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GZLM
Count Data

❒ Analysis steps

v Model Formulation

v Model Adjusment

v Model Selection and Validation
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GZLM
Count Data 

❒ Model Formulation

v Random Component - Dependent Variable (distributed as a 
Poisson or Negative Binomial)

v Systematic Component - Independent variables (explaining the 
dependent variable)

v Link or connection function (logarithmic)
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GZLM
Count Data 

The type of model could be 
selected  among a series of 
model types

The custom tool allows the 
selection of specific models 
(specific distribution) together 
with a specific link function

Poisson loglinear-Specifies Poisson as 
the distribution and Log as the link 
function.
Negative binomial with log link. 
Specifies Negative binomial (with a value 
of 1 for the ancillary parameter) as the 
distribution and Log as the link function. 
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GZLM
Count Data 

The  dependent variable is 
defined here
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GZLM
Count Data 

Factors - Factors are categorical 
predictors; they can be numeric or 
string.
Covariates - Covariates are scale 
predictors; they must be numeric
Offset - The offset term is a 
“structural” predictor. Its  coefficient 
is not estimated by the model but is 
assumed to have the value 1; thus, 
the values of the offset are simply 
added to the linear predictor of the 
target. This is especially useful in 
Poisson regression models, where 
each case may have different levels 
of exposure to the event of interest. 

When modeling accident rates for individual drivers, there is an important difference between a driver who has been at fault in one accident in three 
years of experience and a driver who has been at fault in one accident in 25 years! The number of accidents can be modeled as a Poisson or negative 
binomial response with a log link if the natural log of the experience of the driver is included as an offset term.
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GZLM
Count Data

Model Effects - The default model 
is intercept-only, the other model 
effects must be explicitly specified

Main effects - Creates a main-
effects term for each variable 
selected.
Interaction - Creates the highest-
level interaction term for all 
selected variables.

Selecting a model with 
an intercept term



Phd in Transportation / Transport Demand Modelling 8/41

GZLM
Count Data

❒ Model Adjustment

v Maximum likelihood method (to estimate variables’ coefficients 
and dispersion parameter φ)
§ Interactive computational estimation method:

1. For the exponential family

1. The Log of Maximum likelihood estimation is given by
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GZLM
Count Data

❒ Model Adjustment – Variable Coefficients
v Maximum likelihood method maximizes the likelihood function Yi in 

relation to βj, and therefore it allows to determine the absolute 
maximum (since the logarithmic function is monotonic and growing) . 
We must then solve the system of equations S(θi)=0, for coefficient.

§ Since it is a system of non linear equations it must be estimated 
iteratively. The methods are:

w Newton-Raphson
w Fisher-Scoring
w Hybrid (Fisher on a set of initial iterations and than changed to 

Newton)
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GZLM
Count Data

❒ Model Adjustment – Scale Parameter ϕ

v The scale parameter φ has a different nature then vector β

§ β has a direct influence on the li – expected value of variable Yi – and  
the parameter φ reveals the data dispersion of the data

§ On some exponential families such as Poisson, the parameter φ is 
fixed and not estimated

§ On other distributions φ must be estimated through maximum likelihood 
log for the Yi vector, by a derivate in order to φ and being equal to zero.
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GZLM
Count Data

Method - Estimation methods for the 
parameters could be selected here

Scale parameter method - Maximum-
likelihood jointly estimates the scale 
parameter with the model effects. This 
option is not valid if the response 
variable has a negative binomial, 
Poisson, binomial, or multinomial 
distribution. 
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GZLM
Count Data

❒ Model Adjustment  - Scale Parameter ϕ

v Estimated through ‘Deviance’ φD

where

§ Lc is the maximum likelihood log of the complete model (with all the 
variables)

§ Lm is the maximum likelihood log of the model under analysis
§ If Deviance is higher than N-p, the model is ‘over-dispersed’
§ N observations (e.g., road segments) and p variables
§ D is the Deviance
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GZLM
Count Data

❒ Model Adjustment - Scale Parameter ϕ

v Or through the statistic ‘χ2 of Pearson’ (φ χ2 )

where
§ χ2 is the statistic of Pearson
§ If χ2 is superior to N-p the model is ‘over-dispersed’
§ N observations (e.g., road segments) and p variables
Ø Both should be close to 1 in order to use Poisson Regression
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GZLM
Count Data

Analysis type - Type I analysis is generally 
appropriate when there are a priori reasons 
for ordering predictors in the model. Type III 
is more generally applicable.  The chi 
squared  statistics could be estimated 
either using Wald or likelihood-ratio.
Confidence intervals - Wald
intervals are based on the assumption that 
parameters have an asymptotic normal 
distribution; profile likelihood intervals are 
more accurate but can be computationally 
expensive. The tolerance level is the criteria 
used to stop the iterative algorithm used to 
compute the intervals.
Log-likelihood function -This controls the 
display format of the log-likelihood function. 
The full function includes an additional term 
that is constant with respect to the 
parameter estimates; it has no effect on 
parameter estimation.
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GZLM
Count Data

Print 
Case processing summary - number and 
percentage of cases included and excluded from 
the analysis and the Correlated Data Summary 
table.
Descriptive statistics - descriptive statistics and 
summary information about the dependent 
variable, covariates, and factors.
Model information - dataset name, dependent 
variable or events and trials variables, offset 
variable, scale weight  variable, probability 
distribution, and link function.
Goodness of fit statistics - Deviance and scaled 
deviance, Pearson chi-square and scaled Pearson 
chi-square, log-likelihood, Akaike’s information 
criterion (AIC), finite sample corrected AIC (AICC), 
Bayesian information criterion (BIC), and 
consistent AIC (CAIC).
Model summary statistics - likelihood-ratio 
statistics for the model fit omnibus test and 
statistics for the Type I or III contrasts for each 
effect.
Parameter estimates - Displays parameter 
estimates and corresponding test statistics and 
confidence intervals. In addiction it can optionally 
display exponentiated parameter estimates.

Lagrange multiplier test - Lagrange multiplier test statistics for 
assessing the validity of a scale parameter that is computed using 
the deviance or Pearson chi-square. For the negative binomial 
distribution, this tests the fixed ancillary parameter.
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GZLM
Count Data

❒ Model Selection and Validation
• Over-dispersion of data should be the first analysis to be perform in order to 

evolve over Poisson distribution
Ø Maximum Likelihood Ratio and Lagrange Tests

• Statistical significance of the parameters should be verified
Ø Wald test and p-values

• The predictive capacity should be analysed
Ø Omnibus test (for improvement of the restricted model); Pseudo R2

• Comparison between models with different specifications or different
distributions of the Yi
Ø Improvement of the log maximum likelihood together with AIC/AICC/BIC/CAIC
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GZLM
Count Data

❒ Model Selection and Validation - Maximum likelihood ratio
Ø This test analyses the equality between the mean and the variance through 

Poisson Regression Standard against the alternative of the variance exceeding 
the mean (Negative Binomial)

Ø The corresponding hypothesis test can be formulated as the over dispersion 
parameter K (sometimes a in the literature and software):
§ H0:K=0
§ H1:K≥0

Ø The test is performed by calculating the corresponding X2 statistic with 

where X2 follows a c2 distribution
Ø If p value is below 0.05 than the null hypothesis is rejected and over-dispersion 

is than identified (mean ≠ variance), recommending for the negative binomial
Ø Note: Overdispersed Poisson regression can also be tested where a scale

parameter is admissible
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GZLM
Count Data

❒ Model Selection and Validation - Lagrange tests
Ø Likewise, Lagrange test on K detects the over-dispersion of data around the

mean
Ø Again, the hypothesis test can be formulated as:

§ H0:K=0
§ H1:K≥ 0

Ø If the c2 statistic is non-significant (i.e., p<0.05) then there is over-dispersion and the
Negative Binomial is more adequate

Ø If it is significant (i.e., p>0.05) then there is no over-dispersion, the mean is equal to 
the variance and the Poisson distribution is recommended

Ø Note: Overdispersed Poisson regression can also be tested where a scale parameter
in admissible

Ø It is often the case that over-dispersion is related with excess of zeros:
§ The solution is opting for Zero Inflated Poisson

w Note: not possible without the presence of zero accidents segments
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GZLM
Count Data

❒ Model Selection and Validation
Ø Testing for the statistical signifcance of each coeficient β
Ø Assimptotical test or Wald Test

Ø For low p values (i.e., below 0,05), the null hypothesis is rejected and
the variable is influent in the model
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GZLM
Count Data

❒ Model Selection and Validation
Ø Omnibus test calculated with the statistic

where X2 follows a c2 distribution

Ø If significant (i.e., p-value <0,05), then the estimated model is better than 
the null model (i.e., model with constant only)
§ LL(bU) is the log likelihood of the unrestricted model
§ LL(bR) is the log likelihood of the restricted (or null) model (without 

independent variables)
§ Note: degrees of freedmon are equal to the diference between the number 

of parameters in the restricted and unrestricted model
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GZLM
Count Data

❒ Model Selection and Validation
Ø With the the values obtained with the previous testes, the LL(βU) and LL(βR)

of the unrestricted and restricted model, respectively, it possible to calculate 
the pseudo r-square (rho-square) comparable to the linear model’s r-square

Ø Pseudo r-square is calculated as follows: 

Ø The value of the Pseudo R2 can be compared with the linear models R2

through the empirical relation set by Domencich and Macfaden (1975)
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GZLM
Count Data

❒ Model Selection and Validation

Ø Other information criteria to compare models:

§ AIC:

§ AICC (for finite samples): 

§ BIC:

§ CAIC:
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AIC – Akaike Information Criteria
❒ It is is an estimator of the relative quality of statistical models for a given set of 

data.
❒ Given a collection of models for the data, AIC estimates the quality of each model, 

relative to each of the other models. Thus, AIC provides a means for model 
selection.

❒ AIC estimates the relative information lost by a given model: the less information 
a model loses, the higher the quality of that model.
Ø AIC deals with the trade-off between the goodness of fit of the model and 

the simplicity of the model
Ø Given a set of candidate models for the data, the preferred model is the one 

with the minimum AIC value.
Ø AIC rewards goodness of fit (as assessed by the likelihood function), but it also 

includes a penalty that is an increasing function of the number of estimated 
parameters. The penalty discourages overfitting, because increasing the 
number of parameters in the model almost always improves the goodness of 
the fit.
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BIC – Bayesian Information Criteria

❒ It is similar to the formula for AIC, but with a different penalty for 
the number of parameters. 
Ø With AIC the penalty is 2k, whereas with BIC the penalty is ln(n) k.

❒ It is interpreted in the same way, i.e. the minimum BIC value 
indicates the preferred model.

❒ Comparing AIC with BIC:
Ø Different opinions on which to chose and when
Ø Some authors argue that BIC is best at indicating “the true model” (that, 

ultimately, never exists) and is better for forecasting models
Ø AIC would be preferred for explanatory models
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The Omnibus test verifies if the explained 
variance is significantly greater than the 
unexplained variance

Deviance compares the given model with the full model (the full model has one parameter for each 
observation, therefore has a perfect fit). The deviance in a perfect fit model is 0.
The deviance could be used to have information about over dispersion or not (testing if H0: K=0).  
In the present case, we reject that hypothesis since the deviance value is higher than the X2 critical, 
therefore the p-value is 0,00. When the Value/df >1, there is a sign of over dispersion
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GZLM
Count Data
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Type III tests examine the significance of each partial 
effect, that is, the significance of an effect with all the 
other effects in the model. The chi-squared is a 
likelihood ratio for testing the significance of the effect 
added to the model containing all of the other effects

Wald test for statistical inference of β 
coefficients for the independent variables

GZLM
Count Data
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The Omnibus test could be used to estimate the pseudo r-square:

Ø It is possible to estimate the !! "# of the restricted model (with only the constant), by
running a new model retrieveing the covariates and calculating the intercept only.

Goodness of Fita 

 Value df Value/df 

Deviance 330,391 83 3,981 

Scaled Deviance 330,391 83  
Pearson Chi-Square 358,073 83 4,314 

Scaled Pearson Chi-Square 358,073 83  
Log Likelihoodb -246,185   
Akaike's Information 

Criterion (AIC) 
494,370 

  

Finite Sample Corrected 

AIC (AICC) 
494,418 

  

Bayesian Information 

Criterion (BIC) 
496,800 

  

Consistent AIC (CAIC) 497,800   
Dependent Variable: Accident 
Model: (Intercept) 
a. Information criteria are in small-is-better form. 
b. The full log likelihood function is displayed and used in 
computing information criteria. 

 

Goodness of fit GZLM
Count Data

$% = 1 − !! ")!! "#
= 1 −−169,260−246,185 = 0,312
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Over dispersed Poisson GZLM
Count Data

q Since there is an indication for overdispersion, two other models must be 
tested

§ Overdispersed Poisson regression (where a scale parameter in 
admissible) 

§ Negative Binomial
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Over dispersed Poisson GZLM
Count Data

The main difference with the Poisson Regression 
Model is that  the scale parameter  is estimated  and 
not fixed.
The Pearson Chi-squared method is used to 
estimate the Scale Parameter

The scale parameter has a different nature then vector β of coefficients
β has a direct influence on the expected value of variable Yi, and the parameter reveals the data dispersion
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Over dispersed Poisson GZLM
Count Data

Ø The coefficient estimates are similar to the ones obtained with the Poisson model. 
Ø Still, the standard errors are bigger, because they are adjusted by the scale 

parameter
Ø When there is over dispersion, the variance of the parameters is also larger
Ø As such, the standard errors of the parameters become inflated

Parameter Estimates 

Parameter B Std. Error 95% Wald Confidence Interval Hypothesis Test 

Lower Upper Wald Chi-

Square 

df Sig. 

(Intercept) -,826 ,3553 -1,522 ,130 5,404 1 ,020 

AADT1 8,122E-005 1,8086E-005 4,577E-005 ,000 20,166 1 ,000 

AADT2 ,001 ,0001 ,000 ,001 23,114 1 ,000 

Median -,060 ,0338 -,126 ,006 3,156 1 ,076 

Drive ,075 ,0253 ,025 ,124 8,743 1 ,003 

(Scale) 2,361a       

Dependent Variable: Accident 

Model: (Intercept), AADT1, AADT2, Median, Drive 

a. Computed based on the Pearson chi-square. 
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Negative Binomial GZLM
Count Data

To estimate the Negative 
Binomial, and estimate the 
scale parameter using 
maximum likelihood
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Negative Binomial GZLM
Count Data

The Lagrange  Multiplier test
This test could only be
performed if the scale
parameter is fixed
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Negative Binomial GZLM
Count Data
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Negative Binomial GZLM
Count Data
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Negative Binomial GZLM
Count Data

❒ The negative binomial model is the same as the Poisson model when the binomial 
model's ancillary (dispersion) parameter, a, equals 0.

❒ The Lagrange multiplier test is a test of the null hypothesis that a = 1. 
❒ A significant Lagrange test coefficient indicates that a can be assumed to be 

different from 0, and hence there is over-dispersion in the data.
Ø A negative binomial model would be preferred over a Poisson model.

❒ Yet, if LL(p) is substantially smaller than LL(NB), then, the use of a Negative 
Binomial might not improve the model results (even with over dispersion).
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GZLM
Count Data

❒ Poisson example – Accidents at intersections
❒ Washington, Simon P., Karlaftis, Mathew G. e Mannering (2003) Statistical 

and econometric Methods for Transportation Data Analysis, CRC 

Example 1
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❒ Poisson example – Accidents at intersections
❒ Washington, Simon P., Karlaftis, Mathew G. e Mannering (2003) Statistical and 

econometric Methods for Transportation Data Analysis, CRC 

GZLM
Count Data

Example 1
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❒ Negative Binomial – Accidents at intersections
❒ Washington, Simon P., Karlaftis, Mathew G. e Mannering (2003) Statistical 

and econometric Methods for Transportation Data Analysis, CRC 

GZLM
Count Data

Example 1
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❒ Overdispersed Poisson – Pedestrian countings
❒ Barros, A.P., Martinez, L.M., Viegas, J.M., Silva, P.C., Holanda, F. (2013) 

Análise da mobilidade de pedestres sob o prisma de três configurações
urbanas distintas – Estudo de caso em Lisboa, ANPET.

GZLM
Count Data

Example 2

Variáveis Coef. Coef. Pad. Erro pad. Wald Chi2 Sig.
(Termo independente) 3.926 3.926 0.398 97.196 0.000
Índice de integração (HH) 0.685 0.394 0.232 8.748 0.003
Conectividade -0.242 -1.352 0.060 16.034 0.000
Compacidade viária -0.071 -0.476 0.033 4.637 0.031
Calçadas estreitas -0.360 -0.051 0.197 3.340 0.068
Presença de escadas -0.771 -0.019 0.289 7.143 0.008
Presença de árvores 0.285 0.112 0.122 5.464 0.019
Declive elevado -0.566 -0.043 0.276 4.192 0.041
Área de Comércio 0.179 0.177 0.041 18.970 0.000
Área de Educação 0.209 0.043 0.084 6.131 0.013
Alimentação e lazer 0.116 0.046 0.101 1.311 0.252
Entropia 0.387 0.279 0.162 5.688 0.017
Número de Portas 0.035 0.384 0.006 37.086 0.000
Proximidade ônibus 0.306 0.052 0.144 4.494 0.034
Proximidade metrô 1.534 34.279 0.375 16.756 0.000
Linhas de ônibus 0.200 0.108 0.050 16.349 0.000
(Parâmetro de sobredispersão) 48.140
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❒ Overdispersed Poisson – Pedestrian countings
❒ Barros, A.P., Martinez, L.M., Viegas, J.M., Silva, P.C., Holanda, F. (2013) 

Análise da mobilidade de pedestres sob o prisma de três configurações
urbanas distintas – Estudo de caso em Lisboa, ANPET.

GZLM
Count Data

Example 2
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Your Home assignment

❒ Objective
Ø To evaluate the importance/impact of the International friction index –

IFI of the pavements on the level of accidents

❒ You should use the same methodology:
• Compare 3 Generalized Linear Models (SPSS), for which you should

perform, and explain in your report, the following major steps:
1. Model Formulation
2. Model Adjustment
3. Model Validation
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