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Introduction

❒ It is one of the most widely applied econometric techniques:
Ø Suitable for modeling a wide variety of relationships between variables. 
Ø In many practical applications the assumptions of linear regression are often 

suitably satisfied. 
Ø Its outputs are relatively easy to interpret and communicate.
Ø The estimation of regression models is relatively easy, the routines for its 

estimation are available in a vast amount of software packages.

❒ The main problem is that  linear regression can also be overused or 
misused, when its assumptions are not strictly met, and the correct 
alternatives are not known, understood, or applied. 
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What is  Multiple Regression Analysis?

❒ Statistical technique used to analyze the relationship between a 
single dependent variable (aka criterion/regressand) and several 
independent variables (aka predictors/regressors)

❒ Objective of MRA:
Ø Known values of the IV are used to predict the values of the DV selected by the 

analyst
❒ Each IV is weighted by the regression procedure to ensure maximal 

prediction from the overall set of IV 
Ø Weights denote the relative contribution of each IV to the overall prediction and 

helps in the interpretation as to the influence of each IV in making the 
prediction

Ø Still, correlation between IV’s can complicate the interpretative process
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How does the LR model look like?
Formal representation

❒ Linear

❒ Multiple linear

❒ Nonlinear
€ 

yn =α + βxn + εn , n =1,...,N observations

y =α + β ln x + ε

y =α + βx 2 + ε

€ 

y =α +
1

x + β
+ ε

€ 

y =α + βn xn
n=1

N

∑ + ε, n =1,...,Nvariables
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How does the LR model look like?
Formal representation (cont’d)?

❒ What about…

€ 

y = e
α
x
β
e
ε

y =
1

1+ e
α+βx+ε

€ 

ln y =α + β ln x + ε

1

y
−1= e

α+βx+ε ⇔ ln
1

y
−1

 

 
 

 

 
 =α + βx + ε

❒ Linear transformation of the nonlinear expressions is one common 
solution to use the linear regression procedures
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Interpreting the regression model

❒ Regression coefficients (Β)
Ø Estimated change in the dependent variable for a unit change in the 

independent  variable.
Ø Its value indicates the extent to which the IV is associated with the DV.

❒ Intercept
Ø The intercept has explanatory value only within the range of values for the IV. 
Ø The intercept has interpretative value only if zero is conceptually valid value 

for the IV.
Ø If the IV cannot have a true value of zero, the intercept only aids in the 

improvement of the prediction process and has no explanatory value.
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Example

❒ Objective: Make you familiar with linear regression models
❒ Your task: Estimate a linear regression model that predicts trips per 

occupied dwelling unit.
❒ Data [file in TDM’s website: 

TDM_LR_Chicago_Example.xls]:
Ø Trip production of 57 Traffic Assignment Zones of Chicago in 1960’s 

Ø TODU: Motorized Trips (private car or Public Transportation) per occupied 
dwelling unit

Ø ACO: Average car ownership (cars per dwelling)
Ø AHS: Average household size 

Ø Three zonal social indices: SRI: Social Rank Index; UI: Urbanization; Index; SI: 
Segregation Index
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Example - Social Rank Index

❒ This index contains 2 elements: 
1. the proportion of blue-collar workers, defined as the ratio of craftsmen, 

operatives, and laborers to all employees; and 
2. educational level as measured by the proportion of persons 25 years and 

older completing eight or fewer years of schooling.
❒ The social rank index is inversely related to both ratios

Ø it attains a maximum value where no residents fall into the blue-collar jobs 
category, and 

Ø all adult residents have more than eight years of education 
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Example (cont’d) - Urbanization Index 

❒ This index contains 3 elements: 
1. fertility rate, defined as the ratio of children under 5 years of age to the 

female population of childbearing age
2. female labor force participation rate, meaning the % of women who are in the 

labor force
3. % of single family units to total dwelling units

❒ The degree of urbanization index would be increased by
a) lower fertility rate,
b) higher female labor force participation rate, and 
c) higher proportion of single dwelling units.

❒ This index measures in a rather negative way the degree of attachment to the 
home.
Ø High values for this index imply less attachment to the home because of 

fewer children, higher likelihood of women being employed, and less 
permanency of dwelling unit type in terms of average tenure. 
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Example (cont’d) - Segregation Index

❒ This index is defined as the proportion of an area of residents who 
belong to certain minority groups, such as non-whites, foreign-born 
Eastern Europeans, etc.

❒ It measures the extent to which these minority groups live in relative 
isolation.
Ø High values for this index imply that those communities are less 

prone to leaving their living areas and as such to having lower 
levels of mobility
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Example – Preliminary analysis
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Example (cont’d) – Preliminary analysis

❒ The pair wise comparison of the IV with the DV (TODU) helps in 
determining causal relationships

❒ In this case, all IV have logical and quite clear relationships with the 
TODU, except for the SRI that is more “fuzzy”
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Example - Results

❒ Regression model including full set of IV

€ 

TODU = 2.817
1.276( )

+ 3.647
3.813( )

× ACO+ 0.324
0.785( )

× AHS

+ 0.005
0.574( )

× SI + 0.008
0.924( )

× SRI − 0.036
−2.720( )

×UI + ε
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Example – Output from SPSS
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Example – Output from SPSS
Proportion of variability in a 
data set that is accounted 
for by the statistical model.

Indicates if there is any 
(F>2.39 @ α=5%) statistical 
relationship (based on the 
variation of the means) 
between IV and DV 

Regression of std variables:
- stdIV=(IV-mean)/STDEV
- stdDV=(DV-mean)/STDEV

Statistical significance of DV

Are signals logical?
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Ordinary Least Squares (OLS) regression 
models: Assumptions

1. The dependent variable is continuous (measured in an interval or 
ratio scale).
Ø Variables measured in ordinal or nominal scales should not be modeled using 

linear regression.
§ Ordinal Scales – Ordinal Logit or Ordinal Probit models;
§ Count variables (nonnegative integers) – Poisson or negative binomial regression
§ Nominal Scales  - Multinomial Logit

2. Linear-in-parameters relationship between DV and IVs
Ø Simple linear regression:
Ø In most applications, the  DV is a function of many IVs. Matrix notation and 

calculation is more appropriate

y
n
=α +βx

n
+ε
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...
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Type  I and type II errors, in statistics (II)

❒ Type I error
Ø You should accept the null hypothesis when it erroneously appears to be 

FalseóFalse negative
Ø A type I error leads one to conclude that something or a relationship does 

not exists when in reality it does => UNDER-ESTIMATION of the impact 
of the IV on the DV.

Ø Example:
§ The capacity of a link is not sufficient to cope with traffic loads when in reality 

it does
§ The impact of the IV on the DV is not significant when in reality it is
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Type  I and type II errors, in statistics (I)

❒ Type II error
Ø You should reject the null hypothesis when it erroneously appears to be 

trueó False positive
Ø A type II error leads one to conclude that something or a relationship 

exists when in reality it doesn't => OVER-ESTIMATION of the impact of 
the IV on the DV.

Ø Example:
§ The capacity of a link is sufficient to cope with traffic loads when in reality it 

doesn’t
§ The impact of the IV on the DV is significant when in reality it isn’t 
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OLS regression models: Assumptions  
(cont’d)

3. Linear-in-parameters relationship between DV and IVs
Ø If the relationship between IV and DV is not linear, the results of the linear 

regression analysis will under-estimate the true relationship between the IV and 
DV.

Ø This under-estimation carries two risks:  
1. Increased chance of a Type I error for that IV, i.e. increased chance of the true 

impact of IV on the DV being under-estimated 
2. Increased risk of Type II errors (over-estimation) for other IVs that share variance 

with that IV, i.e. increased chance of the true impact of IV on the DV being over-
estimated

4. DV variable should be normally distributed (otherwise other regression methods are 
more appropriate):
Ø For datasets smaller than 2000 elements, we use the Shapiro-Wilk test, 

otherwise, the Kolmogorov-Smirnov test is used.
Ø Both tests can be obtained from the Analyze/Descriptive Statistics/Explore command in 

SPSS 
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OLS regression models: Assumptions  
(cont’d)

5. Observations Independently and Randomly Sampled
Ø It can be relaxed if remedial actions are taken. 
Ø It is an assumption necessary to make inferences about the population of 

interest (the data should be randomly sampled from the population). 
Ø The probability that an observation is selected is unaffected by other 

observations selected into the sample (Independence). 
6. Uncertain Relationship between Variables

Ø The difference between the equation of a straight-line and a linear regression 
model is the addition of a stochastic, disturbance, or disturbance term, ε.

Ø ε consists of several elements:
§ variables omitted from the model (assumed to be of small importance) 
§ measurement errors in the DV (the independent variables are assumed to be 

measured without error) (there are tests to verify this – not covered here)
§ random variation in the underlying data-generating process
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OLS regression models: Assumptions  
(cont’d)

7. ε is independent of X and Expected Value Zero

Ø ε is independent across observations and the error variance is constant across IV.
§ This is the homoscedasticity assumption (homogeneity of variance)
§ The net effect of model uncertainty is not systematic across observations

Ø When  disturbances are heteroscedastic then alternative modeling approaches 
should be used, or in same cases the transformation of variables.

Ø Heteroscedasticity is worth correcting only when the problem is severe
§ No reason for throwing away an otherwise “good” model
§ The risk of high heteroscedasticity is increasing the possibility of type II error for the IV 

(over-estimation of the impact of IV on the DV)

8. Disturbance Terms Not Autocorrelated (ε independent across observations)

Ø Common violations of this assumption occur when observations are repeated on 
individuals. Observations across time often possess autocorrelated disturbances 
as well. 

€ 

E ε
n[ ] = 0

€ 

VAR ε
n[ ] =σ 2

€ 

COV εi,,ε j[ ] = 0 if i ≠ j
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OLS regression models: Assumptions  
(cont’d)

9. Regressors and Disturbances Uncorrelated

Ø Exogeneity of the regressors (they are not correlated with the error)
§ The values of the regressors are determined by influences “outside of the model.”
§ y does not directly influence the value of an exogenous regressor. 

10. Disturbances Approximately Normally Distributed

Ø The disturbance terms are required to be approximately normally distributed 
in order to make inferences about the parameters from the model

Ø The error terms are independently and identically distributed as normal (i.i.d. 
normal). 

€ 

COV Xi,,ε j[ ] = 0 for all i and j

€ 

ε j ≈ N 0,σ 2( )



Phd in Transportation / Transport Demand Modelling 24

Statistical Assumption Figure 
next slide

Mathematical Expression

Linear-in-parameters relationship 
between DV and IVs (b)

Zero mean of ε n.a.

Homoscedasticity of ε (c) ; (h)

Nonautocorrelation of ε (e) ; (f)

Uncorrelatedness of regressor 
and disturbances n.a.

Normality of disturbances (g)

OLS regression models: Assumptions  
(cont’d)

€ 

ε j ≈ N 0,σ 2( )€ 

COV Xi,,ε j[ ] = 0 for all i and j
€ 

yn =α + βxn + εn

€ 

E ε
n[ ] = 0

€ 

VAR ε
n[ ] =σ 2

€ 

COV εi,,ε j[ ] = 0 if i ≠ j



Phd in Transportation / Transport Demand Modelling 25

OLS regression models: Assumptions (cont’d)
Graphical analysis of residuals

Source: Hair et al (1995)
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OLS regression models: Curve fitting

❒ Formal representation of the simple LR model

❒ We do not know (and will probably never know) the true values of 
α and β.
Ø What the regression model will produce is estimates for these parameters
Ø They are only estimates because the regression model uses a sample (N 

observations) of the entire population

€ 

yn =α + βxn + εn , n =1,...,N observations
where

yn is the observed value of the dependent variable for the nth observation,
xn is the value of the independent variable for the nth observation,
εn is the residual of the nth observation, and
α and β are unknown parameters. 

€ 

E yn | xn[ ] = E α + βxn + εn[ ]

€ 

⇔ y
^

=α
^

+ β
^

x
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OLS regression models: Curve fitting (cont’d)

❒ Ordinary Least Squares (OLS)
Ø The technique used in models that attempt to minimize the sum of squared 

residuals and that produces the estimators of the LR model
Ø is the estimator of the intercept, and     is the estimator of the slope in a 

simple linear regression model
❒ Algebraic expression of the OLS regression model

Ø Attention:
§ Large ε are highly weighted
§ Outliers should be treated carefully before exclusion  (there are tests for this)

€ 

α
^

€ 

β
^

€ 

yn =α + βxn + ε ⇔ε = yn −α −βxn

⇒ Minα,β εn
2 =

n=1

N

∑ Minα ,β yn −α −βxn( )
2

n=1

N

∑
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OLS regression models: Curve fitting (cont’d)
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OLS regression models:
Mathematical properties

❒ 1st order conditions: Estimator of α

€ 

δ

δα
yn −α −βxn( )

2

n=1

N

∑
 

 
 

 

 
 = −2 yn −α

^

−β
^

xn
 

 
 

 

 
 = 0

n=1

N

∑

⇒ yn −α −βxn( ) = 0
n=1

N

∑ ⇒ yn − Nα
^

−β
^

xn
n=1

N

∑ = 0
n=1

N

∑

⇒α
^

=

yn
n=1

N

∑

N
−

β
^

xn
n=1

N

∑

N
=Y −β

^

X 1( )
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OLS regression models:
Mathematical properties (cont’d)

❒ 1st order conditions: Estimator of β

€ 

δ

δβ
yn −α −βxn( )

2

n=1

N

∑
 

 
 

 

 
 = −2 xn yn −α

^

−β
^

xn
 

 
 

 

 
 = 0

n=1

N

∑ ⇒ xn yn −α
^

xn
n=1

N

∑ −β
^

xn
2

n=1

N

∑ = 0
n=1

N

∑

Substituting the exp ression for α
^

, we obtain :

⇒ xn yn −

yn
n=1

N

∑

N
−

β
^

xn
n=1

N

∑

N

 

 

 
 
 
 

 

 

 
 
 
 

xn
n=1

N

∑ −β
^

xn
2

n=1

N

∑ = 0
n=1

N

∑ ⇒ xn yn −

yn
n=1

N

∑ xn
n=1

N

∑

N
+ β

^
xn

n=1

N

∑
 

 
 

 

 
 

2

N
−β

^

xn
2

n=1

N

∑ = 0
n=1

N

∑

⇒ N xnyn − yn
n=1

N

∑ xn
n=1

N

∑ + β
^

xn
n=1

N

∑
 

 
 

 

 
 

2

−β
^

N xn
2

n=1

N

∑ = 0
n=1

N

∑ ⇒β
^

=

N xnyn − yn
n=1

N

∑ xn
n=1

N

∑
n=1

N

∑

N xn
2

n=1

N

∑ − xn
n=1

N

∑
 

 
 

 

 
 

2

⇒β
^

=

xn − x( ) yn − y( )
n=1

N

∑

xn − x( )
2

n=1

N

∑
=
COV x,y( )
VAR x( )

2( )

Required condition!

€ 

x
n
− x( )

2

n=1

N

∑ ≠ 0
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OLS regression models:
Mathematical properties (cont’d)

❒ We can also check the 2nd order conditions to ensure that we indeed 
have a minimum:

€ 

δ 2

δα 2
yn −α −βxn( )

2

n=1

N

∑
 

 
 

 

 
 = −2 −1( )

n=1

N

∑ = 2N > 0

δ 2

δβ 2
yn −α −βxn( )

2

n=1

N

∑
 

 
 

 

 
 = −2 −xn

2( )
n=1

N

∑ = 2 xn
2

n=1

N

∑ > 0
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Estimation (I)

❒ Inferences are made with the β parameters in classical linear 
regression

❒ Considering as an example B1 (estimator of true beta)
Ø The sampling distribution of B1 is the distribution of values that would result from 

repeated samples drawn from the population with levels of the independent 
variables held constant.

Ø It can be deducted that the sampling distribution of B1 is approximately normal 
(X being the associated IV).
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Estimation (II)

❒ Since the population variance σ2 is typically unknown, an estimate 
called mean squared error (MSE) is calculated. MSE is an estimate 
of the variance in the regression model

Ø n = sample size and p = number of estimated model parameters. 

❒ It can be shown that MSE is an unbiased estimator of σ2

E[MSE] = σ2 
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Estimation (III)

❒ Since Βk is normally distributed, and βk is a constant and βk =E(Βk)

❒ In practice the true StDev in the denominator is not known and is 
estimated using MSE

Ø α = level of significance, (n – p) = associated degrees of freedom. 
❒ Enables a statistical test of the probabilistic evidence in favor of 

specific values of βk.
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Estimation (IV)

❒ The confidence interval provides the long-run probability that the true 
value of β lies in the computed confidence interval, conditioned on 
the same levels of X being sampled.
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Estimation:
Standardized Regression Models

❒ Due to differences in scale using the original measurement units of X 
will not provide an indication of which ones have largest relative 
impact on Y.

❒ Standardization solves this problem. The estimated regression 
parameters in a standardized regression model are interpreted as a 
change in the response variable per unit change of one standard 
deviation of the independent variable. Standardized variables are 
created with expected values equal to 0 and variances equal to 1

❒ Standardization strictly works on continuous variables, those 
measured on interval or ratio scales. 
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Estimation: 
Validation of Regression Assumptions

❒ Linearity
Ø Checked informally using several plots 

§ independent variables on the X vs. residuals on the Y, 
§ model predicted (fitted) values on the X vs. residuals on the Y.

Ø Curvilinear trends in the disturbances are an evidence of non-linear relations.
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Estimation: 
Validation of regression assumptions (I)

❒ Homoscedastic Disturbances
Ø The consequence of a heteroscedastic regression is reduced precision of beta 

parameter estimates. Regression parameters will be less efficient under this 
circunstances.

Ø MSE will be larger for a heteroscedastic regression (smaller t*). 

Ø Scatter plots are used to assess homoscedasticity. A plot of model fitted values 
vs. errors is typically inspected first. If heteroscedasticity is detected, then plots 
of the disturbances vs. independent variables or partial variate plots should be 
conducted to identify were the problem occurs.
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Estimation:
Validation of regression assumptions (II)

❒ Uncorrelated Disturbances
Ø Correlation of disturbances across time is called serial correlation. Plot of 

disturbances vs. time, or a plot of disturbances vs. ordered observations (over 
space). 
§ Serially correlated disturbances will reveal a trend over time, with peaks and 

valleys in the disturbances that typically repeat themselves over fixed intervals.
Ø Durbin–Watson statistic. This statistic is calculated from the disturbances of an 

OLS regression. 
Ø Durbin–Watson ≈ 2,0 (+-0,2) No autocorrelation 
Ø Durbin–Watson  ≠2,0 (+-0,2) Presence of autocorrelation

§ See Danomar N. Gujarati “Basic Econometrics (3rd ed.” (1995) – pg. 420, for more in depth 
information
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Estimation:
Validation of regression assumptions (III)

❒ Exogenous Independent Variables
Ø The value of an exogenous variable is determined by factors outside the model 

(i.e., somehow “hidden” in the error term). 
Ø When endogeneity is present, however, the covariance between X and ε is 

nonzero and the least squares estimate is biased. 
Ø The direction of bias depends on the covariance between X and ε. A negative 

covariance will result in a negative bias (Type I error), and a positive in a 
positive bias (Type II error).
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Estimation:
Validation of regression assumptions (IV)

❒ Normally Distributed errors
Ø If making inferences is not important, then the assumption of normality can be 

dropped without consequence.
Ø Normality can be assessed through nongraphical, graphical, and 

nonparametric methods
Ø Summary statistics of the disturbances, including minimum, first and third 

quartiles, median, and maximum values of the disturbances (normal 
distribution is symmetric and mean≈median ≈ 0).

Ø Histograms of the disturbances – should reveal the familiar bell-shaped curve. 
The number of observations above and bellow zero should be approximately 
equivalent and mirror each other. 
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Estimation:
Validation of regression assumptions (V)

❒ Normality of disturbances
Ø Normal probability quantile-quantile (Q-Q) 

plots of the disturbances. Normal Q-Q plots 
are constructed such that normally 
distributed disturbances will plot on a 
perfectly straight line. 

Source: http://en.wikipedia.org/wiki/Q-Q_plot
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Detection of influential observations 
(outliers)

❒ A least squares model can be 
distorted by a single observation. The 
fitted line or surface might be tipped 
so that it no longer passes through 
the bulk of the data.

❒ In order to reduce the effect of a very 
large error it will introduce many small 
or moderate errors.

❒ For example, the point 1 is actually an 
outlier and in presence of this point 
the regression line is dragged out to 
that point resulting the point 2 as an 
outlier, though it is a clean point, 
because now the distance of this 
point from the line is longest.
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Estimation:
Regression Outliers (II)

❒ Removing observations from the regression 
Criticisms - “the data were fit to the model.”

❒ Leaving the observations in the model 
Criticism  - “lack of fit.”

❒ We should  fully document and completely justify the removing of  
any and all data from an analysis is good practice.
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Detection of influential observations 
(outliers)

❒ There are two types of outliers depending on the variable in which it occurs:
Ø Outliers in the response variable represent model failure.
Ø Outliers with respect to the predictors are called leverage points

§ these can affect the regression model
❒ There are many methods for detection of outliers available in the literature. 

Some statistics that are obtained through row deletion method of regression 
matrix.
Ø It is examined in turn how the deletion of each row affects the estimated 

coefficients, the predicted values (fitted values), the residuals, and the estimated 
covariance structure of the coefficients.

Ø These methods estimate the influence of an observation on the regression 
outcomes and uses cut-off values called leverage values, that help in identifying 
those observations that are far away from corresponding average predictor 
values

❒ Boxplots can help visually to detect outliers
Ø values 3x bigger than P75 (thumb rule)
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Detection of influential observations 
(outliers)

❒ Cook’s Distance
Ø Cook (1977) proposed a statistic for detection of outlier as follows:

§ is the prediction from the full regression model for observation j;
§ is the prediction for observation j from a refitted regression model in which 

observation i has been omitted;
§ MSE is the mean square error of the regression model;
§ p is the number of fitted parameters in the model

Ø An interpretation is that Di measures the sum of squared changes in the 
predictions when observation i is not used in estimating  β. Di approximately 
follows F (p, n-p) distribution.

Ø The cut off value of Cook-Statistic is 4/n.
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Detection of influential observations 
(outliers)

❒ DDFITS
Ø It is the difference between the predicted  responses from the model constructed 

using complete data and the predicted responses  from the model constructed 
by setting the ith observation aside.

Ø Unlike Cook's distance, it does not look at all of the predicted values with the ith
observation set aside. It looks only at the predicted values for the ith observation.

§ is the prediction from the full regression model for observation j;
§ is the prediction for observation j from a refitted regression model in which 

observation i has been omitted;
§ s(i) is the standard error estimated without the point in question, and 
§ hii is the leverage for the point (p/n), the number of parameters divided by the 

number of points.
Ø The cut off value of DFFIT is            , 2

p

n
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Goodness-of-Fit Indicators (I)

❒ Goodness-of-fit (GOF) statistics are useful for comparing
Ø results across multiple studies, 
Ø competing models within a single study, 
Ø and for providing feedback on the extent of knowledge about the uncertainty 

involved with the phenomenon of interest
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Goodness-of-Fit Indicators (II)

❒ Sum of square errors (variation of the fitted regression line around the observations)

❒ Regression sum of squares (variation of the fitted regression line around    )

❒ Total sum of squares (the variation of each observation around    )

SST = SSR + SSE
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Goodness-of-Fit Indicators (III)

❒ Coefficient of determinantion R2

Ø It varies between [0;1] is the proportion of total variance explained

Ø Since R2 can only increase when variables are added to the regression model 
an adjusted measure (R2

Adjusted) is proposed to account for the degrees of 
freedom changes as a result of different numbers of model parameters.

Ø The R2 and R2
Adjusted provide only relevant comparisons with previous models 

that have been estimated on the phenomenon under investigation.
Ø The absolute values of R2 and R2

Adjusted measures are not sufficient measures 
to judge the quality of a model.

𝑅" = 1 −
𝑆𝑆𝑅
𝑆𝑆𝑇

=
𝑆𝑆𝐸
𝑆𝑆𝑇

𝑅" = 1 −
𝑆𝑆𝑅

𝑛 − 𝑝 − 1+
𝑆𝑆𝑅

𝑛 − 1+
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Goodness-of-Fit Indicators (IV)

❒ F test
Ø It is general and flexible approach to test the statistical difference between 

competing models.
Ø First, a full or unrestricted model is estimated. The sum of square errors for the 

full model is

Ø A reduced model is then estimated (viable competitor to the full model but with 
fewer variables or only a constant)

Ø The logic of the F test is to compare the values of SSER and SSEF
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Goodness-of-Fit Indicators (II)

❒ F test
Ø If SSER = SSEF , the full model has done nothing to improve the fit of the 

model. The reduced model is superior
Ø In statistical terms, the null hypothesis (H0) is that all of the additional 

parameters in the full model are not significant (or βk=0)
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Multicollinearity in the Regression

❒ Multicollinearity exists when IV are correlated with each other 
or when IV are correlated with omitted variables (somehow 
included in the error term) that are related to the dependent 
variable (eg resulting in inefficient parameters).

❒ How to evaluate if there is any multicollinearity?
Ø Pairwise correlation between variables could be used to detect 

multicollinearity (when r>0,75, there is a strong sign of problems)
Ø Variance Inflation Factor (VIF) - Values >5 or >10 indicate collinearity 

problems
Ø Condition Index or Condition Number - values >15 indicate problems and 

>30 serious problems
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Multicollinearity in the Regression:
Variance Inflation Index (VIF)

❒ It provides an index that measures how much the variance of an 
estimated regression coefficient (the square of the estimate's 
standard deviation) is increased because of collinearity.
Ø Consider the following linear model with k independent variables:

Y = β0 + β1 X1 + β2 X 2 + ... + βk Xk + ε.
Ø It can be shown that the variance of the jth β is given by:

§ where Rj
2 is obtained for the regression of Xj on the other covariates/regressors (a 

regression that does not involve the response variable Y)
§ The Rj

2 indicates how predictable the jth IV is from the set of other IVs.
Ø VIF=1/(1-Rj

2)

Ø Tolerance = 1-Rj
2
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Multicollinearity in the Regression:
Condition Index (I)

❒ Most multivariate statistical approaches involve decomposing a 
correlation matrix into linear combinations of variables (compare 
the variances of the IV in the case of the MRA).

❒ The SPSS will produce a table like this (for the Chicago case study):
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Multicollinearity in the Regression:
Condition Index (I)

❒ Eigenvalue (λ)
Ø Factor analysis yields a set of factors that are linear combinations with different 

combinations of load factors for each Xi
Ø Each of these factors identified explains a % variance of the overall variance of 

the observed values of the Xi independent variables.

, where                   is the expected average % explanation of the 
overall variance of the IVs.

❒ Condition index or con Index (CIi)

€ 

%VARfi
=

Var fi( )
Var X

1,...,n( )

λi =
%VARfi

%VAR

€ 

%VAR
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Recommended readings

❒ Washington, Simon P., Karlaftis, Mathew G. e Mannering (2003) 
“Statistical and econometric Methods for Transportation Data 
Analysis”, CRC – Chapter 3 and Annex A

❒ Hair, Joseph P. et al (1995) “Multivariate Data Analysis with 
Readings”, Fourth Edition, Prentice Hall - Chapter 3

❒ João Maroco, Regina Bispo (2003) “Estatística Aplicada às Ciências 
Sociais e Humanas”, Ed. Manuais Escolares – Capítulo 13


