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Outline of the Module on Hazard-Based 
Duration Models

Our objectives for this session:

� Background information: statistical analysis of road safety data

� Characteristics of duration data

� Nonparametric models

� Semiparametric models

� Fully Parametric models

� Build your first Kaplan-Meier estimate (using R)

� Build your first Cox proportional-hazards model (using R)
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How big is the road safety problem?

� Have you ever been injured in a crash?

� Have any of your family members or friends been injured or killed in a 
crash?

� Do you know someone who has been injured or killed in a crash?
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Key facts about road safety

1

2

3

Road traffic 

WHO 2004

1.3

Malaria

WHO 2008

<1

Tuberculosis

WHO 2008

1.8

AIDS-related deaths

UNAIDS 2008

N
u

m
b

e
r 

o
f 

d
e

a
th

s 
(m

il
li

o
n

s)

1.3

• Nearly 1.3 million deaths 

• 20-50 million injured

Source: http://www.who.int/roadsafety
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Perspectives on road safety

Normative safetySubjective safety Objective safety

Standards 
compliance

Motorists’ complaints

Experts’ judgement

Expected or actual 
crash frequency and 

severity
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How safe is this road?
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How do we evaluate alternatives?
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Good news

� There is a lot of information on substantive safety

http://www.imt-ip.pt/sites/IMTT/Portugues/InfraestruturasRodoviarias/InovacaoNormalizacao/Paginas/DivulgacaoTecnica.aspx
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Bad news

� Many study results are problematic

� Poor study design & analysis

� Highly variable results

� Limited reproduction of results

� Most sources are regarding normative safety
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System approach 

� Understand the system as a whole.

� Understand interactions between different components.

� Consider not only underlying factors, but also role of different agencies and 
actors in prevention efforts.
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Major risk factors 

� Factors influencing exposure to risk

� economic factors

� demographic factors

� land-use planning practices

� traffic mix

� road function versus design and layout

� Risk factors influencing crash involvement

� speed

� alcohol or drugs

� fatigue

� gender

� vehicle defects

� age

� vulnerable road users
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Major risk factors 
� Risk factors influencing crash severity

� speed

� seat-belts, child restraints 

� helmets

� Non-crash protective roadside objects

� insufficient vehicle crash protection

� alcohol and other drugs

� Risk factors influencing post-crash outcome of injuries

� delay in detecting crash

� delay in transport to a health facility

� fire resulting from collision

� leakage of hazardous materials

� alcohol and other drugs

� rescue, extraction, evacuation

� poor trauma care and rehabilitation
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Measuring objective safety

� Why Analyze?

� Identify crash-prone locations

� Hoping that data analysis will suggest effective countermeasures

� Evaluate the effectiveness of an implemented countermeasure

� …

� Traditional Analysis Approaches:

� Models of crash frequency over some specified time and space

� Models of crash-injury severity (which is conditional the crash having 
occurred)

� Some modeling approaches have combined the two (frequency and 
severity)
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Crash Data Modeling

� Crash Frequency Models

� Study crash frequency over some specified time and space

� Various count-data and other methods have been used

� Explanatory variables:

� Traffic conditions

� Roadway conditions

� Weather conditions

� Crash Severity Models

� Study injury severities of specific crashes

� Various discrete-outcome and other methods have been used

� Explanatory variables:

� Traffic Conditions, Roadway conditions, Weather conditions

� Specific crash data: Vehicle information, Occupant information, Crash specific 
characteristics
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Data

� Traditional Crash Data

� Available mostly from police and possibly other reports

� Provide basic data on the characteristics of the crash

� Road conditions

� Estimates of injury severity

� Occupant characteristics (age, gender)

� Vehicle characteristics

� Crash description, primary cause, etc.

� Emerging Data Sources

� Data from driving simulators

� Data from naturalistic driving

� Data from automated vehicles

� Data from other sources
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Emerging data sources

� Naturalistic Driving Data 

� Extensively instrumented conventionally operated vehicles

� Simulator Data 

� Massive amounts of data collected from driving simulators

� Automated Vehicle Data 

� Including automated vehicle performance and response of drivers of 
conventional vehicles

� Others
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Methodological Barriers 
� Unobserved Heterogeneity

� Many factors influencing the frequency and severity of crashes are simply 
not observed

� Endogeneity

� Factors correlated with frequency and severity of crashes 

� Temporal Correlation

� Crashes in occurring near the same or similar times will share correlation 
due to unobserved factors associated with time (precise weather conditions, 
similar sun angle, etc.)

� Spatial Correlation

� Crashes in close spatial proximity will share correlation due to unobserved 
factors associated with space (unobserved visual distractions, sight 
obstructions, etc.)

� Omitted Variables

� Many crash frequency models use few explanatory variables (some only 
use traffic)
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Duration Models 

� In many instances, one encounters the need to study the elapsed time 
until the occurrence of an event or the duration of an event. Data such as 
these are referred to as duration data, and are encountered often in the 
field of transportation research. 

� Examples include the time until a vehicle accident occurs, the time between 
vehicle purchases, the time devoted to an activity (shopping, recreational, 
etc.), the time until the adoption of new transportation technologies, or the 
distance traveled until a vehicle stops. 

� To study duration data, hazard-based models are applied to study the 
conditional probability of a time duration ending at some time t, given that 
the duration has continued until time t.

� Hazard-based duration models can account for the possibility that the 
likelihood of a driver becoming involved in an accident may change over 
time.
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Duration Models 

� Cumulative distribution function F(t):

� where P denotes probability, T is a random time variable, and t is some 
specified time.

� The density function corresponding to this distribution function (the first 
derivative of the cumulative distribution with respect to time) is:
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Duration Models 

� And the hazard function is:

� where h(t) is the conditional probability that an event will occur between 
time t and t + dt, given that the event has not occurred up to time t.

� The cumulative hazard H(t) is the integrated hazard function, and 
provides the cumulative rate at which events are ending up to or before 
time t.
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Duration Models 

� The survivor function (the probability that a duration is greater than or 
equal to some specified time t) is:

� If one of these functions is known any of the others are readily obtained.
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Duration Models 

Illustration of hazard (h(t)), density (f(t)), cumulative distribution (F(t)), and survivor 
functions (S(t)).

Source: Washington et al. (2011)
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Duration Models 

Illustration of four alternate hazard functions.

Source: Washington et al. (2011)

dh1(t)/dt < 0 for all t.

dh2(t)/dt > 0 and dh2(t)/dt < 0

dh3(t)/dt > 0 for all t 

dh4(t)/ dt = 0
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Duration Models 

� In addition to duration dependence, hazard-based duration models 
account for the effect of covariates on probabilities. 

� Proportional hazards models

� Accelerated lifetime models

� The proportional-hazards approach assumes that the covariates, 
which are factors that affect the probability that an event will occur, act 
multiplicatively on some underlying hazard function. 

� where ho(t) denotes the underlying (or baseline) hazard function, X is the 
covariate vector and β is a vector of estimable parameters

� h(t) is separable into ho(t) and the effects of Xs

� ho(t) depends on t but not on individual characteristics

� Absolute differences in X � proportional differences in h(t) ~scaling of ho(t)
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Duration Models 

Illustration of the proportional-hazards model.

Source: Washington et al. (2011)
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Duration Models 

� The accelerated lifetime method assumes that the covariates rescale 
(accelerate) time directly in a baseline survivor function. This accelerated 
lifetime method again assumes covariates influence the process with the 
function EXP(βX). The accelerated lifetime model is written as 

� which leads to the conditional hazard function

� where ho(t) denotes the underlying (or baseline) hazard function, t is the 
time, X is the covariate vector and β is a vector of estimable parameters
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Characteristics of Duration Data

� Duration data are often left or right censored. 

Not observed

Left and right censored 

Left censored Right censored 

Complete

Source: Washington et al. (2011)
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Characteristics of Duration Data

� Hazard-based models can readily account for right-censored data.

� Left-censored data creates a far more difficult problem because of the 
additional complexity added to the likelihood function. 

� Another challenge may arise when a number of observations end their 
durations at the same time. This is referred to as the problem of tied 
data. Tied data can arise when data collection is not precise enough to 
identify exact duration-ending times. When duration exits are grouped at 
specific times, the likelihood function for proportional and accelerated 
lifetime models becomes increasingly complex.
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Nonparametric Models

� The Kaplan-Meier method (based on individual survival times) is the 
most widely applied nonparametric method in survival analysis 

� The basic method for calculating survival probabilities using the Kaplan-
Meier method begins by specifying the probability of surviving r years 
(without event A occurring) as the conditional probability of surviving r 
years given survival for r–1 years times the probability of surviving r–1 
years (or months, days, minutes, etc.). In notation, the probability of 
surviving k or more years is given by

� where (pk | pk−1) is the proportion of observed subjects surviving to period k, 
given survival to period k – 1, and so on.
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Nonparametric Models

� The Kaplan–Meier method provides useful estimates of survival 
probabilities and a graphical presentation of the survival distribution. 

� It is the most widely applied nonparametric method in survival analysis.

� A few observations:

� If the largest (survival) observation is right-censored, the Kaplan–Meier 
estimate is undefined beyond this observation.

� If the largest observation is not right censored, then the Kaplan–Meier 
estimate at that time equals zero.

� The median survival time cannot be estimated if more than 50% of the 
observations are censored and the largest observation is censored.

� The Kaplan–Meier method assumes that censoring is independent of 
survival times. If this is false, the Kaplan–Meier method is inappropriate. 
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Nonparametric Models
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Semiparametric Models

� Semiparametric models do not assume a distribution of duration times 
(like Weibull or exponential), although they do have a parametric 
assumption on the functional form of the covariates’ influence on the 
hazard function (usually EXP(βX)). 

� The Cox proportional-hazards model is semiparametric because 
EXP(βX) is used as the functional form of the covariate influence.

� Produces estimated hazard ratios (sometimes called rate ratios or risk 
ratios)

� Regression coefficients are on a log scale

� Exponentiate to get hazard ratio
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Semiparametric Models

� Cox proportional-hazards model 

� hi(t) is the hazard function for individual i

� ho(t) is the baseline hazard function and can take any form

� Xi1, Xi2…Xin are the covariates

� βi1, βi2…βin are the regression coefficients estimated from the data

� PH assumption needed

� Estimate βs without estimating h0(t) � semi parametric model

).......exp()()( 22110 inniii xxxthth βββ +++=
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Semiparametric Models

� Cox proportional-hazards model 

� If we divide both sides of the equation on the previous slide by h0(t) and 
take logarithms, we obtain:

� We call hi(t)/h0(t) the hazard ratio

� The coefficients βi1, βi2…βin are estimated by Cox regression, and can be 
interpreted in a similar manner to that of multiple logistic regression

� exp(βi) is the instantaneous relative risk of an event
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Semiparametric Models

� This model is readily estimated using standard maximum likelihood 
methods. 

� If only one observation completes its duration at each time (no tied data), 
and no observations are censored, the partial log-likelihood is

� If no observations are censored and tied data are present with more than 
one observation exiting at time ti, the partial log-likelihood is the sum of 
individual likelihoods of the ni observations that exit at time ti
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Semiparametric Models

� Cox regression assumptions

� Assumption of proportional hazards

� No censoring patterns 

� True starting time

� Plus assumptions for all modelling

� Sufficient sample size, proper model specification, independent observations, 
exogenous covariates, no high multicollinearity, random sampling, and so on.
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Fully Parametric Models

� With fully parametric models, a variety of distributional alternatives for the 
hazard function have been used with regularity in the literature. These 
include gamma, exponential, Weibull, log-logistic, and Gompertz
distributions, among others. 

� The choice of any one of these alternatives is justified on theoretical 
grounds or statistical evaluation. 

� The choice of a specific distribution has important implications relating 
not only to the shape of the underlying hazard, but also to the efficiency 
and potential biasedness of the estimated parameters.
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Fully Parametric Models

Some Commonly used Hazard Functions for Parametric Duration Models

Source: Washington et al. (2011)
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Fully Parametric Models

� Exponential distribution

� With parameter λ > 0, the exponential density function is

� with hazard,

� The equation above implies that this distribution’s hazard is constant, 
(as illustrated by h4(t)) . 

� This means that the probability of a duration ending is independent of 
time and there is no duration dependence. 
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Fully Parametric Models

� Weibull distribution

� With parameters λ > 0 and P > 0, the Weibull density function is

� with hazard,

� As indicated in the equation above, if the Weibull parameter P is 
greater than one, the hazard is monotone increasing in duration (see 
h3(t)); 

� If P is less than one, it is monotone decreasing in duration (see h1(t))

� If P equals one, the hazard is constant in duration and reduces to the 
exponential distribution’s hazard with h(t) = λ (see h4(t)). 
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Fully Parametric Models

� Log-logistic distribution

� With parameters λ > 0 and P > 0, the log-logistic density function is

� with hazard,

� Equation above indicates that if P < 1, then the hazard is monotone 
decreasing in duration (see h1(t)) 

� If P = 1, then the hazard is monotone decreasing in duration from parameter 
λ; 

� If P > 1, then the hazard increases in duration from zero to an inflection 
point, ti= (P – 1)1/P/λ, and decreases toward zero thereafter (see h2(t)).
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Example: Roadside safety analysis

� Roque, C. and Jalayer, M. 2018. Improving roadside design policies for 
safety enhancement using hazard-based duration modeling, Accident 
Analysis & Prevention, Volume 120, 2018, Pages 165-173.

� The distance traveled by an errant vehicle in a ROR crash was modeled .

� Two Cox mixed-effects regression models were developed.

� Results confirmed the contribution of roadside obstacles to the distance 
travelled.

� Results suggest that clear-zone distances proposed in guidelines should be 
evaluated.

� This study can facilitate the appropriate planning and design of forgiving 
roadsides.
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Example: Roadside safety analysis

Descriptive statistics of the continuous variables.

Source: Roque and Jalayer (2018)
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Example: Roadside safety analysis

Descriptive statistics of the categorical variables.

Source: Roque and Jalayer (2018)
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Example: Roadside safety analysis

Kaplan–Meier estimate of the distance traveled for overturns and fixed-object crashes.

Source: Roque and Jalayer (2018)
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Example: Roadside safety analysis

� In the Cox proportional-hazards model, the hazard ratio (HR) is a 
measure of the relative importance of the explanatory variables 
concerning hazard, while controlling for distance.

� The HR is often used to interpret results predicted by the Cox 
proportional-hazards model and can be obtained by the exponentiation of 
each regression coefficient. 

� Specifically, the HR indicates the time rate of stopping at any distance 
during the study period, compared to that of the reference category. 

� If HR=1, then the explanatory variable in the model does not affect and 
does not change the baseline hazard, h0(δ). 

� If HR < 1, then the time rate of stopping is decreased throughout the study 
period.

� If HR > 1, the time rate of stopping is increased throughout the referred
period
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Example: Roadside safety analysis

Cox mixed-effects model estimation results of distance traveled by an errant vehicle.

Source: Roque and Jalayer (2018)
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Example: Roadside safety analysis

� The hazard ratio is the ratio of the hazard for a unit change in the 
covariate 

� HR = 1.157 for wet road surface vs. other conditions (overturns model)

� This indicates that there is a 16% increase in the risk associated with 
stopping after adjusting for the other explanatory variables in the model, 
resulting in a decrease in the expected distance traveled.

� Hazard ratio assumed constant over time

� At any time point, the stopping hazard for wet road surface is 1.157 times 
the hazard for other road surface conditions
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� A survey of 204 Seattle-area commuters was conducted to examine the 
duration of time that commuters delay their work-to-home trips in an 
effort to avoid peak period traffic congestion. Of the 204 commuters 
surveyed, 96 indicated that they sometimes delayed their work-to-home 
trip to avoid traffic congestion. These commuters provided their average 
time delay—thus each commuter has a completed delay duration so that 
neither left nor right censoring is present in the data. 

� Plot the Kaplan-Meier estimate of the duration of time that commuters delay 
their work-to-home trips 

� Determine the significant factors that affect the duration of commuters’ delay 
using a Cox model.

� Examine the work-to-home departure delay using exponential, Weibull, and 
log-logistic proportional-hazards models.

Exercise 1: work-to-home departure delay
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Exercise 1: work-to-home departure delay

Source: Washington et al. (2011)
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Exercise 1: work-to-home departure delay

� Install and load packages

install.packages("survival") 

install.packages(“coxme") 

install.packages("survminer") 

library(survival)

library(coxme)

library(survminer)

� Read and attach data

data.delay <-
read.table(file="C:\\Users\\Carlos\\OneDrive\\Cursos\\Exercise.txt",head
er=T)

attach(data.delay)

head(data.delay,5)
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Exercise 1: work-to-home departure delay

� Renaming variables

data.delay["minutes"] <- NA

data.delay$minutes <- data.delay$X1

data.delay["number_of_times"] <- NA

data.delay$number_of_times <- data.delay$X3

� Sort the data by time

data.delay <- data.delay[order(data.delay$minutes),]

print(data.delay)

� Create graph 

with(data.delay, plot(minutes, type="h"))
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Exercise 1: work-to-home departure delay

� Create the life table survival object for data.delay

# The functions survfit() and Surv() create a life table survival object.

data.delay2 <-subset(data.delay, minutes>0) 

data.delay.survfit = survfit(Surv(minutes) ~ 1, data= data.delay2)

summary(data.delay.survfit)

� Plot the Kaplan-Meier curve

plot(data.delay.survfit, xlab = "Time (minutes)", ylab="Survival 
probability", conf.int=TRUE)

ggsurvplot(data.delay.survfit, xlab = "Time (minutes)", xlim = 
range(0:250) , conf.int = TRUE, color = "red", ggtheme = 
theme_minimal())
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Exercise 1: work-to-home departure delay

� Cox Proportional Hazard Model Estimates of the Duration of 

Commuter Work-To-Home Delay to Avoid Congestion

result.cox <- coxph(Surv(minutes) ~ gender + rate_of_travel + distance 
+ population, data= data.delay2)

summary(result.cox)
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Exercise 1: work-to-home departure delay

� Testing proportional Hazards assumption

� Include an interaction between the covariate and a function of time (or 
distance). Log time often used but could be any function. If significant then 
assumption violated

� Test the proportional hazards assumption on the basis of partial residuals. 
Type of residual known as Schoenfeld residuals

test.ph <- cox.zph(result.cox)
� For each covariate, the function cox.zph() correlates the corresponding set 

of scaled Schoenfeld residuals with time, to test for independence between 
residuals and time. Additionally, it performs a global test for the model as a 
whole.

plot(test.ph)

ggcoxzph(test.ph)
� In principle, the Schoenfeld residuals are independent of time. A plot that 

shows a non-random pattern against time is evidence of violation of the PH 
assumption.
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Exercise 1: work-to-home departure delay

� Plot the baseline survival function 

ggsurvplot(survfit(result.cox), color = "#2E9FDF", ggtheme = 
theme_minimal())

� Plot cumulative hazard function

ggsurvplot(survfit(result.cox), conf.int = TRUE, palette = c("#FF9E29", 
"#86AA00"), risk.table = TRUE, risk.table.col = "strata", fun = "event")

� Log-likelihood

#Initial log-likelihood

result.cox $loglik[1]

#Final log-likelihood

result.cox $loglik[2]

� McFadden Pseudo-R2

Pseudo.R2 <- (1- (result.cox $loglik[2]/ result.cox $loglik[1]))
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Exercise 1: work-to-home departure delay

� Parametric Model Estimates of the Duration of Commuter Work-To-

Home Delay to Avoid Congestion

# The argument dist has several options to describe the parametric 
model used ("weibull", "exponential", "gaussian", "logistic", "lognormal", 
or "loglogistic")

result.expon <- survreg(Surv(minutes)~ gender + rate_of_travel + 
distance + population, data= data.delay2, dist="exponential") 

result.weib <- survreg(Surv(minutes)~ gender + rate_of_travel + 
distance + population, data= data.delay2, dist="weibull") 

result.loglog <- survreg(Surv(minutes)~ gender + rate_of_travel + 
distance + population, data= data.delay2, dist="loglogistic") 
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Exercise 2

� What else can we do with this dataset?
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