = proportional differences in h(t) ~scaling of h.(f)
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Duration Models

T

h(t|X) = ho(t)exp(ﬁX) INSTITUTO
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lllustration of the proportiohal-hazards model.
Source: Washington et al. (2011)
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Duration Models %’

Q The accelerated lifetime method assumes that the covariates rescale I
(accelerate) time directly in a baseline survivor function. This accelerated
lifetime method again assumes covariates influence the process with the
function EXP(BX). The accelerated lifetime model is written as

RRRRRRRR

S(t|X) = S,[t EXP(BX)]
A which leads to the conditional hazard function

h(t|X) = [t EXPBX)JEXP(BX)

> Where h_ () denotes the underlying (or baseline) hazard function, tis the
time, X is the covariate vector and B is a vector of estimable parameters
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Characteristics of Duration Data

Q Duration data are often left or right censored. Left and right censored Ifi
Not observed ~
b : SUPERIOR
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Source: Washington et al. (2011)
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Characteristics of Duration Data

Q Hazard-based models can readily account for right-censored data.

Q Left-censored data creates a far more difficult problem because of the
additional complexity added to the likelihood function.

a Another challenge may arise when a number of observations end their
durations at the same time. This is referred to as the problem of tied
data. Tied data can arise when data collection is not precise enough to
identify exact duration-ending times. When duration exits are grouped at
specific times, the likelihood function for proportional and accelerated
lifetime models becomes increasingly complex.
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Nonparametric Models

a The Kaplan-Meier method (based on individual survival times) is the m
most widely applied nonparametric method in survival analysis i

Q The basic method for calculating survival probabilities using the Kaplan-
Meier method begins by specifying the probability of surviving r years
(without event A occurring) as the conditional probability of surviving r
years given survival for r—1 years times the probability of surviving r-1
years (or months, days, minutes, etc.). In notation, the probability of
surviving k or more years is given by

é(k): ( P;<|Pk_1)'"'(]94 P, )(P3 P, )(pz ¥ )(Pl)

> where (p, | p,) is the proportion of observed subjects surviving to period k,
given survival to period k-1, and so on.
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Nonparametric Models %

A The Kaplan-Meier method provides useful estimates of survival
probabilities and a graphical presentation of the survival distribution. e

Q Itis the most widely applied nonparametric method in survival analysis.

a Afew observations:

> If the largest (survival) observation is right-censored, the Kaplan—Meier
estimate is undefined beyond this observation.

> If the largest observation is not right censored, then the Kaplan—Meier
estimate at that time equals zero.

> The median survival time cannot be estimated if more than 50% of the
observations are censored and the largest observation is censored.

> The Kaplan—-Meier method assumes that censoring is independent of
survival times. If this is false, the Kaplan-Meier method is inappropriate.
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Nonparametric Models

i

Kaplan-Meier survival estimate
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Semiparametric Models

a Semiparametric models do not assume a distribution of duration times I
(like Weibull or exponential), although they do have a parametric
assumption on the functional form of the covariates’ influence on the
hazard function (usually EXP(BX)).

Q The Cox proportional-hazards model is semiparametric because
EXP(BX) is used as the functional form of the covariate influence.

Q Produces estimated hazard ratios (sometimes called rate ratios or risk
ratios)

O Regression coefficients are on a log scale
> Exponentiate to get hazard ratio
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Semiparametric Models “

a Cox proportional-hazards model

h () = hy (D) exp(Bx,y + Byxiy + oot Bx,) - 8

> hi(t) is the hazard function for individual /

> h(f) is the baseline hazard function and can take any form

> Xy, Xy...X;, are the covariates

> Bu, BB, are the regression coefficients estimated from the data
> PH assumption needed

> Estimate s without estimating h,(t) = semi parametric model
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Semiparametric Models %

i

a Cox proportional-hazards model

> |f we divide both sides of the equation on the previous slide by hy(t) and syrenion
take logarithms, we obtain:

IH(Z;((Z))] — ,leil +ﬁ2xi2 T +Ianin

> We call ht)/h,(t) the hazard ratio

> The coefficients B, B,...B;, are estimated by Cox regression, and can be
interpreted in a similar manner to that of multiple logistic regression

> exp(B,) is the instantaneous relative risk of an event
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Semiparametric Models

Q This model is readily estimated using standard maximum likelihood

methods.
> If only one observation completes its duration at each time (no tied data),
and no observations are censored, the partial log-likelihood is

r— -

|

D | BX; - D EXP(BX))

i=1 jeR,;

LL

_— —

> |If no observations are censored and tied data are present with more than
one observation exiting at time t, the partial log-likelihood is the sum of
individual likelihoods of the n: observations that exit at time t

—

LL=Y|BY.X; - mZEXP(BX)

=1 Jet; JER;

.
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Semiparametric Models
i

INSTITUTO
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Q Cox regression assumptions
> Assumption of proportional hazards
> No censoring patterns
> True starting time

> Plus assumptions for all modelling

= Sufficient sample size, proper model specification, independent observations,
exogenous covariates, no high multicollinearity, random sampling, and so on.

36
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Fully Parametric Models “

a With fully parametric models, a variety of distributional alternatives for the I
hazard function have been used with regularity in the literature. These
include gamma, exponential, Weibull, log-logistic, and Gompertz :
distributions, among others.

O The choice of any one of these alternatives is justified on theoretical
grounds or statistical evaluation.
a The choice of a specific distribution has important implications relating

not only to the shape of the underlying hazard, but also to the efficiency
and potential biasedness of the estimated parameters.
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Fully Parametric Models

Name Hazard Function h(t) Iﬁ
¢ d ial h(t) i
f1c = e &
ompound exponentia P/ A) oo
TECNICO
Exponential h(t)= A |
2
= : . p s l {_ — ?',: ]
Exponential with gamma heterogeneity 1(t) 1+ ait
Gompertz h(t)= (P)EXP’“ FEUP
Gompertz—Makeham h(t)= A,+ ALEXP*
APY(AH)!
Log-logistic h(t)= ( 1+)((/“))p
Welbu11 h(t):(/lp)(lf)l’—l
AP)(AE)"!
Weibull with gamma heterogeneity h(t)= (1+ ;(( /1:‘))P

Some Commonly used Hazard Functions for Parametric Duration Models
Source: Washington et al. (2011)
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Fully Parametric Models *

Q Exponential distribution
> With parameter A > 0, the exponential density function is S

f(t) = AEXP(-At)

> with hazard,

hit) = A

> The equation above implies that this distribution’s hazard is constant,
(as illustrated by h,(t)) .

> This means that the probability of a duration ending is independent of
time and there is no duration dependence.
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Fully Parametric Models 2"

O Weibull distribution I
> With parameters A >0 and P > 0, the Weibull density function is S

ft) = AP(AH)PEXP[-(AH)']

> with hazard,

h(t)=(AP)(At)"

> As indicated in the equation above, if the Weibull parameter P is
greater than one, the hazard is monotone increasing in duration (see

hy(1));
> If Pis less than one, it is monotone decreasing in duration (see h,(t))

> If P equals one, the hazard is constant in duration and reduces to the
exponential distribution’s hazard with h(t) = A (see h,(f)).
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Fully Parametric Models %~

O Log-logistic distribution [l
> With parameters A >0 and P > 0, the log-logistic density function is o

flt) = AP(A)™ 1+ (A)"]

h()= (AP)(At)"
1+ (At)"

> Equation above indicates that if P < 1, then the hazard is monotone
decreasing in duration (see hy(f))

> If P=1, then the hazard is monotone decreasing in duration from parameter
A

> If P> 1, then the hazard increases in duration from zero to an inflection
point, t= (P—1)""/A, and decreases toward zero thereafter (see h(f)).

> with hazard,
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Example: Roadside safety analysis

a Roque, C. and Jalayer, M. 2018. Improving roadside design policies for
safety enhancement using hazard-based duration modeling, Accident
Analysis & Prevention, Volume 120, 2018, Pages 165-173.

> The distance traveled by an errant vehicle in a ROR crash was modeled .
> Two Cox mixed-effects regression models were developed.

> Results confirmed the contribution of roadside obstacles to the distance
travelled.

> Results suggest that clear-zone distances proposed in guidelines should be
evaluated.

> This study can facilitate the appropriate planning and design of forgiving
roadsides.
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Example: Roadside safety analysis

n

i
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SUPERIOR
TECNICO

Type of crash Variable Description Mean (Std. Dev.) Minimum Maximum
Overturns Distance traveled (ft) 60.008 (79.062) 0 999
Roadway Variables
Speed limit (mph) Speed limit at the location of the crash (mph) 52.598 (8.149) 20 70
Fixed-object crashes Distance traveled (ft) 63.366 (98.021) 0 1421
Roadway Variables
Speed limit (mph) Speed limit at the location of the crash (mph) 53.631 (9.048) 20 70
AADT (vpd) Average Annual Daily Traffic 15333.880 (27383.540) 50 183000
Shoulder Width (ft) Paved shoulder width (Right) 6.496 (3.562) 0 22

Descriptive statistics of the continuous variables.

Phd in Transportation / Transport Demand Modelling

Source: Roque and Jalayer (2018)
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Example: Roadside safety analysis

Type of crash Variable Description Percentage Frequency
Overturns Seasonal Variables
Clear weather 1= if the crash occurred with clear weather conditions / 0 = otherwise 70.2% / 29.8% 1411 / 598
Daylight 1= if the crash occurred during daylight / 0 = otherwise 63.3% / 36.7% 1271 /738
Wet 1 = if the road surface was wet when the crash occurred / 0 = otherwise 13.5% / 86.5% 272 /1737
Vehicle Information
Airbag deploy 1= if the vehicle’s airbag was deployed when the crash occurred / 0 = otherwise 56.9% / 43.1% 1143 / 866
Driver Characteristics
Normal condition 1 = if the physical condition of the driver when the crash occurred was apparently normal /0 81.6% /18.4% 1640 / 369
= otherwise
Driver PDO 1= if no injury for the driver / 0 = otherwise 39.9% / 60.1% 801 /1208
Male 1= if male driver / 0 = otherwise 73.4% / 26.6% 1474 / 535

Fixed-object crashes

Seasonal Variables
Clear weather
Roadway Variables
Rural

Two-way

Crash Variables
Tree

Non-breakaway pole
Breakaway pole

Sign non-breakaway
Guardrail

Bridge rail
Curb/Median

Ditch

Vehicle Information
Front of the vehicle
Airbag deploy
Driver Characteristics
Normal condition

Driver PDO
Ejection
Male

1 = if the crash occurred with clear weather conditions / 0 = otherwise

1= if the crash occurred in a rural road / 0 = otherwise
1= if the crash occurred in a two-way, not divided road / 0 = otherwise

1= if first harmful event is collision with tree / 0 = otherwise
1 = if first harmful event is collision with luminaire pole non-breakaway / 0 = otherwise
1 = if first harmful event is collision with luminaire pole breakaway / 0 = otherwise
1 = if first harmful event is collision with sign non-breakaway / 0 = otherwise
1= if first harmful event is collision with guardrail face on shoulder / 0 = otherwise
1= if first harmful event is collision with bridge rail face / 0 = otherwise
= if first harmful event is collision with traffic island curb or median / 0 = otherwise
1= if first harmful event is collision with ditch / 0 = otherwise

1= if the point of contact of the vehicle was its central front/ 0 = otherwise
1 = if the vehicle’s airbag was deployed when the crash occurred / 0 = otherwise

1 = if the physical condition of the driver when the crash occurred was apparently normal / 0
= otherwise

1= if no injury for the driver / 0 = otherwise

1= if occupant not ejected in the crash / 0 = otherwise

1= if male driver / 0 = if female driver

57.6% / 42.4%

90.3% / 9.7%
71.5% / 28.5%

0.8% / 99.2%
0.2% / 99.8%
0.1% / 99.9%
1.2% / 98.8%
0.7% / 99.3%
0.3% / 99.7%
0.3% / 99.7%
1.0% / 99.0%

10.3% / 89.7%
65.6% / 34.4%

77.7% /22.3%
64.1% / 35.9%

97.6% / 2.4%
61.1% / 38.9%

10049 / 7408

15763 / 1694
12483 / 4974

148 /17309
31 /17426
10 / 17447
212 /17245
122 /17335
57 /17400
55 /17402
167 /17290

1801 / 15656
11456 / 6001

13563 / 3894
11188 / 6269

17041 / 416
10673 / 6784

Descriptive statistics of the categorical variables.

Source: Roque and Jalayer (2018)

Phd in Transportation / Transport Demand Modelling

i

INSTITUTO
SUPERIOR
TECNICO

44



0.75-

0.25- 0.25-

Probability that an errant vehicle continues to move after it overturns
&
o
Probability that an errant vehicle continues to move after hitting a fixed object

0 250 500 750 1000 0 500 1000 1500
Distance (ft) Distance (ft)

Kaplan—Meier estimate of the distance traveled for overturns and fixed-object crashes.
Source: Roque and Jalayer (2018)
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Example: Roadside safety analysis %

A In the Cox proportional-hazards model, the hazard ratio (HR) is a
measure of the relative importance of the explanatory variables gt
concerning hazard, while controlling for distance.

A The HR is often used to interpret results predicted by the Cox
proportional-hazards model and can be obtained by the exponentiation of
each regression coefficient.

Q Specifically, the HR indicates the time rate of stopping at any distance
during the study period, compared to that of the reference category.

> If HR=1, then the explanatory variable in the model does not affect and
does not change the baseline hazard, hy(d).

> IfHR <1, then the time rate of stopping is decreased throughout the study
period.

> If HR > 1, the time rate of stopping is increased throughout the referred
period
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Example: Roadside safety analysis

Variable Overturns Fixed-object crashes

Coefficient p-value Hazard ratio Coefficient p-value Hazard ratio

estimate estimate
Clear weather —0.148 0.031 0.862 -0.165 < 0.001 0.848
Daylight 0.195 < 0.001 1.215 - - -
Wet 0.146 0.110 1.157 - - -
Rural - - - —0.252 < 0.001 0.777
Two-way - - - 0.179 < 0.001 1.196
Speed limit —-0.013 < 0.001 0.987 —-0.017 < 0.001 0.983
AADT(/10000) - - - 0.029 < 0.001 1.029
Shoulder width - - - -0.015 < 0.001 0.985
Tree - - - 0.698 < 0.001 2.009
Non-breakaway pole - - - 0.927 0.001 2.527
Breakaway pole - - - —1.589 0.001 0.204
Sign non-breakaway - - - 0.427 < 0.001 1.532
Guardrail - - - 0.437 < 0.001 1.548
Bridge rail - - - 0.450 0.010 1.568
Curb/median - - - —-0.530 0.003 0.588
Ditch - - - 0.361 0.001 1.414
Front of the vehicle - - - 0.291 < 0.001 1.338
Airbag deploy 0.104 0.058 1.110 0.146 < 0.001 1.158
Normal condition 0.226 0.001 1.254 0.387 < 0.001 1.472
Driver PDO 0.510 < 0.001 1.666 0.272 < 0.001 1.312
Ejection - - - 0.201 0.002 1.222
Male —0.087 0.150 0.917 -0.117 < 0.001 0.890
Variance of log-normal random effects 0.215 < 0.001 0.482 < 0.001
Likelihood ratio test statistics 177.4 1656.9
Sample size 2009 17545

Cox mixed-effects model estimation results of distance traveled by an errant vehicle.

Source: Roque and Jalayer (2018)
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Example: Roadside safety analysis

a The hazard ratio is the ratio of the hazard for a unit change in the
covariate oo
> HR =1.157 for wet road surface vs. other conditions (overturns model) o

> This indicates that there is a 16% increase in the risk associated with
stopping after adjusting for the other explanatory variables in the model,
resulting in a decrease in the expected distance traveled.

3 Hazard ratio assumed constant over time

> At any time point, the stopping hazard for wet road surface is 1.157 times
the hazard for other road surface conditions

48
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Exercise 1: work-to-home departure delay %"

a Asurvey of 204 Seattle-area commuters was conducted to examine the I
duration of time that commuters delay their work-to-home trips in an L
effort to avoid peak period traffic congestion. Of the 204 commuters
surveyed, 96 indicated that they sometimes delayed their work-to-home
trip to avoid traffic congestion. These commuters provided their average
time delay—thus each commuter has a completed delay duration so that
neither left nor right censoring is present in the data.

> Plot the Kaplan-Meier estimate of the duration of time that commuters delay
their work-to-home trips

> Determine the significant factors that affect the duration of commuters’ delay
using a Cox model.

> Examine the work-to-home departure delay using exponential, Weibull, and
log-logistic proportional-hazards models.
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Exercise 1: work-to-home departure delay

Variable No. Variable Description
1 Minutes delayed to avoid congestion I‘li
2 Primary activity performed while delaying: 1 if perform additional work,
2 if engage in nonwork activities, or 3 if do both
3 Number of times delayed in the past week to avoid congestion LE;SPTEl :.f;;:}
TECNIC

4 Mode of transportation used on work-to-home commute: 1 if by single
occupancy vehicle, 2 if by carpool, 3 if by vanpool, 4 if by bus, 5 if by other

5 Primary route to work in Seattle area: 1 if Interstate 90, 2 if Interstate 5,
3 if State Route 520, 4 if Interstate 405, 5 if other
6 In the respondent’s opinion, is the home-to-work trip traffic congested:
1ifyes, 0if no
7 Commuter age in years: 1 if under 25, 2 if 26-30, 3 if 31-35, 4 if 3640,
5if 41-45, 6 if 46-50, 7 if over 50
8 Respondent’s gender 1 if female, 0 if male
9 Number of cars in household
10 Number of children in household
1 Annual household income (US dollars per year): 1 if less than 20,000,
2 if 20,000-29,999, 3 if 30,000-39,999, 4 if 40,000—49,999, 5 if 50,000-59,999,
6 if over 60,000
12 Respondent has flexible work hours? 1 if yes, 0 if no
13 Distance from work to home (in kilometers)
14 Respondent faces level of service D or worse on work-to-home commute?
1if yes, 0 if no
15 Ratio of actual travel time at time of expected departure to free-flow
(noncongested) travel time
16 Population of work zone
17 Retail employment in work zone
18 Service employment in work zone
19 Size of work zone (in hectares)

Source: Washington et al. (2011)
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Exercise 1: work-to-home departure delay &

O Install and load packages
install.packages("survival")
install.packages(“‘coxme")
install.packages("survminer")
library(survival)
library(coxme)
library(survminer)

O Read and attach data

data.delay <-
read.table(file="C:\\Users\\Carlos\\OneDrive\\Cursos\\Exercise.txt",head
er=T)

attach(data.delay)

head(data.delay,5)
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Exercise 1: work-to-home departure delay ¢

O Renaming variables
data.delay["'minutes"] <- NA
data.delay$minutes <- data.delay$X1
data.delay['number_of_times"] <- NA
data.delay$number_of_times <- data.delay$X3

a Sort the data by time
data.delay <- data.delay[order(data.delay$minutes),]

print(data.delay)

a Create graph
with(data.delay, plot(minutes, type="h"))
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Exercise 1: work-to-home departure delay ¢’

O Create the life table survival object for data.delay
# The functions survfit() and Surv() create a life table survival object.
data.delay2 <-subset(data.delay, minutes>0)
data.delay.survfit = survfit(Surv(minutes) ~ 1, data= data.delay2)
summary(data.delay.survfit)

O Plot the Kaplan-Meier curve

plot(data.delay.survfit, xlab = "Time (minutes)", ylab="Survival
probability”, conf.int=TRUE)

ggsurvplot(data.delay.survfit, xlab = "Time (minutes)”, xlim =
range(0:250) , conf.int = TRUE, color = "red", ggtheme =
theme_minimal())
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Exercise 1: work-to-home departure delay

Q Cox Proportional Hazard Model Estimates of the Duration of
Commuter Work-To-Home Delay to Avoid Congestion

result.cox <- coxph(Surv(minutes) ~ gender + rate_of_travel + distance |
+ population, data= data.delay2)

summary(result.cox)
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Exercise 1: work-to-home departure delay

O Testing proportional Hazards assumption Ifi
> Include an interaction between the covariate and a function of time (or

SUPERIOR

distance). Log time often used but could be any function. If significant then
assumption violated

> Test the proportional hazards assumption on the basis of partial residuals.
Type of residual known as Schoenfeld residuals

test.ph <- cox.zph(result.cox)

> For each covariate, the function cox.zph() correlates the corresponding set
of scaled Schoenfeld residuals with time, to test for independence between
residuals and time. Additionally, it performs a global test for the model as a

whole.

plot(test.ph)

ggcoxzph(test.ph)

> In principle, the Schoenfeld residuals are independent of time. A plot that
shows a non-random pattern against time is evidence of violation of the PH

assumption.
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Exercise 1: work-to-home departure delay %

a Plot the baseline survival function 'ﬁ

ggsurvplot(survfit(result.cox), color = "#2E9FDF", ggtheme =
theme_minimal())

A Plot cumulative hazard function

ggsurvplot(survfit(result.cox), conf.int = TRUE, palette = c("#FF9E29",
"#86AA00"), risk.table = TRUE, risk.table.col = "strata", fun = "event")

Q Log-likelihood
#lnitial log-likelihood
result.cox $loglik[1]
#Final log-likelihood
result.cox $loglik[2]
QO McFadden Pseudo-R2
Pseudo.R2 <- (1- (result.cox $loglik[2]/ result.cox $loglik[1]))
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Exercise 1: work-to-home departure delay &

Q Parametric Model Estimates of the Duration of Commuter Work-To-
Home Delay to Avoid Congestion o
# The argument dist has several options to describe the parametric
model used ("weibull", "exponential”, "gaussian”, "logistic", "lognormal”,
or "loglogistic”)
result.expon <- survreg(Surv(minutes)~ gender + rate_of_travel +
distance + population, data= data.delay2, dist="exponential")

result.weib <- survreg(Surv(minutes)~ gender + rate_of_travel +
distance + population, data= data.delay2, dist="weibull")

result.loglog <- survreg(Surv(minutes)~ gender + rate_of_travel +
distance + population, data= data.delay2, dist="loglogistic")
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Exercise 2

a What else can we do with this dataset?

i

Variable No. Variable Description
1 Minutes delayed to avoid congestion istiTETs
2 Primary activity performed while delaying: 1 if perform additional work, o
2 if engage in nonwork activities, or 3 if do both
3 Number of times delayed in the past week to avoid congestion
4 Mode of transportation used on work-to-home commute: 1 if by single
occupancy vehicle, 2 if by carpool, 3 if by vanpool, 4 if by bus, 5 if by other
5 Primary route to work in Seattle area: 1 if Interstate 90, 2 if Interstate 5,
3 if State Route 520, 4 if Interstate 405, 5 if other
6 In the respondent’s opinion, is the home-to-work trip traffic congested:
1ifyes, 0if no
7 Commuter age in years: 1 if under 25, 2 if 26-30, 3 if 31-35, 4 if 3640,
5if 41-45, 6 if 46-50, 7 if over 50
8 Respondent’s gender 1 if female, 0 if male
9 Number of cars in household
10 Number of children in household
1 Annual household income (US dollars per year): 1 if less than 20,000,
2 if 20,000-29,999, 3 if 30,000-39,999, 4 if 40,000—49,999, 5 if 50,000-59,999,
6 if over 60,000
12 Respondent has flexible work hours? 1 if yes, 0 if no
13 Distance from work to home (in kilometers)
14 Respondent faces level of service D or worse on work-to-home commute?
1ifyes, 0if no
15 Ratio of actual travel time at time of expected departure to free-flow
(noncongested) travel time
16 Population of work zone
17 Retail employment in work zone
18 Service employment in work zone
19 Size of work zone (in hectares)
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