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Count Data

3 Analysis steps

% Model Formulation

< Model Adjusment

< Model Selection and Validation
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Count Data

3 Model Formulation

< Random Component - Dependent Variable (distributed as a
Poisson or Negative Binomial)

< Systematic Component - Independent variables (explaining the
dependent variable)

< Link or connection function (logarithmic)
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p
"\"a Generalized Linear Models

The type of model could be

Type of Model Response Predictors Model Estimation Statistics EMMeans Save Export

selected among a series of

-

Choose one ofthe model types listed below or specify a custom combination of distribution and link function.

model types

& Scale Response d Ordinal Response
© Linear © Ordinal logistic

© Gamma with log link © Ordinal probit

M Co
Poisson loglinear \
© Negative binomial with log link /

O® Binary Response or Events/Trials Data

© Binary logistic
© Binary probit
© Interval censoreq SuTVIVET

Mixture

© Tweedie with identity link

Poisson loglinear-Specifies Poisson as
the distribution and Log as the link
function.

Negative binomial with log link.
Specifies Negative binomial (with a value
of 1 for the ancillary parameter) as the

2%, Custom

@© Custom

distribution and Log as the link function.

Distribution:

Poisson ink TOMesaQ. |l og X

Binomial

Gamma

Inverse Gaussian
Multinomial
Negative binomial
Normal

Poisson

Tweedie _][gaste ][ Reset ][Cancel][ Help ]

The custom tool allows the
44| selection of specific models
(specific distribution) together
with a specific link function
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Count Data

-
#3 Generalized Linear Models u

Type ofodel The dependent variable is
Variables: Dependent Variable defined here

&> State py Dependent Variable:

& AADT1 | & Accident

& AADT2

&> Median Category order (multinomial onl Ascending -

& Drive

rType of Dependent Variable (Binomial Distribution Onl
@ Binar
Reference Category
@ Number of events occurring in a set of trials
rTrials

@ Variable

Trials Variable

|
© Fixed value

Number of Trials

Scale Weight

Scale Weight Variable:

2 |
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'@ Generalized Linear Models [—J&
Type of Model Response Predictors  Model Estimation Statistics EM Means Save Export C o u nt D ata
Variables: | Factors: .
& State Factors - Factors are categorical
= predictors; they can be numeric or
- string.

+ | Covariates - Covariates are scale
predictors; they must be numeric

_ Offset - The offset termis a
“structural” predictor. Its coefficient
| Covariates: is not estimated by the model but is
gxg assumed to have the value 1; thus,
& Median + | the values of the offset are simply

& Drive added to the linear predictor of the
3 L : )
target. This is especially useful in
Poisson regression models, where

offset each case may have different levels

® variable .
. of exposure to the event of interest.

e | |
© Fixed value

| ok ][ Paste || Reset |(cancel || Help |

<
When modeling accident rates for individual drivers, there is an important difference between a driver who has been at fault in one accident in three
years of experience and a driver who has been at fault in one accident in 25 years! The number of accidents can be modeled as a Poisson or negative
binomial response with a log link if the natural log of the experience of the driver is included as an offset term.
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r"\"e Generalized Linear Models l-s;hj C o u nt D ata
‘Type of Model Response PreductorsMOdel Estimation Statistics EMMeans Save Export
[ErEEy 12 2 6Es '| Model Effects - The default model
Factors and Covariates: Model: .
|7 asDT1 AADT1 is intercept-only, the other model
| AaDT2 AADT2 N . "
7 testan Mt effects must be explicitly specified
|£ Drive rBuild Term(S)— |prive ¥
Txpe: R .
(Main sfects ~ | Main effects - Creates a main-
effects term for each variable
| selected.
Interaction - Creates the highest-
level interaction term for all
selected variables.

Number of Effects in Model: 4
rBuild Nested Term

Term:

| | Selecting a model with
@ | an intercept term

| ok ]| paste || Reset || cancel || Help |
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Count Data

3 Model Adjustment

< Maximum likelihood method (to estimate variables’ coefficients
and dispersion parameter ¢)

= |nteractive computational estimation method:
1. For the exponential family

f(i16,.0)= eXp{yiei ~h6) + C(yz'afﬂ)}ayz' eR
a; ((0)

1. The Log of Maximum likelihood estimation is given by

1{6.g5y)= %exp{yi 6.-86), C(yi,cﬂ)}

i=I a; ((0)

Phd in Transportation / Transport Demand Modelling 8/41



Count Data

GZLM W

3 Model Adjustment — Variable Coefficients

< Maximum likelihood method maximizes the likelihood function Y; in
relation to {3, and therefore it allows to determine the absolute
maximum (since the logarithmic function is monotonic and growing) .
We must then solve the system of equations S(8,)=0, for coefficient.

5= 200
op;
= Since it is a system of non linear equations it must be estimated
iteratively. The methods are:
+ Newton-Raphson
+ Fisher-Scoring

+ Hybrid (Fisher on a set of initial iterations and than changed to
Newton)
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Count Data

3 Model Adjustment — Scale Parameter ¢

< The scale parameter ¢ has a different nature then vector {3

B has a direct influence on the 4; — expected value of variable Y; — and
the parameter @ reveals the data dispersion of the data

= On some exponential families such as Poisson, the parameter ¢ is
fixed and not estimated

= On other distributions ¢ must be estimated through maximum likelihood
log for the Y; vector, by a derivate in order to ¢ and being equal to zero.
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-
i'rﬁ Generalized Linear Models &J

 Type of Model Response Predictors  Model ‘ Estimation ‘ Statistics  EMMeans Save Export

rParameter Estimation
Method: == g [[Covenance e ' || Method - Estimation methods for the
® Model-based estimator
parameters could be selected here

) ) ’ . Robust estimator
Maximum Fisher Scoring Iterations: | ORob

[7] Getinitial values for parameter

Scale Parameter Method: E‘::::i:‘e' estimates from a dataset Sca|e parameter method - Maximum-

Value: Pearson chi-square likelihood jointly estimates the scale
forations e vae | parameter with the model effects. This
eimummevasonz: 100 o option is not valid if the response
T variable has a negative binomial,
Comvergence Crteria Poisson, binomial, or multinomial
At least one convergence criterion must be specified with a minimum greater than 0. diStribUtion'

Minimum: Type:

[¥ Change in parameter estimates |1E-006 }Absolute .4
[] Changg in log-likelihood -
["] Hessian convergence -

Singularity Tolerance: [1E-012 ~ |

[ OK ][Easte ][Beset][Cancel][ Help ]
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Count Data
3 Model Adjustment - Scale Parameter ¢
< Estimated through ‘Deviance’ @,
D AIF-IM
Pp N-p N-p
where
= [¢is the maximum likelihood log of the complete model (with all the
variables)

L™ is the maximum likelihood log of the model under analysis
If Deviance is higher than N-p, the model is ‘over-dispersed’
N observations (e.g., road segments) and p variables

D is the Deviance
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Count Data

3 Model Adjustment - Scale Parameter ¢

< Or through the statistic ‘x? of Pearson’ (¢ v2)

71 Lmi-d)
N-p N-pi5 va(y)

(0;(2 =

where
= ¥2is the statistic of Pearson
= |f ¥ is superior to N-p the model is ‘over-dispersed’
= N observations (e.g., road segments) and p variables
> Both should be close to 1 in order to use Poisson Regression
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GZLLM
Count Data

o ) - - esw|| Analysis type - Type | analysis is generally
appropriate when there are a priori reasons
Type of Model Response Predictors Model Estimation Statistics EMMeans Save Export for Ordering prediCtorS in the mOdel. Type ”l
'“‘°Ze' IE“‘_*’j : ‘ ononce en Lol 6 is more generally applicable. The chi
Analysis Type:  |Type Il v i onfidence Interval Leve . |95 . . .
S Ti!;:I - Squ ared StatIStI cs Coul d be eStIm ated
Chi-square Statisti{ Type 1 ' Confidence Interval Type e|ther US|ng Wald or ||ke||h00d'rat|0
© wald Type | and Type Il © wald . .
© Likelihood ratio © Profile likelihood Confidence intervals - Wald
Loptiksinoosruncion ] intervals are based on the assumption that
Log-Likelihood Function:  |Full - .
o parameters have an asymptotic normal
] distribution; profile likelihood intervals are
Print more accurate but can be computationally
e s s expensive. The tolerance level is the criteria
[V Descriptive statistics [] General estimable functions . . .
[¥ Model information [] Iteration history Used to StOp the iterative algonthm Used to
g Soodness orftsitetes compute the intervals.
|¥/| Model summary staustics . . . .
¥ Parameter estimates Log-likelihood function -This controls the
1 Include exponentia parameter esiimates display format of the log-likelihood function.
_ Covnance man o paramels ssimaes The full function includes an additional term
[ Correlation matrix for parameter estimates ) )
that is constant with respect to the
parameter estimates; it has no effect on
L' [ ok | Paste |[ Reset |[cancel | Help | | o
|| parameter estimation.
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{2 Generalized Linear Models 7 . . B

Type of Model Response Predictors Model Estimation Statistics  EM Means Save Export

GZLLM
Count Data

Model Effects
Analysis Type: |Typelll "~ Confidence Interval Level (%):
Typel
Chi-square StatistifType 11 Confidence Interval Type
© wald Type | and Type Il © wald

© Likelihood ratio © Profile likelihood

Log-Likelihood Function: |Full v

Print
¥ Case processing summary ["] Contrast coefficient (L) matrices

[/ Descriptive statistics [] General estimable functions

[+ Model information ["] Iteration history

¥/ Goodness of fit statistics

[¥| Model summary statistics

¥/ Parameter estimates

| Include exponential parameter estimates
["] Covariance matrix for parameter estimates
|| Correlation matrix for parameter estimates

| OK | Paste Bfet Cancel || Help
I §

[

Lagrange multiplier test - Lagrange multiplier test statistics for
assessing the validity of a scale parameter that is computed using
the deviance or Pearson chi-square. For the negative binomial
distribution, this tests the fixed ancillary parameter.

Phd in Transportation / Transport Demand Modelling

Print
Case processing summary - number and
percentage of cases included and excluded from
the analysis and the Correlated Data Summary
table.
Descriptive statistics - descriptive statistics and
summary information about the dependent
variable, covariates, and factors.
Model information - dataset name, dependent
variable or events and trials variables, offset
variable, scale weight variable, probability
distribution, and link function.
Goodness of fit statistics - Deviance and scaled
deviance, Pearson chi-square and scaled Pearson
chi-square, log-likelihood, Akaike’s information
criterion (AIC), finite sample corrected AIC (AICC),
Bayesian information criterion (BIC), and
consistent AIC (CAIC).
Model summary statistics - likelihood-ratio
statistics for the model fit omnibus test and
statistics for the Type | or Ill contrasts for each
effect.
Parameter estimates - Displays parameter
estimates and corresponding test statistics and
confidence intervals. In addiction it can optionally
display exponentiated parameter estimates.
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[ Model Selection and Validation

- Over-dispersion of data should be the first analysis to be perform in order to
evolve over Poisson distribution

> Maximum Likelihood Ratio and Lagrange Tests
- Statistical significance of the parameters should be verified
> Wald test and p-values
- The predictive capacity should be analysed
> Omnibus test (for improvement of the restricted model); Pseudo R?

- Comparison between models with different specifications or different
distributions of the Yi

> Improvement of the log maximum likelihood together with AIC/AICC/BIC/CAIC

Phd in Transportation / Transport Demand Modelling 16/41
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[ Model Selection and Validation - Maximum likelihood ratio

> This test analyses the equality between the mean and the variance through
Poisson Regression Standard against the alternative of the variance exceeding
the mean (Negative Binomial)

> The corresponding hypothesis test can be formulated as the over dispersion
parameter K (sometimes o in the literature and software):
= HO:K=0
= H1:K=0
> The test is performed by calculating the corresponding X? statistic with
X2 ~-2[L(P)- L(NB)]
where X? follows a 2 distribution

> If p value is below 0.05 than the null hypothesis is rejected and over-dispersion
is than identified (mean = variance), recommending for the negative binomial

> Note: Overdispersed Poisson regression can also be tested where a scale
parameter is admissible

Phd in Transportation / Transport Demand Modelling 17141
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3 Model Selection and Validation - Lagrange tests

> Likewise, Lagrange test on K detects the over-dispersion of data around the
mean
> Again, the hypothesis test can be formulated as:
= HO:K=0
= H1:K>0

> If the y2 statistic is non-significant (i.e., p<0.05) then there is over-dispersion and the
Negative Binomial is more adequate

> Ifitis significant (i.e., p>0.05) then there is no over-dispersion, the mean is equal to
the variance and the Poisson distribution is recommended

> Note: Overdispersed Poisson regression can also be tested where a scale parameter
in admissible

> Itis often the case that over-dispersion is related with excess of zeros:
= The solution is opting for Zero Inflated Poisson
+ Note: not possible without the presence of zero accidents segments

Phd in Transportation / Transport Demand Modelling 18/41
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3 Model Selection and Validation
> Testing for the statistical signifcance of each coeficient [3
> Assimptotical test or Wald Test

WS = ('B f)2 where the hypothesis test is: HO: ’BA j = 0
var(f ;v Ha:,Bj =+ 0

> For low p values (i.e., below 0,05), the null hypothesis is rejected and
the variable is influent in the model

Phd in Transportation / Transport Demand Modelling 19/41
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3 Model Selection and Validation

» Omnibus test calculated with the statistic
X2 = —Z[LL(,BR) - LL(:BU)]

where X? follows a 2 distribution
> If significant (i.e., p-value <0,05), then the estimated model is better than
the null model (i.e., model with constant only)
= LL(B) s the log likelihood of the unrestricted model

= LL(fg) is the log likelihood of the restricted (or null) model (without
independent variables)

= Note: degrees of freedmon are equal to the diference between the number
of parameters in the restricted and unrestricted model

Phd in Transportation / Transport Demand Modelling 20/41
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3 Model Selection and Validation

> With the the values obtained with the previous testes, the LL(B,) and LL(Br)
of the unrestricted and restricted model, respectively, it possible to calculate
the pseudo r-square (rho-square) comparable to the linear model’s r-square

> Pseudo r-square is calculated as follows: 2, LLpy)

- LL(Bg)

> The value of the Pseudo R? can be compared with the linear models R?
through the empirical relation set by Domencich and Macfaden (1975)

pseudo-R2
0 01 02 03 04 05 06 07 08 09 1
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3 Model Selection and Validation

> Other information criteria to compare models:

AIC:  AIC=-2L(p)+2p*

AICC (for finite samples): AICC = —2L(,B) +
N-p*-1

BIC:  BIC=-2L(/3)+ p *xIn(N)

CAIC: CAIC=-2L(f)+ p*x(In(N) +1)

Phd in Transportation / Transport Demand Modelling 22/41



AIC - Akaike Information Criteria

3 ltisis an estimator of the relative quality of statistical models for a given set of
data.

3 Given a collection of models for the data, AIC estimates the quality of each model,
relative to each of the other models. Thus, AIC provides a means for model
selection.

3 AIC estimates the relative information lost by a given model: the less information
a model loses, the higher the quality of that model.

> AIC deals with the trade-off between the goodness of fit of the model and
the simplicity of the model

> Given a set of candidate models for the data, the preferred model is the one
with the minimum AIC value.

> AIC rewards goodness of fit (as assessed by the likelihood function), but it also
includes a penalty that is an increasing function of the number of estimated
parameters. The penalty discourages overfitting, because increasing the
number of parameters in the model almost always improves the goodness of
the fit.

Phd in Transportation / Transport Demand Modelling 23/41




BIC — Bayesian Information Criteria

3 ltis similar to the formula for AIC, but with a different penalty for
the number of parameters.

> With AIC the penalty is 2k, whereas with BIC the penalty is In(n) k.

3 Itis interpreted in the same way, i.e. the minimum BIC value
indicates the preferred model.
3 Comparing AlC with BIC:
> Different opinions on which to chose and when

> Some authors argue that BIC is best at indicating “the true model” (that,
ultimately, never exists) and is better for forecasting models

> AlC would be preferred for explanatory models

Phd in Transportation / Transport Demand Modelling 24/41
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Goodness of Fit®

Omnibus Test®
Value df Value/df Likelihood
Deviance 176.540 79 2.235 Ratio Chi-
Scaled Deviance 176.540 79 Square df Sig.
Pearson Chi-Square 186.482 79 2.361 153.851 4 .000
Scaled Pearson Chi- 186.482 79 a2zz:?((i|?1?;?/c?aré?)bﬁg%iidg[t)Tz
Squar.e . b Median, Drive ' ' '
LogLlsaliinad #HR82A0 a. Compares the fitted model
Akaike's Information 348.519 against the intercept-only
Criterion (AIC) model.
Finite Sample Corrected 349.288
AlIC (AICC)
cenongicy | X2 =-2[LL(Br)— LL(By)]
Consistent AIC (CAIC) 365.673
aigg{“g;’t‘;:ﬁ"')‘f)bfj\gcﬁ'd;:ton . The Omnibus test verifies if the explained
a. Information criteria are in small-is-better form. variance is Signiﬁcantly greater than the
b. The full log likelihood function is displayed and used unexplained variance

in computing information criteria.

Deviance compares the given model with the full model (the full model has one parameter for each
observation, therefore has a perfect fit). The deviance in a perfect fit model is 0.

The deviance could be used to have information about over dispersion or not (testing if HO: K=0).
In the present case, we reject that hypothesis since the deviance value is higher than the X2 gica,
therefore the p-value is 0,00. When the Value/df >1, there is a sign of over dispersion

Phd in Transportation / Transport Demand Modelling 25/41
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Tests of Model Effects

Type llI
. V"Sa(:ﬂaﬁ:' o &g Type Il tests examine the significance of each partial
ource = s . . ' e .
intercany 12756 1 ooo || effect, that is, the significance of an effect with all the
AADTY 47.602 1 000 || other effects in the model. The chi-squared is a
AADT2 54.560 1 000 || likelihood ratio for testing the significance of the effect
mecian 490 ; 005 1| added to the model containing all of the other effects
Drive 20.639 1 .000
Dependent Variable: Accident
Model: (Intercept), AADT1, AADT2, Median, Drive
Parameter Estimates
95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) -.826 2312 -1.279 -.373 12.756 1 .000
AADT1 8.122E-005 | 1.1771E-005 5.814E-005 .000 47.602 1 .000
AADT2 .001 | 7.4400E-005 .000 .001 54.560 1 .000
Median -.060 .0220 -.103 -017 7.450 1 .006
Drive 075 .0165 .043 07 20.639 1 .000
(Scale) e

Dependent Variable: Accident

Model: (Intercept), AADT1, AADT2, Median, Drive

a. Fixed atthe displayed value.

Wald test for statistical inference of B
coefficients for the independent variables

Phd in Transportation / Transport Demand Modelling
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Goodness of fit
Goodness of Fit® COU nt Data

Goodness of Fit®

Value df Value/df Value df Value/df
i A 2.235
Deviance 176.540 79 2.235 Deviance 330,391 83 3,981
ad Deviance 6.5
ScaledDewarice 178.330 13 Scaled Deviance 330,391 83
Pearson Chi-Square 186.482 79 2.361 .
] Pearson Chi-Square 358,073 83 4,314
Scaled Pearson Chi- 186.482 79
Square Scaled Pearson Chi-Square 358,073 83
Log Likelihood® -169.260 Log Likelihood® 246,185
Akaike's Information 348.519 Akaike's Information 494 370
Criterion (AIC) Criterion (AIC) ,
Finite Sample Corrected 349288 Finite Sample Corrected
AIC (AICC) 494,418
: . AIC (AICC)
Bayesian Information 360.673 B inf
Vi : ayesian Information
Criterion (BIC) ves 496,800
Consistent AIC (CAIC) 365.673 Criterion (BIC)
Dependent Variable: Accident Consistent AIC (CAIC) 497,800

Model: (Intercept), AADT1, AADT2, Median, Drive
a. Information criteria are in small-is-better form.

Dependent Variable: Accident

Model: (Intercept)

a. Information criteria are in small-is-better form.

b. The full log likelihood function is displayed and used in
computing information criteria.

h. The full log likelihood function is displayed and used
in computing information criteria.

The Omnibus test could be used to estimate the pseudo r-square:

LL(B) _ | =169,260

2 — 1 - %2 _
LL(B,) —246,185

> Itis possible to estimate the LL(3,-) of the restricted model (with only the constant), by
running a new model retrieveing the covariates and calculating the intercept only.

= 0,312

27141
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P
Over dispersed Poisson Count Data

Q Since there is an indication for overdispersion, two other models must be
tested

= Overdispersed Poisson regression (where a scale parameter in
admissible)

= Negative Binomial

Phd in Transportation / Transport Demand Modelling 28/41
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Over dispersed Poisson

\. Generalized Linear Models

Type of Model Response  Predictors Model Estimation  Stetistics EMMeans Save  Export

Parameter Estinaton The main difference with the Poisson Regression
Covariance Matrix . . .
Methact Hyoria B | © v ase esimetor Model is that the scale parameter is estimated and
Maximum Fisher Scoring fterations: OROQU& CEIR= nOt fixed-
Scale Parameter Method: W O %ztn:r:ti:;t\:sll.;s for parameter estimates The Pearson Chi-Squared methOd is used to
P — estimate the Scale Parameter
Fixed value
lterations

Maximum terations:
Maximum Step-Halving:

Convergence Criteria

At least one convergence criterion must be specified with a minimum greater than 0.

Minimum: Type:
\z Change in parameter estimates |1E-006 I ‘Absolute v
["] change in log-likelihood -
[ Hessian convergence -

Singularity Tolerance: W‘

[ OK ][ Paste ][geset ][Cancel][ Help ]

The scale parameter has a different nature then vector B of coefficients
B has a direct influence on the expected value of variable Yi, and the parameter reveals the data dispersion

Phd in Transportation / Transport Demand Modelling 29/41
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Over dispersed Poisson
P Count Data

Parameter Estimates

Parameter B Std. Error 95% Wald Confidence Interval Hypothesis Test
Lower Upper Wald Chi- df Sig.

Square il ).
(Intercept) -,826 ,3553 -1,522 ,130 5,404 1 ,020 FU P
AADT1 8,122E-005 1,8086E-005 4,577E-005 ,000 20,166 1 ,000
AADT2 ,001 ,0001 ,000 ,001 23,114 1 ,000
Median -,060 ,0338 -,126 ,006 3,156 1 ,076
Drive ,075 ,0253 ,025 124 8,743 1 ,003
(Scale) 2,361°

Dependent Variable: Accident
Model: (Intercept), AADT1, AADT2, Median, Drive

a. Computed based on the Pearson chi-square.

> The coefficient estimates are similar to the ones obtained with the Poisson model.

> Still, the standard errors are bigger, because they are adjusted by the scale
parameter
> When there is over dispersion, the variance of the parameters is also larger
> As such, the standard errors of the parameters become inflated

Phd in Transportation / Transport Demand Modelling 30/41
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Negative Binomial

‘.ﬁ Generalized Linear Models

‘\ Re;ponge H Prqdictoys | Mpdgl | Es@imatiqn | Slgtistic;s J‘ EM Mealjs | Save | Exponjt |

Choose one of the model types listed helow or specify a custom combination of distribution and link function.

&’ Scale Response d Ordinal Response . .
Linear © Ordinal logistic TO estimate the Negatlve
Gamma with log link Ordinal probit Binomial, and estimate the
JHT Counts O® Binary Response or Events/Trials Data scale parameter USing
Poigson loglinear © Binary logistic maXi mum I ikel i hood
Negative binomial with log link Binary probit
w Misture Interval censored survival

Tweedie with log link
© Tweedie with identity link

?\{ Custom

© custom

Distribution: \Negalive binomial Link function:  |Log -

rParameter

Specify value

© Estimate value

I OK l Paste || Reset || Cancel || Help
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Negative Binomial

\. Generalized Linear, Models

EMMeans  Save Export

l Type of Model l Response  Predictors  Model l Estimation L’ Statistics

Mode! Effects A

Analysis Type: |Type 1l - | Confidence Interval Level (%):
rChi-square Statistics rConfidence Interval Type . .
o © waid | Th? Lagrange Multiplier test
| O Ligthood st | || et 1| This test could only be
Log-Likelihood Function: ~ [Ful | - . performed .If the scale
.| parameter is fixed

Print
[E Case processing summary D Contrast coefficient (L) matrices I.
@ Descriptive statistics D General estimable functions ':
[/ Model information [ teration history :
[/ Goodness of fit statistics it I
[ Model summary statistics [ Lagrange muttiplier test of scale paramete

or negative binomial ancillary parameter i

[ Parameter estimates
D Incluce exponential parameter estimates !
D Covariance matrix for parameter estimates '

D Correlation matrix for parameter estimates X

[ OK ]Lgaste ]Lﬂeset ][Cancel][ Help ]
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Negative Binomial

Goodness of Fit®

Value df Value/df
Deviance 88,200 78 1,131
Scaled Deviance 88,200 78 Omnibus Test®
Pearson Chi-Square 88,922 78 1,140 Likelihood
Scaled Pearson Chi- 88,922 78 Ratio Chi-
Square Square df Sig.
Log Likelihood® -153,284 48,526 4 ,000
Akaike's Information 318.567 Dependent Variable: Accident

Model: (Intercept), AADT1, AADT2,
Median, Drive

a. Compares the fitted model

Criterion (AIC)
Finite Sample Corrected 319,658

AlC (AICC) : :
against the intercept-only
Bayesian Information 333,152 model.
Criterion (BIC)
Consistent AIC (CAIC) 339152

Dependent Variahle: Accident
Model: (Intercept), AADT1, AADT2, Median, Drive

a. Information criteria are in small-is-hetter form.

h. The full log likelihood function is displayed and used
in computing information criteria.
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Negative Binomial

Tests of Model Effects
Type
Wald Chi-
Source Square df Sig.
(Intercept) 7,621 1 006
AADT1 21,910 1 ,000
AADT2 15,723 1 ,000
Median 4,480 1 034
Drive 4 767 1 029

Dependent Variahle: Accident
Model: (Intercept), AADT1, AADT2, Median, Drive

Parameter Estimates
95% Wald Confidence Interval Hypothesis Test
Wald Chi-
Parameter B Std. Error Lower Upper Square df Sig.
(Intercept) -,931 3372 -1,592 -,270 7,621 1 ,006
AADT1 8,962E-005 | 1,9146E-005 5,209E-005 ,000 21,910 1 ,000
AADT2 ,001 ,0002 ,000 ,001 16,723 1 ,000
Median -,067 0317 -128 -,005 4,480 1 034
Drive ,063 ,0290 ,006 120 4767 1 ,029
(Scale) 1@
(Negative hinomial) 516 1718 ,269 ,991

Dependent Variable: Accident
Model: (Intercept), AADT1, AADT2, Median, Drive

a. Fixed atthe displayed value.
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Negative Binomial

Lagrange Multiplier Test

Chi-Square

df

Sig.

Ancillary Parameter®

4,064

1

044

a. Tests the null hypothesis that the negative binomial

distribution ancillary parameter equals 1

GZLLM
Count Data

3 The negative binomial model is the same as the Poisson model when the binomial

model's ancillary (dispersion) parameter, o, equals 0.
The Lagrange multiplier test is a test of the null hypothesis that o = 1.

A significant Lagrange test coefficient indicates that o can be assumed to be
different from 0, and hence there is over-dispersion in the data.

Q

> A negative binomial model would be preferred over a Poisson model.

3 Yet, if LL(p) is substantially smaller than LL(NB), then, the use of a Negative
Binomial might not improve the model results (even with over dispersion).
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Poisson example — Accidents at intersections
3 Washington, Simon P., Karlaftis, Mathew G. e Mannering (2003) Statistical

GZLM
Count Data
Example 1

and econometric Methods for Transportation Data Analysis, CRC

TABLE 10.1
Summary of Variables in California and Michigan Accident Data
Maximum/ Standard
Variable Minimum Mean of Deviation of
Abbreviation  Variable Description Values Observations Observations
STATE Indicator variable for 1/0 0.29 0.45
state: ¢ = California;
1 = Michigan
ACCIDENT Count of injury 13/0 2.62 3.36
accidents over
observation period
AADTI Average annual daily =~ 33038/2367 12870 6798
traffic on major road
AADT2 Average annual daily 3001/15 596 679
traffic on minor road
MEDIAN Median width on 36/0 3.74 6.06
major road in feet
DRIVE Number of 15/0 3.10 3.90

driveways within
250 ft of intersection
center
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GZLM
Count Data
Example 1

3 Poisson example — Accidents at intersections

3 Washington, Simon P., Karlaftis, Mathew G. e Mannering (2003) Statistical and
econometric Methods for Transportation Data Analysis, CRC

TABLE 10.2

Poisson Regression of Injury Accident Data

Estimated
Independent Variabie Parameter t Statistic

Constant —0.826 —-3.57
Average annual daily traffic on major road 0.0000812 6.90
Average annual daily traffic on minor road 0.000550 7.38
Median width in feet — 0.0600 -273
Number of driveways within 250 ft of intersection 0.0748 4.54
Number of observations 84

Restricted log likelihood {constant term only) —246.18

Log likelihood at convergence -169.25

Chi-squared {and associated p-value) 153.85

(«0.0000001)
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GZLLM
Count Data

3 Negative Binomial — Accidents at intersections Example 1

3 Washington, Simon P., Karlaftis, Mathew G. e Mannering (2003) Statistical
and econometric Methods for Transportation Data Analysis, CRC

TABLE 10.4
Negative Binomial Regression of Injury Accident Data
Estimated
Independent Variable Parameter t Statistic
Constant -0.931 -2.37
Average annual daily traffic on major road 0.0000900 3.47
Average annual daily traffic on minor road 0.000610 3.09
Median width in feet ~ 0.0670 ~-1.99
Number of drivewavs within 250 ft of intersection 0.0632 24
Overdispersion parameier, . 0.516 3.09
Number of observations 84
Restricted log likelihood (constant term only) -169.25
Log likelihood at convergence -153.28
Chi-squared {and associated p-value) 31.95
(<0.0000001)
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3 Overdispersed Poisson — Pedestrian countings Example 2

3 Barros, A.P., Martinez, L.M., Viegas, J.M., Silva, P.C., Holanda, F. (2013)
Analise da mobilidade de pedestres sob o prisma de trés configuracoes
urbanas distintas — Estudo de caso em Lisboa, ANPET.

Variaveis Coef. Coef. Pad. Erro pad. Wald Chi? Sig.

(Termo independente) 3.926 3.926 0.398 97.196 0.000
indice de integragdo (HH) 0.685 0.394 0.232 8.748 0.003
Conectividade -0.242 -1.352 0.060 16.034 0.000
Compacidade viaria -0.071 -0.476 0.033 4.637 0.031
Calcgadas estreitas -0.360 -0.051 0.197 3.340 0.068
Presenca de escadas -0.771 -0.019 0.289 7.143 0.008
Presenca de arvores 0.285 0.112 0.122 5.464 0.019
Declive elevado -0.566 -0.043 0.276 4.192 0.041
Area de Comércio 0.179 0.177 0.041 18.970 0.000
Area de Educacio 0.209 0.043 0.084 6.131 0.013
Alimentacdo e lazer 0.116 0.046 0.101 1.311 0.252
Entropia 0.387 0.279 0.162 5.688 0.017
Numero de Portas 0.035 0.384 0.006 37.086 0.000
Proximidade 6nibus 0.306 0.052 0.144 4.494 0.034
Proximidade metrd 1.534 34.279 0.375 16.756 0.000
Linhas de 6nibus 0.200 0.108 0.050 16.349 0.000
(Parametro de sobredispersdo) 48.140
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3 Overdispersed Poisson — Pedestrian countings Example 2

3 Barros, A.P., Martinez, L.M., Viegas, J.M., Silva, P.C., Holanda, F. (2013)
Analise da mobilidade de pedestres sob o prisma de trés configuragbes
urbanas distintas — Estudo de caso em Lisboa, ANPET.

225

225

Pedes/hora [Hora de ponta

0,%%24 I  Contagens Pedes/hora [Hora de ponta]
Kilometers I Previszo
0000 0075 0150 0.225 0,300 B contsgens
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3 Objective

> To evaluate the importance/impact of the International friction index -
IF] of the pavements on the level of accidents

3 You should use the same methodology:
- Compare 3 Generalized Linear Models (SPSS), for which you should
perform, and explain in your report, the following major steps:
1. Model Formulation
2. Model Adjustment
3. Model Validation
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