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Statistical Inference

! Confidence intervals, hypothesis tests and population comparisons 
are statistical tools used in transportation planning (or at least they should 
be)

! They could be used to answer questions as the examples bellow
Ø Does crash occurrence at a particular intersection support the notion that it is a 

hazardous location? 
Ø Do traffic calming measures reduce traffic speeds? 
Ø Does route guidance information implemented via a variable message sign system 

successfully divert motorists from congested areas?
Ø Does altering the levels of operating subsidies to transit systems change their 

operating performance?
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Random variable

! It corresponds to the mapping outcomes from random processes
Ø Flipping coins; weather events; pedestrian flows; etc.

! Examples of random variables definition

! Why do we need to do this?
Ø Allows for using mathematical notation and tools to quantify random 

processes
Ø What is the probability of some outcome of a random process?

𝑌 = Total mass of students of
random class𝑋 = $1 𝑖𝑓 ℎ𝑒𝑎𝑑𝑠0 𝑖𝑓 𝑡𝑎𝑖𝑙𝑠

𝑃 𝑋 = 1 = 1 − 𝛼 𝑃 𝑌 ≤ 500 = 1 − 𝛼
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Discrete vs. Continuous 
Random Variables

! Discrete variable (X1)
Ø Variable that can only take on a certain number of distinct or separate 

values
! Continuous variable (X2)

Ø Variable can have an infinite number of values within an interval
! Examples

X2 = Total mass of students of
random class𝑋1 = $1 𝑖𝑓 ℎ𝑒𝑎𝑑𝑠0 𝑖𝑓 𝑡𝑎𝑖𝑙𝑠

0 500325,6754211…X1 = Year that a 
random student was
born

X1 = # of pedestrians crossing
the street over 15’ 

X2 = Exact winning time of
100m run
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Probability distributions of discrete 
random variables

! X= # of “heads” after 3 flips of a fair coin (where Heads =0; Tails =1)

! 8 possible outcomes: HHH; HHT;HTH;HTT;THH;THT;TTH;TTT

! P(X=0)=1/8
P(X=1)=3/8
P(X=2)=3/8
P(x=3)=1/8

0 1 2 3

1
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Probability distributions of continuous 
random variables

! X is a continuous random variable
! P(1=<X=<2)=?=1x1/5=1/5
! P(4=<X=<4.1/3)=?=1/3x1/5=1/15
! P(2,9=<X=<3,1)=?=0,2x1/5=1/5x1/5=1/25
! P(2,99=<X=<3,01)=1/50x1/5=1/250
! P(2,999=<X=<3,001)=1/500x1/5=1/2500
! P(X=3)=? 1

0 1 2 3 4 5

Prob. Density 
Function (PDF) 
(uniform)

1/5
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Probability distributions of random 
variables

! Let X = exact time mean speed 
of a traffic flow

! What is the prob. of the speed 
being exactly 20km/h?
Ø P(X=20)=0,45???
Ø NO!!!

1

0 10 20 30 40 50 Km/h

0,5

q What is the prob. of the speed being approx. 20km/h?
q P(|X-2|<2)=?
q Integral of the PDF from 18 to 22 (Green area)
q 𝑃 𝑋 − 20 < 2 = ∫!"

##𝑓 𝑥 . 𝑑𝑥

Prob. Density 
Function (PDF) 
(uniform) – f(x)
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Confidence Intervals

! An interval calculated using sample data that contains the true 
population parameter with some level of confidence
Ø There is a X% probability that it contains the true parameter

! This is called a confidence interval (CI) and can be constructed for an 
array of levels of confidence
Ø Lower confidence limit (LCL) 
Ø Upper confidence limit (UCL). 

Source: www.sciencesoftware.com

• The wider a confidence interval, the 
more confidence exists that it 
contains the true population 
parameter (e.g., mean, variance, etc.)
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Confidence Interval 
for µ with known s2

! Central Limit Theorem 
Ø Whenever a sufficiently large random sample is drawn from any 

population with mean µ and standard deviation s, the sample mean is 
approximately normally distributed with mean and standard 
deviation            .

Ø Standardization of the variable X is

, where

X
ns

n
XZ
s

µ-
= Z~N(0,1)
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Confidence Interval
for µ with known s2

! The confidence interval is (1-a) , and Za/2 is the value of Z
such that the area in each of the tails under the standard 
normal curve is (a/2).

! The confidence interval estimator of µ can be written as:

Source: www.cnx.org

. (2.2)

Equation 2.2 reveals that, with a large number of intervals computed from
different random samples drawn from the population, the proportion of
values of  for which the interval  captures Q
is 0.95. This interval is called the 95% confidence interval estimator of Q. A
shortcut notation for this interval is

. (2.3)

Obviously, probabilities other than 95% can be used. For example, a 90%
confidence interval is

.

In general, any confidence level can be used in estimating the confidence
intervals. The confidence interval is , and  is the value of Z such
that the area in each of the tails under the standard normal curve is .
Using this notation, the confidence interval estimator of Q can be written as

. (2.4)

Because the confidence level is inversely proportional to the risk that the
confidence interval fails to include the actual value of Q, it generally ranges
between 0.90 and 0.99, reflecting 10% and 1% levels of risk of not including
the true population parameter, respectively.

Example 2.1

A 95% confidence interval is desired for the mean vehicular speed on
Indiana roads (see Example 1.1 for more details). First, the assumption
of normality is checked; if this assumption is satisfied we can proceed
with the analysis. The sample size is n = 1296, and the sample mean is

= 58.86. Suppose a long history of prior studies has shown the popu-
lation standard deviation as W = 5.5. Using Equation 2.4, the confidence
interval can be obtained:
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Example 1

! A 95% confidence interval is desired for the mean vehicular 
speed on a specific road. The assumption of normality is 
assumed. The sample size is n = 1296, and the sample mean is 
58.86. Suppose a long history of prior studies has shown the 
population standard deviation as s= 5.5. Calculate the 
Confidence Interval for µ.
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Example 1 - Answer

! Useful formula:

! Let X be the continuous variable of the “vehicular speed on a specific 

road”, with mean µ and standar deviation s.
! It is said that:

Ø n = 1296;    = 58,86; s = 5,5.

! The confidence interval is the following, for a = 0,05:

where, Za/2=1,96 for a = 0,05, assuming that X follows a Normal Distribution.

. (2.2)

Equation 2.2 reveals that, with a large number of intervals computed from
different random samples drawn from the population, the proportion of
values of  for which the interval  captures Q
is 0.95. This interval is called the 95% confidence interval estimator of Q. A
shortcut notation for this interval is

. (2.3)

Obviously, probabilities other than 95% can be used. For example, a 90%
confidence interval is

.

In general, any confidence level can be used in estimating the confidence
intervals. The confidence interval is , and  is the value of Z such
that the area in each of the tails under the standard normal curve is .
Using this notation, the confidence interval estimator of Q can be written as

. (2.4)

Because the confidence level is inversely proportional to the risk that the
confidence interval fails to include the actual value of Q, it generally ranges
between 0.90 and 0.99, reflecting 10% and 1% levels of risk of not including
the true population parameter, respectively.

Example 2.1

A 95% confidence interval is desired for the mean vehicular speed on
Indiana roads (see Example 1.1 for more details). First, the assumption
of normality is checked; if this assumption is satisfied we can proceed
with the analysis. The sample size is n = 1296, and the sample mean is

= 58.86. Suppose a long history of prior studies has shown the popu-
lation standard deviation as W = 5.5. Using Equation 2.4, the confidence
interval can be obtained:
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. (2.2)

Equation 2.2 reveals that, with a large number of intervals computed from
different random samples drawn from the population, the proportion of
values of  for which the interval  captures Q
is 0.95. This interval is called the 95% confidence interval estimator of Q. A
shortcut notation for this interval is

. (2.3)

Obviously, probabilities other than 95% can be used. For example, a 90%
confidence interval is

.

In general, any confidence level can be used in estimating the confidence
intervals. The confidence interval is , and  is the value of Z such
that the area in each of the tails under the standard normal curve is .
Using this notation, the confidence interval estimator of Q can be written as

. (2.4)

Because the confidence level is inversely proportional to the risk that the
confidence interval fails to include the actual value of Q, it generally ranges
between 0.90 and 0.99, reflecting 10% and 1% levels of risk of not including
the true population parameter, respectively.

Example 2.1

A 95% confidence interval is desired for the mean vehicular speed on
Indiana roads (see Example 1.1 for more details). First, the assumption
of normality is checked; if this assumption is satisfied we can proceed
with the analysis. The sample size is n = 1296, and the sample mean is

= 58.86. Suppose a long history of prior studies has shown the popu-
lation standard deviation as W = 5.5. Using Equation 2.4, the confidence
interval can be obtained:
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X ± Zα
2
×
σ

n
⇔ 58,86±1,96× 5,5

1296
⇔ 58,86±0,30⇔ 58,56;59,16#$ %&
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Confidence Interval for the Mean with 
Unknown Variance

! In most cases the population variance is not known. On the contrary, 
it is estimated from the data (estimated from the sample data). 

! When the population variance is unknown and the population is 
normally distributed, a (1 – a) confidence interval for µ is given by:

, where s is the standard deviation and ta/2 is the value of the t distribution with n-1 
degrees of freedom.
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Example 2 - Answer

Assuming the previous example what would be the confidence interval when one considers
that the population variance is not known?

Answer:

! Useful formula:

! Let X be the continuous variable of the “vehicular speed on a specific road”, with mean µ
and standar deviation s.

! It is said that:
Ø n = 1296;    = 58,86; s = 4,41 (if you go back to your calculation of sample standard deviation of 

speeds database of the exercise from previour lecture).
! The confidence interval is the following, for a = 0,05:

where, ta/2=1,96 for a = 0,05 and n-1=1295 Degress of Freedom.

. (2.2)

Equation 2.2 reveals that, with a large number of intervals computed from
different random samples drawn from the population, the proportion of
values of  for which the interval  captures Q
is 0.95. This interval is called the 95% confidence interval estimator of Q. A
shortcut notation for this interval is

. (2.3)

Obviously, probabilities other than 95% can be used. For example, a 90%
confidence interval is

.

In general, any confidence level can be used in estimating the confidence
intervals. The confidence interval is , and  is the value of Z such
that the area in each of the tails under the standard normal curve is .
Using this notation, the confidence interval estimator of Q can be written as

. (2.4)

Because the confidence level is inversely proportional to the risk that the
confidence interval fails to include the actual value of Q, it generally ranges
between 0.90 and 0.99, reflecting 10% and 1% levels of risk of not including
the true population parameter, respectively.

Example 2.1

A 95% confidence interval is desired for the mean vehicular speed on
Indiana roads (see Example 1.1 for more details). First, the assumption
of normality is checked; if this assumption is satisfied we can proceed
with the analysis. The sample size is n = 1296, and the sample mean is

= 58.86. Suppose a long history of prior studies has shown the popu-
lation standard deviation as W = 5.5. Using Equation 2.4, the confidence
interval can be obtained:
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Confidence Interval for a Population Proportion

! We might be interested in the relative frequency of some characteristic 
in a population
Ø e.g. % of people who uses public transport

! An estimate of the population proportion, p, whose estimator is     has an 
approximate normal distribution when n is sufficiently large. The mean of 
the sampling distribution      is the population proportion p and the standard 
deviation is          ( where q=1-p).  

! The (1-a) confidence interval for the population proportion, p is given 
by

, where p is the number “sucesses” devided by the sample size.

p̂

n
pq

p̂

the standard normal distribution as . Although the t distribution is
the correct distribution to use whenever the population variance is un-
known, when sample size is sufficiently large the standard normal distri-
bution can be used as an adequate approximation to the t distribution.

2.1.3 Confidence Interval for a Population Proportion

Sometimes, interest centers on a qualitative (nominal scale) variable, rather
than a quantitative (interval or ratio scale) variable. There might be interest in
the relative frequency of some characteristic in a population such as, for exam-
ple, the proportion of people in a population who are transit users. In such
cases, an estimate of the population proportion, p, whose estimator is  has
an approximate normal distribution provided that n is sufficiently large (
and , where ). The mean of the sampling distribution  is the
population proportion p and the standard deviation is .

A large sample  confidence interval for the population propor-
tion, p is given by

, (2.6)

where the estimated sample proportion, , is equal to the number of “suc-
cesses” in the sample divided by the sample size, n, and .

Example 2.3

A transit planning agency wants to estimate, at a 95% confidence level,
the share of transit users in the daily commute “market” (that is, the
percentage of commuters using transit). A random sample of 100 commut-
ers is obtained and it is found that 28 people in the sample are transit users.
By using Equation 2.6, a 95% confidence interval for p is calculated as

.

Thus, the agency is 95% confident that transit users in the daily commute
range from 19.2 to 36.8%.

2.1.4 Confidence Interval for the Population Variance

In many situations, in traffic safety research for example, interest centers
on the population variance (or a related measure such as the population
standard deviation). As a specific example, vehicle speeds contribute to
crash probability, with an important factor the variability in speeds on the
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Example 3

! A transit planning agency wants to estimate, at a 95% confidence 
level, the share of transit users in the daily commute “market” (% of 
commuters using transit). A random sample of 100 commuters is 
obtained and it is found that 28 people in the sample are transit 
users. Calculate the confidence interval of the average proportion p 

of transit users.
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Example 3 - Answer

! Useful formula:

! Let p be the continuous variable of the “proportion of transit users”.
! It is said that:

Ø n = 100; p = 28/100 = 0,28 and q = 1- p =0,72.

! The confidence interval is the following, for a = 0,05:

where, Za/2=1,96 for a = 0,05.

p
^

± Zα
2
×

p
^

q
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n

p
^

± Zα
2
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p
^

q
^

n
⇔ 0,28±1,96* 0,28×0,72

100
⇔ 0,28±0,088⇔ 0,192;0,368#$ %&
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Confidence Interval for the Population 
Variance

! Sometimes (e.g. traffic safety), interest is on the population 
variance. 
Ø E.g.,variability in speeds is correlated with the frequency of crashes

! A confidence interval for s2, assuming the population is normally 
distributed, is given by

𝑋 = (%&!)(!

)!
and X~ c2 then

Ø c2
a/2 is the value of the c2 distribution with n-1 degrees of freedom

Ø The area in the right-hand tail of the distribution is c2
a/2 , while the area in 

the left-hand tail of the distribution is c2
1-a/2

roadway. Speed variance, measured as differences in travel speeds on a
roadway, relates to crash frequency in that a larger variance in speed
between vehicles correlates with a larger frequency of crashes, especially
for crashes involving two or more vehicles (Garber, 1991). Large differences
in speeds results in an increase in the frequency with which motorists pass
one another, increasing the number of opportunities for multivehicle
crashes. Clearly, vehicles traveling the same speed in the same direction
do not overtake one another; therefore, they cannot collide as long as the
same speed is maintained (for additional literature on the topic of speeding
and crash probabilities, covering both the United States and abroad, the
interested reader should consult FHWA, 1995, 1998, and TRB, 1998).

A  confidence interval for W2, assuming the population is nor-
mally distributed, is given by

, (2.7)

where  is the value of the  distribution with n � 1 degrees of freedom.
The area in the right-hand tail of the distribution is , while the area in
the left-hand tail of the distribution is . The chi-square distribution is
described in Appendix A, and the table of probabilities associated with the
chi-square distribution is provided in Table C.3 of Appendix C.

Example 2.4

A 95% confidence interval for the variance of speeds on Indiana roads
is desired. With a sample size of 100 and a variance of 19.51 mph2, and
using the values from the G2 table (Appendix C, Table C.3), one obtains

= 129.56 and  = 74.22. Thus, the 95% confidence interval is
given as

.

The speed variance is, with 95% confidence, between 15.05 and 26.02.
Again, the units of the variance in speed are in mph2.

2.2 Hypothesis Testing

Hypothesis tests are used to assess the evidence on whether a difference in
a population parameter (a mean, variance, proportion, etc.) between two or
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c2 Distribution 
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Example 4
A 95% confidence interval for the variance of speeds on the road of example 1 is 
desired.
Answer:

! Useful formula:

! Let s2 be the continuous variable of “sample variance of vehicular speed on a 
specific road”.

! It is said that:
Ø n = 100; s2 = 19,51 (if you go back to your calculation of sample standard 

deviation of speeds database of the exercise from previous lecture).
! The confidence interval is the following, for a = 0,05:

where, c2a/2=129,56 and c21-a/2=74,22, for n-1=99 Degress of Freedom.

roadway. Speed variance, measured as differences in travel speeds on a
roadway, relates to crash frequency in that a larger variance in speed
between vehicles correlates with a larger frequency of crashes, especially
for crashes involving two or more vehicles (Garber, 1991). Large differences
in speeds results in an increase in the frequency with which motorists pass
one another, increasing the number of opportunities for multivehicle
crashes. Clearly, vehicles traveling the same speed in the same direction
do not overtake one another; therefore, they cannot collide as long as the
same speed is maintained (for additional literature on the topic of speeding
and crash probabilities, covering both the United States and abroad, the
interested reader should consult FHWA, 1995, 1998, and TRB, 1998).

A  confidence interval for W2, assuming the population is nor-
mally distributed, is given by

, (2.7)

where  is the value of the  distribution with n � 1 degrees of freedom.
The area in the right-hand tail of the distribution is , while the area in
the left-hand tail of the distribution is . The chi-square distribution is
described in Appendix A, and the table of probabilities associated with the
chi-square distribution is provided in Table C.3 of Appendix C.

Example 2.4

A 95% confidence interval for the variance of speeds on Indiana roads
is desired. With a sample size of 100 and a variance of 19.51 mph2, and
using the values from the G2 table (Appendix C, Table C.3), one obtains

= 129.56 and  = 74.22. Thus, the 95% confidence interval is
given as

.

The speed variance is, with 95% confidence, between 15.05 and 26.02.
Again, the units of the variance in speed are in mph2.

2.2 Hypothesis Testing

Hypothesis tests are used to assess the evidence on whether a difference in
a population parameter (a mean, variance, proportion, etc.) between two or
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Hypothesis Tests (I)

! Hypothesis tests are used to assess the evidence on whether a 
difference in a population parameter (a mean, variance, 
proportion, etc.) between two or more groups is likely to have arisen 
by chance or whether some other factor is responsible for the 
difference.

! Two competing statistical hypotheses: 
Ø The null hypothesis (H0) is an assertion about one or more population 

parameters assumed to be true
Ø The alternative hypothesis, (Ha), is the assertion of all situations not 

covered by the null hypothesis (i.e., wrong). 
! They constitute a set of hypotheses that covers all possible values of 

the parameter or parameters in question. 
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Visualization of Hypothesis testing

z(a/2)

H0 : µ= µ0
Ha : µ≠ µ0

Fail to reject H0

-z(a/2)
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Hypothesis Tests (II)

! An hypothesis test aim to determine if is appropriate to reject or not 
the null hypothesis. 

! The nature of the hypothesis test is determined by the question being 
asked
Ø E.g., if speed signals are expected to change the mean of vehicle speeds, then 

a null hypothesis of no difference in means is appropriate.

! The process is the following: 
Ø the empirical evidence is assessed 
Ø The results of the test will either refute or fail to refute the null hypothesis 

based on a pre-specified level of confidence (1-a).
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Hypothesis Tests (III)

! It can never be proved that a statistical hypothesis is true using 
the results of a statistical test. 

! We simply admit that H0 cannot be ruled out by the observed 
data.

! However, errors do occur among possible results of a test of 
hypothesis, including type I and II errors.

using the results of a statistical test. In the language of hypothesis testing,
any particular result is evidence as to the degree of certainty, ranging from
almost uncertain to almost certain. No matter how close to the two
extremes a statistical result may be, there is always a non-zero probability
to the contrary.

Whenever a decision is based on the result of a hypothesis test, there is a
chance that it will be incorrect. Consider Table 2.1. In this classical Ney-
man–Pearson methodology, the sample space is partitioned into two regions.
If the observed data reflected through the test statistic falls into the rejection
or critical region, the null hypothesis is rejected. If the test statistic falls into
the acceptance region, the null hypothesis cannot be rejected. When the null
hypothesis is true, there is E percent chance of rejecting it (Type I error).
When the null hypothesis is false, there is still a F percent chance of accepting
it (Type II error). The probability of Type I error is the size of the test. It is
conventionally denoted by E and called the significance level. The power of
a test is the probability that it will correctly lead to rejection of a false null
hypothesis, and is given as 1 � F.

Because both probabilities E and F reflect probabilities of making errors,
they should be kept as small as possible. There is, however, a trade-off
between the two. For several reasons, the probability of making a Type II
error is often ignored. Also, the smaller the E, the larger the F. Thus, if E is
made to be really small, the “cost” is a higher probability for making a Type
II error, all else being equal. The determination of which statistical error is
least desirable depends on the research question asked and the subsequent
consequences of making the respective errors. Both error types are undesir-
able, so attention to proper experimental design prior to data collection and
sufficiently large sample sizes will help to minimize the probability of mak-
ing these two statistical errors. In practice, the probability of making a Type
I error E is usually set in the range from 0.01 to 0.10 (1 and 10% error rates,
respectively). The selection of an appropriate E level is based on the conse-
quences of making a Type I error. For example, if human lives are at stake
when an error is made (accident investigations, medical studies), then an E
of 0.01 or 0.005 may be most appropriate. In contrast, if an error results in
monies being spent for improvements (congestion relief, travel time, etc.)
that might not bring about improvements, then perhaps a less stringent E
is appropriate.

TABLE 2.1

Results of a Test of Hypothesis

Reality
Test Result H0 is true H0 is false

Reject Type I error
P(Type I error) = E

Correct decision

Do not reject Correct decision Type II error
P(Type II error) = F

© 2003 by CRC Press LLC

Decision
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Visualizing Type I errors 

𝑥̅!
𝑥̅"

𝑥̅#
𝑥̅$

𝑥̅%
𝑥̅&

𝑥̅'

95% of all sample 
means (    ) are 
hypothesized to 
be in this region

𝑥̅(

Fail to reject the null hypothesis

Fail to reject the null hypothesis
Fail to reject the null hypothesis

Fail to reject the null hypothesis

Fail to reject the null hypothesis
Fail to reject the null hypothesis

Reject the null hypothesis

If we took a sample 
and it was by chance 
like x5, we would 
incorrectly reject the 
null hypothesis.

a is the “level of 
tolerance” or our 
tolerance for making a 
Type I error.

Type I error

µo
µ
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Visualizing Type II errors 

𝑥̅!
𝑥̅"

𝑥̅#
𝑥̅$

𝑥̅%
𝑥̅&

𝑥̅'

95% of all sample 
means (    ) are 
hypothesized to 
be in this region

𝑥̅(

Reject the null hypothesis

Fail to reject the null hypothesis

If we took a sample 
and it was by chance 
like x4, we would 
incorrectly fail to 
reject the null 
hypothesis.

b is the probability of 
committing Type II error. The 
value of b varies with 
experimental factors.

Type II error

Reject the null hypothesis

Reject the null hypothesis

Reject the null hypothesis

Reject the null hypothesis

Reject the null hypothesis

µo

µ
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Type I and II errors and Level of 
significance

a=0,05a=0,10 a=0,01

• As a decreases so does the Type I error. The critical value to reject the null 
hypothesis  moves outwards thus “capturing” more sample means.

• However the move outward of the critical values may also “capture” a mean from a 
different population off to the side. We would fail to reject the null H when indeed we 
should. Thus the chance of Type II error increases as a decreases.



Phd in Transportation Systems / Transport Demand Modelling 28/59

Main causes of Type I and II errors

! When selecting samples we are always subject to the randomness 
of data and the chance of getting “wrong” samples

! We may, by random chance alone, select a sample that is not 
representative of the population
Ø Sample of one “type” of data not ranging the full range of possible 

types (for example, by chance only, interview young white collars)
Ø Sample being in the far out tails of the sampling distribution

! Sampling techniques may be flawed / biased
Ø Wrong sample frame
Ø Wrong sampling approach
Ø Systematic error in the collection procedure
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Type  I and type II errors, in statistics (III)

! Since both probabilities a and b reflect probabilities of making 
errors, they should be kept as small as possible. 
Ø There is a trade-off between the two.

Ø Usually, the probability of making a Type II error is often ignored. 

! The smaller the a, the larger the b. 
Ø Making a really small increases the probability of making a Type II error, all 

else being equal. 

! The consequences of making Type I and Type II errors, as well as 
the research question, should guide the decision on which statistical 
error is least desirable. 
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Hypothesis Tests (V)

! As discussed previously, the decision of whether the null hypothesis 
is rejected (or not) is based on the rejection region.

! Two tailed test:

Ø If |Z*|≥Zc, then the probability of observing this value (or larger) is a. 
H0 is rejected in favor of Ha.

Ø If |Z*|<Zc, then the probability of observing this value (or smaller) is 
(1-a). H0 fails to be rejected.

H0 :µ = c
Ha :µ ≠ c

2.2.2 Formulating One- and Two-Tailed Hypothesis Tests

As discussed previously, the decision of whether the null hypothesis is
rejected (or not) is based on the rejection region. To illustrate a two-tailed
rejection region, suppose a hypothesis test is conducted to determine
whether the mean speed on U.S. highways is 60 mph. The null and alterna-
tive hypotheses are formulated as follows:

.

If the sample mean (the test statistic in this case) is significantly different
from 60, and  falls in the rejection region, the null hypothesis is rejected.
On the other hand, if  is sufficiently close to 60, the null hypothesis cannot
be rejected. The rejection region provides a range of values below or above
which the null hypothesis is rejected. In practice, however, a standardized
normal test statistic is employed. A standardized normal variable is con-
structed (Equation 2.1) based on a true null hypothesis such that

. (2.9)

The random variable is approximately standard normally distributed (N(0,
1)) under a true null hypothesis. Critical values of Z, or Zc, are defined such
that . The values of Zc that correspond to
different values of E are provided in Table C.1 in Appendix C; some com-
monly used values are shown in Table 2.2. For example, if E = 0.05 then Zc

= 1.96. Using Equation 2.9 the test statistic Z* is calculated; for this statistic
the following rules apply:

1. If , then the probability of observing this value (or larger)
if the null hypothesis is true is E. In this case the null hypothesis is
rejected in favor of the alternative.

2. If , then the probability of observing this value (or smaller)
is 1 � E. In this case the null hypothesis cannot be rejected.

TABLE 2.2

Critical Points of Z for Selected Levels of Significance

Level of Significance EEEE
0.10 0.05 0.01

One-tailed test ±1.28 ±1.645 ±2.326
Two-tailed test ±1.645 ±1.96 ±2.576
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2.2.2 Formulating One- and Two-Tailed Hypothesis Tests

As discussed previously, the decision of whether the null hypothesis is
rejected (or not) is based on the rejection region. To illustrate a two-tailed
rejection region, suppose a hypothesis test is conducted to determine
whether the mean speed on U.S. highways is 60 mph. The null and alterna-
tive hypotheses are formulated as follows:

.

If the sample mean (the test statistic in this case) is significantly different
from 60, and  falls in the rejection region, the null hypothesis is rejected.
On the other hand, if  is sufficiently close to 60, the null hypothesis cannot
be rejected. The rejection region provides a range of values below or above
which the null hypothesis is rejected. In practice, however, a standardized
normal test statistic is employed. A standardized normal variable is con-
structed (Equation 2.1) based on a true null hypothesis such that

. (2.9)

The random variable is approximately standard normally distributed (N(0,
1)) under a true null hypothesis. Critical values of Z, or Zc, are defined such
that . The values of Zc that correspond to
different values of E are provided in Table C.1 in Appendix C; some com-
monly used values are shown in Table 2.2. For example, if E = 0.05 then Zc

= 1.96. Using Equation 2.9 the test statistic Z* is calculated; for this statistic
the following rules apply:

1. If , then the probability of observing this value (or larger)
if the null hypothesis is true is E. In this case the null hypothesis is
rejected in favor of the alternative.

2. If , then the probability of observing this value (or smaller)
is 1 � E. In this case the null hypothesis cannot be rejected.

TABLE 2.2

Critical Points of Z for Selected Levels of Significance

Level of Significance EEEE
0.10 0.05 0.01

One-tailed test ±1.28 ±1.645 ±2.326
Two-tailed test ±1.645 ±1.96 ±2.576
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Example 5

! Assuming the data of example 1, test the following hypothesis:

H0 :µ = 60
Ha :µ ≠ 60
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Example 5 – Answer (I)

! Relevant formulas:
Ø Confidence interval: 
Ø Standardized test statistic: 

! Test of hypothesis:

! Let X be the continuous variable of “vehicular speed on a 
specific road”.

! It is said that: µ = 58,86km/h; s = 5,5km/h; and n =1296.

. (2.2)

Equation 2.2 reveals that, with a large number of intervals computed from
different random samples drawn from the population, the proportion of
values of  for which the interval  captures Q
is 0.95. This interval is called the 95% confidence interval estimator of Q. A
shortcut notation for this interval is

. (2.3)

Obviously, probabilities other than 95% can be used. For example, a 90%
confidence interval is

.

In general, any confidence level can be used in estimating the confidence
intervals. The confidence interval is , and  is the value of Z such
that the area in each of the tails under the standard normal curve is .
Using this notation, the confidence interval estimator of Q can be written as

. (2.4)

Because the confidence level is inversely proportional to the risk that the
confidence interval fails to include the actual value of Q, it generally ranges
between 0.90 and 0.99, reflecting 10% and 1% levels of risk of not including
the true population parameter, respectively.

Example 2.1

A 95% confidence interval is desired for the mean vehicular speed on
Indiana roads (see Example 1.1 for more details). First, the assumption
of normality is checked; if this assumption is satisfied we can proceed
with the analysis. The sample size is n = 1296, and the sample mean is

= 58.86. Suppose a long history of prior studies has shown the popu-
lation standard deviation as W = 5.5. Using Equation 2.4, the confidence
interval can be obtained:
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standard deviation to be W = 5.5. The parameter of interest is the
population mean, and the hypotheses to be tested are

.

From Example 2.1, a 95% confidence interval for mean speeds is [58.56,
59.16]. Because the value 59.5 mph is not within the confidence interval,
the null hypothesis is rejected. Thus, there is sufficient evidence to infer
that mean speed is not equal to 59.5 mph.

An alternative method for obtaining this result is to use the standardized
test statistic presented in Equation 2.9 and follow the appropriate deci-
sion rules. The test statistic is

.

Since the test statistic |–3.27| = 3.27 is greater than 1.96, the critical value
for a two-tailed test at the 5% level of significance, the null hypothesis
is rejected. As expected, a confidence interval and the standardized test
statistic lead to identical conclusions.

2.2.3 The p-Value of a Hypothesis Test

An increasingly common practice in reporting the outcome of a statistical test
is to state the value of the test statistic along with its “probability-value” or
“p-value.” The p-value is the smallest level of significance E that leads to
rejection of the null hypothesis. It is an important value because it quantifies
the amount of statistical evidence that supports the alternative hypothesis. In
general, the more evidence that exists to reject the null hypothesis in favor of
the alternative hypothesis, the larger the test statistic and the smaller is the p-
value. The p-value provides a convenient way to determine the outcome of a
statistical test based on any specified Type I error rate E; if the p-value is less
than or equal to E, then the null hypothesis is rejected. For example, a p-value
of 0.031 suggests that a null hypothesis will be rejected at E = 0.05, but will
not be rejected at E = 0.01. Using p-values will always lead to the same
conclusions as the usual test procedure given a level of significance E.

The p-value of  is calculated as follows:

.
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H0 :µ = 60
Ha :µ ≠ 60
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Example 5 – Answer (II)
! Interval of confidence

Ø Since the value of 60km/h is within the rejection area, then we reject the 
null hypothesis, that the mean speed in that road is 60km/h.

! Standardized test statistic

Ø Since the test statistic |–7,46| = 7,47 is greater than 1,96, the critical value 
for a two-tailed test at the 5% level of significance, the null hypothesis is 
rejected. 

Ø As expected, a confidence interval and the standardized test statistic lead 
to identical conclusions.

X ± Zα
2
×
σ

n
⇔ 58,86±1,96× 5,5

1296
⇔ 58,86±0,30⇔ 58,56;59,16#$ %&

Z*= X −µ
σ

n

=
58,86−60,00
5,5

1296

= −7,46
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Hypothesis tests (VI)

! Testing the Population Mean with Unknown Variance

! Testing the Population Variance

! Testing for a Population Proportion

, where t* has t distribution with n-1 degrees of freedom

, where X2* has c2 distribution with n-1 degrees of 
freedom, when the population variance is normally 
distributed  with variance equal to s2.

As a result, the null hypothesis  is rejected at the 0.05 and 0.01
levels, because the p-value of the test is 0.001.

2.3 Inferences Regarding a Single Population

The previous section discussed some of the essential concepts regarding
statistical inference and hypothesis tests concerning the mean of a population
when the variance is known. However, this test is seldom applied in practice
because the population standard deviation is rarely known. The section was
useful, however, because it provided the framework and mechanics that are
universally applied to all types of hypothesis testing.

In this section, techniques for testing a single population are presented.
The techniques introduced in this section are robust, meaning that if the
samples are nonnormal the techniques are still valid provided that the
samples are not extremely or significantly nonnormal. Under extreme
nonnormality, nonparametric methods should be used to conduct the
equivalent hypothesis tests (see Section 2.5 for a discussion on nonpara-
metric tests).

2.3.1 Testing the Population Mean with Unknown Variance

Applying the same logic used to develop the test statistic in Equation 2.9, a
test statistic for testing hypotheses about Q�� given that W2 is not known and
the population is normally distributed, is

, (2.10)

which has a t distribution with n – 1 degrees of freedom.

Example 2.6

Similar to the previous example, a test of whether the mean speed on
Indiana roads is 60 mph is conducted at the 5% significance level. The
sample size is n = 1296, and the sample mean is  = 58.86. As is most
often the case in practice, W2 is replaced with s = 4.41, the estimated
standard deviation. The statistical hypotheses to be tested are

.
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Using Equation 2.10, the value of the test statistic is

.

The test statistic is very large, and much larger than any reasonable
critical value of t (Table C.2), leading again to a rejection of the null
hypothesis. That is, the evidence suggests that the probability of observ-
ing these data, if in fact the mean speed is 60 mph, is extremely small
and the null hypothesis is rejected.

Why is the test statistic so large, providing strong objective evidence to
reject the null hypothesis? If the sample size were 36 instead of 1296, the
test statistic would yield 0.81, leading to the inability to reject the null
hypothesis. It is the square root of n in Equation 2.10 that dominates this
calculation, suggesting that larger samples yield more reliable results.
This emphasizes an earlier point: lack of evidence to reject the null
hypothesis does not mean that the null hypothesis is true; it may mean
that the effect is too small to detect , the sample size is too small,
or the variability in the data is too large relative to the effect.

2.3.2 Testing the Population Variance

With the same logic used to develop the confidence intervals for W2 in Equa-
tion 2.7, the test statistic used for testing hypotheses about W2 (with s2 the
estimated variance) is

, (2.11)

which is G2 distributed with n � 1 degrees of freedom when the population
variance is approximately normally distributed with variance equal to W2.

Example 2.7

A test of whether the variance of speeds on Indiana roads is larger than
20 is calculated at the 5% level of significance, assuming a sample size
of 100. The parameter of interest is the population variance, and the
hypothesis to be tested is
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Using results from Example 2.4, the null hypothesis cannot be rejected.
Nevertheless, using Equation 2.11 the test statistic is

.

From Table C.3 in Appendix C, the critical value for a chi-squared random
variable with 99 degrees of freedom, W2 = 0.05 and a right-tailed test is
129.561. As expected, the null hypothesis cannot be rejected at the 0.05
level of significance.

2.3.3 Testing for a Population Proportion

The null and alternative hypotheses for proportions tests are set up in the
same manner as done previously, where the null is constructed so that p is
equal to, greater than, or less than a specific value, while the alternative
hypothesis covers all remaining possible outcomes. The test statistic is
derived from the sampling distribution of  and is given by

, (2.12)

where the estimated sample proportion  is equal to the number of “suc-
cesses” observed in the sample divided by the sample size, n, and q = 1 – p.

Example 2.8

The transit planning agency mentioned in Example 2.3 tests whether the
transit market share in daily commute is over 20%, at the 5% significance
level. The competing hypotheses are

.

The test statistic is:

.

The test statistic is not sufficiently large to warrant the rejection of the
null hypothesis.
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, where the estimated sample proportion pˆ is equal to 
the number of “successes” observed in the sample 
divided by the sample size, n, and q = 1 – p.
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Example 6

! A test of whether the variance of speeds on Indiana roads 
is larger than 20 is calculated at the 5% level of 
significance, assuming a sample size of 100, the sample 
variance is 19,51km/h. 

! The parameter of interest is the population variance, and 
the hypothesis to be tested is:

Using Equation 2.10, the value of the test statistic is

.

The test statistic is very large, and much larger than any reasonable
critical value of t (Table C.2), leading again to a rejection of the null
hypothesis. That is, the evidence suggests that the probability of observ-
ing these data, if in fact the mean speed is 60 mph, is extremely small
and the null hypothesis is rejected.

Why is the test statistic so large, providing strong objective evidence to
reject the null hypothesis? If the sample size were 36 instead of 1296, the
test statistic would yield 0.81, leading to the inability to reject the null
hypothesis. It is the square root of n in Equation 2.10 that dominates this
calculation, suggesting that larger samples yield more reliable results.
This emphasizes an earlier point: lack of evidence to reject the null
hypothesis does not mean that the null hypothesis is true; it may mean
that the effect is too small to detect , the sample size is too small,
or the variability in the data is too large relative to the effect.

2.3.2 Testing the Population Variance

With the same logic used to develop the confidence intervals for W2 in Equa-
tion 2.7, the test statistic used for testing hypotheses about W2 (with s2 the
estimated variance) is

, (2.11)

which is G2 distributed with n � 1 degrees of freedom when the population
variance is approximately normally distributed with variance equal to W2.

Example 2.7

A test of whether the variance of speeds on Indiana roads is larger than
20 is calculated at the 5% level of significance, assuming a sample size
of 100. The parameter of interest is the population variance, and the
hypothesis to be tested is
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Example 6 – Answer (I)

! Relevant formulas:
Ø Standardized test statistic: 

! Test of hypothesis:

! Let X be  the continuous variable of “vehicular speed 
variance on a specific road”.

! It is said that: s2 = 19,51km/h; and n=100.

Using Equation 2.10, the value of the test statistic is

.

The test statistic is very large, and much larger than any reasonable
critical value of t (Table C.2), leading again to a rejection of the null
hypothesis. That is, the evidence suggests that the probability of observ-
ing these data, if in fact the mean speed is 60 mph, is extremely small
and the null hypothesis is rejected.

Why is the test statistic so large, providing strong objective evidence to
reject the null hypothesis? If the sample size were 36 instead of 1296, the
test statistic would yield 0.81, leading to the inability to reject the null
hypothesis. It is the square root of n in Equation 2.10 that dominates this
calculation, suggesting that larger samples yield more reliable results.
This emphasizes an earlier point: lack of evidence to reject the null
hypothesis does not mean that the null hypothesis is true; it may mean
that the effect is too small to detect , the sample size is too small,
or the variability in the data is too large relative to the effect.

2.3.2 Testing the Population Variance

With the same logic used to develop the confidence intervals for W2 in Equa-
tion 2.7, the test statistic used for testing hypotheses about W2 (with s2 the
estimated variance) is

, (2.11)

which is G2 distributed with n � 1 degrees of freedom when the population
variance is approximately normally distributed with variance equal to W2.

Example 2.7

A test of whether the variance of speeds on Indiana roads is larger than
20 is calculated at the 5% level of significance, assuming a sample size
of 100. The parameter of interest is the population variance, and the
hypothesis to be tested is
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Using Equation 2.10, the value of the test statistic is

.

The test statistic is very large, and much larger than any reasonable
critical value of t (Table C.2), leading again to a rejection of the null
hypothesis. That is, the evidence suggests that the probability of observ-
ing these data, if in fact the mean speed is 60 mph, is extremely small
and the null hypothesis is rejected.

Why is the test statistic so large, providing strong objective evidence to
reject the null hypothesis? If the sample size were 36 instead of 1296, the
test statistic would yield 0.81, leading to the inability to reject the null
hypothesis. It is the square root of n in Equation 2.10 that dominates this
calculation, suggesting that larger samples yield more reliable results.
This emphasizes an earlier point: lack of evidence to reject the null
hypothesis does not mean that the null hypothesis is true; it may mean
that the effect is too small to detect , the sample size is too small,
or the variability in the data is too large relative to the effect.

2.3.2 Testing the Population Variance

With the same logic used to develop the confidence intervals for W2 in Equa-
tion 2.7, the test statistic used for testing hypotheses about W2 (with s2 the
estimated variance) is

, (2.11)

which is G2 distributed with n � 1 degrees of freedom when the population
variance is approximately normally distributed with variance equal to W2.

Example 2.7

A test of whether the variance of speeds on Indiana roads is larger than
20 is calculated at the 5% level of significance, assuming a sample size
of 100. The parameter of interest is the population variance, and the
hypothesis to be tested is
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Example 6 – Answer (II)

! The standardized test statistic is:

! The critical value for a chi-squared random variable with 99 
degrees of freedom,  a = 0.05 and a right-tailed test is 
123.??? =chisqr.inv.rt(0,05;99)

! As such, the null hypothesis cannot be rejected at the 0.05 
level of significance.

Using results from Example 2.4, the null hypothesis cannot be rejected.
Nevertheless, using Equation 2.11 the test statistic is

.

From Table C.3 in Appendix C, the critical value for a chi-squared random
variable with 99 degrees of freedom, W2 = 0.05 and a right-tailed test is
129.561. As expected, the null hypothesis cannot be rejected at the 0.05
level of significance.

2.3.3 Testing for a Population Proportion

The null and alternative hypotheses for proportions tests are set up in the
same manner as done previously, where the null is constructed so that p is
equal to, greater than, or less than a specific value, while the alternative
hypothesis covers all remaining possible outcomes. The test statistic is
derived from the sampling distribution of  and is given by

, (2.12)

where the estimated sample proportion  is equal to the number of “suc-
cesses” observed in the sample divided by the sample size, n, and q = 1 – p.

Example 2.8

The transit planning agency mentioned in Example 2.3 tests whether the
transit market share in daily commute is over 20%, at the 5% significance
level. The competing hypotheses are

.

The test statistic is:

.

The test statistic is not sufficiently large to warrant the rejection of the
null hypothesis.
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Hypothesis tests
Comparing two populations

! Comparing parameters of two different populations is extremely 
useful in transport studies
Ø Example: compare quantities such as speeds, accident rates, pavement 

performance, etc.
! These tests could be about:

Ø Differences in means
Ø Differences in proportions
Ø Differences in variances
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Testing the difference between two 
means: Independent samples (I)

! The test of hypothesis and standardized test statistics are:

, (2.13)

where (Q1 – Q2) is the difference between Q1 and Q2 under the null hypothesis.
The expression in the denominator is the standard error of the difference
between the two sample means and requires two independent samples.
Recall that hypothesis tests and confidence intervals are closely related. A
large sample (1 – E)100% confidence interval for the difference between two
population means (Q1 – Q2), using independent random samples is

. (2.14)

When sample sizes are small (n1 e 25 and n2 e 25) and both populations
are approximately normally distributed, the test statistic in Equation 2.13
has approximately a t distribution with degrees of freedom given by

. (2.15)

In Equations 2.13 and 2.14 it is assumed that  and  are not equal.
When  and  are equal, there is an alternative test for the difference
between two population means. This test is especially useful for small
samples as it allows a test for the difference between two population
means without having to use the complicated expression for the degrees
of freedom of the approximate t distribution (Equation 2.15). When two
population variances  and  are equal, then the variances are pooled
together to obtain a common population variance. This pooled variance,

, is based on the sample variance  obtained from a sample of size
n1, and a sample variance  obtained from a sample of size n2, and is
given by

. (2.16)

A test statistic for a difference between two population means with equal
population variances is given by
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, (2.13)

where (Q1 – Q2) is the difference between Q1 and Q2 under the null hypothesis.
The expression in the denominator is the standard error of the difference
between the two sample means and requires two independent samples.
Recall that hypothesis tests and confidence intervals are closely related. A
large sample (1 – E)100% confidence interval for the difference between two
population means (Q1 – Q2), using independent random samples is

. (2.14)

When sample sizes are small (n1 e 25 and n2 e 25) and both populations
are approximately normally distributed, the test statistic in Equation 2.13
has approximately a t distribution with degrees of freedom given by

. (2.15)

In Equations 2.13 and 2.14 it is assumed that  and  are not equal.
When  and  are equal, there is an alternative test for the difference
between two population means. This test is especially useful for small
samples as it allows a test for the difference between two population
means without having to use the complicated expression for the degrees
of freedom of the approximate t distribution (Equation 2.15). When two
population variances  and  are equal, then the variances are pooled
together to obtain a common population variance. This pooled variance,

, is based on the sample variance  obtained from a sample of size
n1, and a sample variance  obtained from a sample of size n2, and is
given by

. (2.16)

A test statistic for a difference between two population means with equal
population variances is given by
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, (2.17)

where the term (Q1 – Q2) is the difference between Q1 and Q2 under the null
hypothesis. The degrees of freedom of the test statistic in Equation 2.17 are

, which are the degrees of freedom associated with the pooled
estimate of the population variance . The confidence interval for a difference
in population means is based on the t distribution with  degrees of
freedom, or on the Z distribution when degrees of freedom are sufficiently
large. A (1 – E)100% confidence interval for the difference between two pop-
ulation means (Q1 – Q2), assuming equal population variances is

. (2.18)

Example 2.9

Interest is focused on whether the repeal of the NMSL had an effect on
the mean speeds on Indiana roads. To test this hypothesis, 744 observa-
tions in the before period and 552 observations in the after the repeal
period are used. A 5% significance level is used. Descriptive statistics
show that average speeds in the before and after periods are  = 57.65
and  = 60.48, respectively. Further, the variances for the before and
after the repeal periods are  = 16.4 and  = 19.1, respectively. The
competing hypotheses are

.

Using Equation 2.13, the test statistic is

.

The test statistic is much larger than 1.96, the critical value for a two-
tailed test at the 5% significance level, and so the null hypothesis is
rejected. This result indicates that the mean speed increased after the
repeal of the NMSL and that this increase is not likely to have arisen by
random chance. Using Equation 2.14, a confidence interval is obtained
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• For small populations a t
distribution is used with the 
following number of degrees of 
freedom
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Testing the difference between two 
means: Independent samples (II)

! When both universe variances are equal there is an 
alternative test for the difference between two population 
means, using the t distribution

Ø This test uses a pooled variance, s2
p

Ø The degrees of freedom in this equation are n1+n2-2
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Example 6

! Interest is focused on whether the cancellation of the NMSL (National 
Maximum Speed Law) had an effect on the mean speeds on Indiana 
roads.

! To test this hypothesis, 744 observations in the period before and 
552 observations in the period after cancellation are used. A 5% 
significance level is used. 

! Descriptive statistics show that average speeds in the before and 
after periods are      = 57,65 and = 60,48, respectively. Further, 
the variances for the before and after the cancellation periods are 
𝑠*#= 16,4 and 𝑠+# = 19,1, respectively. 

! Test the competing hypotheses :

, (2.17)

where the term (Q1 – Q2) is the difference between Q1 and Q2 under the null
hypothesis. The degrees of freedom of the test statistic in Equation 2.17 are

, which are the degrees of freedom associated with the pooled
estimate of the population variance . The confidence interval for a difference
in population means is based on the t distribution with  degrees of
freedom, or on the Z distribution when degrees of freedom are sufficiently
large. A (1 – E)100% confidence interval for the difference between two pop-
ulation means (Q1 – Q2), assuming equal population variances is

. (2.18)

Example 2.9

Interest is focused on whether the repeal of the NMSL had an effect on
the mean speeds on Indiana roads. To test this hypothesis, 744 observa-
tions in the before period and 552 observations in the after the repeal
period are used. A 5% significance level is used. Descriptive statistics
show that average speeds in the before and after periods are  = 57.65
and  = 60.48, respectively. Further, the variances for the before and
after the repeal periods are  = 16.4 and  = 19.1, respectively. The
competing hypotheses are

.

Using Equation 2.13, the test statistic is

.

The test statistic is much larger than 1.96, the critical value for a two-
tailed test at the 5% significance level, and so the null hypothesis is
rejected. This result indicates that the mean speed increased after the
repeal of the NMSL and that this increase is not likely to have arisen by
random chance. Using Equation 2.14, a confidence interval is obtained
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, (2.17)

where the term (Q1 – Q2) is the difference between Q1 and Q2 under the null
hypothesis. The degrees of freedom of the test statistic in Equation 2.17 are

, which are the degrees of freedom associated with the pooled
estimate of the population variance . The confidence interval for a difference
in population means is based on the t distribution with  degrees of
freedom, or on the Z distribution when degrees of freedom are sufficiently
large. A (1 – E)100% confidence interval for the difference between two pop-
ulation means (Q1 – Q2), assuming equal population variances is

. (2.18)

Example 2.9

Interest is focused on whether the repeal of the NMSL had an effect on
the mean speeds on Indiana roads. To test this hypothesis, 744 observa-
tions in the before period and 552 observations in the after the repeal
period are used. A 5% significance level is used. Descriptive statistics
show that average speeds in the before and after periods are  = 57.65
and  = 60.48, respectively. Further, the variances for the before and
after the repeal periods are  = 16.4 and  = 19.1, respectively. The
competing hypotheses are

.

Using Equation 2.13, the test statistic is

.

The test statistic is much larger than 1.96, the critical value for a two-
tailed test at the 5% significance level, and so the null hypothesis is
rejected. This result indicates that the mean speed increased after the
repeal of the NMSL and that this increase is not likely to have arisen by
random chance. Using Equation 2.14, a confidence interval is obtained
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, (2.17)

where the term (Q1 – Q2) is the difference between Q1 and Q2 under the null
hypothesis. The degrees of freedom of the test statistic in Equation 2.17 are

, which are the degrees of freedom associated with the pooled
estimate of the population variance . The confidence interval for a difference
in population means is based on the t distribution with  degrees of
freedom, or on the Z distribution when degrees of freedom are sufficiently
large. A (1 – E)100% confidence interval for the difference between two pop-
ulation means (Q1 – Q2), assuming equal population variances is

. (2.18)

Example 2.9

Interest is focused on whether the repeal of the NMSL had an effect on
the mean speeds on Indiana roads. To test this hypothesis, 744 observa-
tions in the before period and 552 observations in the after the repeal
period are used. A 5% significance level is used. Descriptive statistics
show that average speeds in the before and after periods are  = 57.65
and  = 60.48, respectively. Further, the variances for the before and
after the repeal periods are  = 16.4 and  = 19.1, respectively. The
competing hypotheses are

.

Using Equation 2.13, the test statistic is

.

The test statistic is much larger than 1.96, the critical value for a two-
tailed test at the 5% significance level, and so the null hypothesis is
rejected. This result indicates that the mean speed increased after the
repeal of the NMSL and that this increase is not likely to have arisen by
random chance. Using Equation 2.14, a confidence interval is obtained
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Example 6 – Answer

! Relevant formula and calculation:

Ø Since the test statistic 11,89 is much larger that 1,96, the critical 
value for a two-tailed test at the 5% significance level, and so the 
null hypothesis is rejected.

Ø This result indicates that the mean speed increased after the 
repeal of the NMSL and that this increase is not likely to have 
arisen by random chance. 

Z*=
Xa − Xb( )− µa −µb( )

sa
2

na
+
sb
2

nb

=
60,48−57,65( )−0
19,1
552

+
16,4
744

=11,89
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Testing the difference between two means: 
Paired Observations

! Paired observations exist when the change in one condition is 
tested with the same individuals.

! This results in a improved experiment, because it removes 
variations in the measurements due to different characteristics of 
the individuals. 
Ø For example testing different types of tires on different sets of vehicles or in the 

same set.
! The test of hypothesis is:

, where:  𝜇d the average difference between each pair of observations;
sd standard deviation of the differences
nd number of paired observations

.

Thus, with 95% confidence the increase in speeds from the before to the
after period is between 2.36 and 2.29 mph.

2.4.2 Testing Differences between Two Means: Paired Observations

Presented in this section are methods for conducting hypothesis tests and
for constructing confidence intervals for paired observations obtained
from two populations. The advantage of pairing observations is perhaps
best illustrated by example. Suppose that a tire manufacturer is interested
in whether a new steel-belted tire lasts longer than the company’s current
model. An experiment could be designed such that two new-design tires
are installed on the rear wheels of 20 randomly selected cars and existing-
design tires are installed on the rear wheels of another 20 cars. All drivers
are asked to drive in their usual way until their tires wear out. The
number of miles driven by each driver is recorded so a comparison of
tire life can be tested. An improved experiment is possible. On 20 ran-
domly selected cars, one of each type of tire is installed on the rear wheels
and, as in the previous experiment, the cars are driven until the tires
wear out.

The first experiment results in independent samples, with no relationship
between the observations in one sample and the observations in the second
sample. The statistical tests designed previously are appropriate for these
data. In the second experiment, an observation in one sample is paired with
an observation in the other sample because each pair of “competing” tires
shares the same vehicle and driver. This experiment is called a matched pairs
design. From a statistical standpoint, two tires from the same vehicle are
paired to remove the variation in the measurements due to driving styles,
braking habits, driving surface, etc. The net effect of this design is that
variability in tire wear caused by differences other than tire type is zero
(between pairs), making it more efficient with respect to detecting differences
due to tire type.

The parameter of interest in this test is the difference in means between
the two populations, denoted by , and is defined as . The
null and alternative hypotheses for a two-tailed test case are

.

The test statistic for paired observations is
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with

.

Thus, with 95% confidence the increase in speeds from the before to the
after period is between 2.36 and 2.29 mph.

2.4.2 Testing Differences between Two Means: Paired Observations

Presented in this section are methods for conducting hypothesis tests and
for constructing confidence intervals for paired observations obtained
from two populations. The advantage of pairing observations is perhaps
best illustrated by example. Suppose that a tire manufacturer is interested
in whether a new steel-belted tire lasts longer than the company’s current
model. An experiment could be designed such that two new-design tires
are installed on the rear wheels of 20 randomly selected cars and existing-
design tires are installed on the rear wheels of another 20 cars. All drivers
are asked to drive in their usual way until their tires wear out. The
number of miles driven by each driver is recorded so a comparison of
tire life can be tested. An improved experiment is possible. On 20 ran-
domly selected cars, one of each type of tire is installed on the rear wheels
and, as in the previous experiment, the cars are driven until the tires
wear out.

The first experiment results in independent samples, with no relationship
between the observations in one sample and the observations in the second
sample. The statistical tests designed previously are appropriate for these
data. In the second experiment, an observation in one sample is paired with
an observation in the other sample because each pair of “competing” tires
shares the same vehicle and driver. This experiment is called a matched pairs
design. From a statistical standpoint, two tires from the same vehicle are
paired to remove the variation in the measurements due to driving styles,
braking habits, driving surface, etc. The net effect of this design is that
variability in tire wear caused by differences other than tire type is zero
(between pairs), making it more efficient with respect to detecting differences
due to tire type.

The parameter of interest in this test is the difference in means between
the two populations, denoted by , and is defined as . The
null and alternative hypotheses for a two-tailed test case are

.

The test statistic for paired observations is
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and , (2.19)

where  is the average sample difference between each pair of observa-
tions,  is the sample standard deviation of these differences, and the sam-
ple size, nd, is the number of paired observations. When the null hypothesis
is true and the population mean difference is nd, the statistic has a t distri-
bution with n – 1 degrees of freedom. Finally, a (1 – E)100% confidence
interval for the mean difference  is

. (2.20)

2.4.3 Testing Differences between Two Population Proportions

In this section a method for testing for differences between two population
proportions and drawing inferences is described. The method pertains to
data measured on a qualitative (nominal), rather than a quantitative, scale.
When sample sizes are sufficiently large, the sampling distributions of the
sample proportions  and  and their difference  are approxi-
mately normally distributed, giving rise to the test statistic and confidence
interval computations presented.

Assuming that sample sizes are sufficiently large and the two populations
are randomly sampled, the competing hypotheses for the difference between
population proportions are

.

As before, one-tailed tests for population proportions could be constructed.
The test statistic for the difference between two population proportions when
the null-hypothesized difference is 0 is

, (2.21)

where  is the sample proportion for sample 1,  is the
sample proportion for sample 2, and  symbolizes the combined proportion
in both samples and is computed as follows
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Testing the difference between two 
population proportions

! The method pertains to data measured on a qualitative (nominal), 
rather than a quantitative, scale.

! With samples sufficiently large the difference between proportions is 
approximately normally distributed

! The test of hypothesis is:

! If the difference between proportions is some constant c

, (2.19)

where  is the average sample difference between each pair of observa-
tions,  is the sample standard deviation of these differences, and the sam-
ple size, nd, is the number of paired observations. When the null hypothesis
is true and the population mean difference is nd, the statistic has a t distri-
bution with n – 1 degrees of freedom. Finally, a (1 – E)100% confidence
interval for the mean difference  is

. (2.20)

2.4.3 Testing Differences between Two Population Proportions

In this section a method for testing for differences between two population
proportions and drawing inferences is described. The method pertains to
data measured on a qualitative (nominal), rather than a quantitative, scale.
When sample sizes are sufficiently large, the sampling distributions of the
sample proportions  and  and their difference  are approxi-
mately normally distributed, giving rise to the test statistic and confidence
interval computations presented.

Assuming that sample sizes are sufficiently large and the two populations
are randomly sampled, the competing hypotheses for the difference between
population proportions are

.

As before, one-tailed tests for population proportions could be constructed.
The test statistic for the difference between two population proportions when
the null-hypothesized difference is 0 is

, (2.21)

where  is the sample proportion for sample 1,  is the
sample proportion for sample 2, and  symbolizes the combined proportion
in both samples and is computed as follows

t
X
s

n

d d

d

d

* !
� Q

Xd
sd

Qd

X t
s
nd
d

d

s E 2

p̂1 p̂2
ˆ ˆp p1 2�

H p p

H p pa

0 1 2

1 2

0

0

:

:

� !

� {

Z
p p

p p
n n

*
ˆ ˆ

ˆ ˆ

!
�� 
 �

�� 
 �
¨

ª©
¸

º¹

1 2

1 2

0

1 1 1

p̂ x n1 1 1! p̂ x n2 2 2!
p̂

© 2003 by CRC Press LLC

with

and .

When the hypothesized difference between the two proportions is some
constant c, the competing hypotheses become

.

Equation 2.21 is revised such that the test statistic becomes

. (2.22)

The two equations reflect a fundamental difference in the two null hypoth-
eses. For the zero-difference null hypothesis it is assumed that  and 
are sample proportions drawn from one population. For the non-zero-dif-
ference null hypothesis it is assumed that  and  are sample proportions
drawn from two populations and a pooled standard error of the difference
between the two sample proportions is estimated.

When constructing confidence intervals for the difference between two
population proportions, the pooled estimate is not used because the two
proportions are not assumed to be equal. A large sample (1 – E)100% confi-
dence interval for the difference between two population proportions is

. (2.23)

2.4.4 Testing the Equality of Two Population Variances

Suppose there is interest in the competing hypotheses
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, (2.19)

where  is the average sample difference between each pair of observa-
tions,  is the sample standard deviation of these differences, and the sam-
ple size, nd, is the number of paired observations. When the null hypothesis
is true and the population mean difference is nd, the statistic has a t distri-
bution with n – 1 degrees of freedom. Finally, a (1 – E)100% confidence
interval for the mean difference  is

. (2.20)

2.4.3 Testing Differences between Two Population Proportions

In this section a method for testing for differences between two population
proportions and drawing inferences is described. The method pertains to
data measured on a qualitative (nominal), rather than a quantitative, scale.
When sample sizes are sufficiently large, the sampling distributions of the
sample proportions  and  and their difference  are approxi-
mately normally distributed, giving rise to the test statistic and confidence
interval computations presented.

Assuming that sample sizes are sufficiently large and the two populations
are randomly sampled, the competing hypotheses for the difference between
population proportions are

.

As before, one-tailed tests for population proportions could be constructed.
The test statistic for the difference between two population proportions when
the null-hypothesized difference is 0 is

, (2.21)

where  is the sample proportion for sample 1,  is the
sample proportion for sample 2, and  symbolizes the combined proportion
in both samples and is computed as follows
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, where    is the 
combined proportions 
of both samples

.

When the hypothesized difference between the two proportions is some
constant c, the competing hypotheses become

.

Equation 2.21 is revised such that the test statistic becomes

. (2.22)

The two equations reflect a fundamental difference in the two null hypoth-
eses. For the zero-difference null hypothesis it is assumed that  and 
are sample proportions drawn from one population. For the non-zero-dif-
ference null hypothesis it is assumed that  and  are sample proportions
drawn from two populations and a pooled standard error of the difference
between the two sample proportions is estimated.

When constructing confidence intervals for the difference between two
population proportions, the pooled estimate is not used because the two
proportions are not assumed to be equal. A large sample (1 – E)100% confi-
dence interval for the difference between two population proportions is

. (2.23)

2.4.4 Testing the Equality of Two Population Variances

Suppose there is interest in the competing hypotheses
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.
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Non-Parametric tests

! Non- parametric methods are used in situations where only fewer 
stringent assumptions could be met (less information contained in 
the data)

! Non-parametric methods should be used when:
Ø Sample data are frequency counts
Ø The sample data are measured using an ordinal scale
Ø The research hypothesis are not concerned with specific parameters 

(e.g. µ and  s2)
Ø Requirements like approximate normality, large sample size and 

continuous variables are violated
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The purpose of Sampling

! Transport demand analysis often requires estimates of the 
characteristics of large populations:
Ø Levels of usage of public transportation;
Ø Number of trips per individual;
Ø Car ownership levels.

! Since we cannot survey the entire population, we should resort to 
survey a part of it.

! Sampling makes it possible to estimate these characteristics with 
adequate accuracy while:
Ø Saving money and time;
Ø Reducing survey administration problems;
Ø Minimizing intrusion.
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Definition of sampling terms (I) 

! Population - The set of all things (people, objects, firms, etc.) for 
which we wish to estimate its characteristics.

! Population Element - An individual unit within the population.
! Sampling Unit - An element that makes up a sample such as 

people, dwelling units, stores and products. It could comprise a 
number of population elements such as individual persons in a 
household.

! Sampling Frame - A list of sampling units (or a source of 
information) used to draw a sample. For mobility surveys data 
from the census is very useful.

! Sampling Strategy -The rule of selecting sampling units from the 
sampling frame.
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Definition of sampling terms (II)

! Sampling error -The error in an estimate of a population 
characteristic which is based on a sample rather than a census.

! Non-response bias - The error due to the inability to collect 
information from some respondents in a sample (usually refusals to 
answer the survey).

! Response bias - The error due to systematic distortion of survey 
responses. Several reasons:
Ø social desirability;
Ø prestige seeking;
Ø post purchase or behavior  justification.
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The process

1. Define population
2. Identify sampling frame (List of sampling units)
3. Select sampling strategy (How to select sampling units 

from the sampling frame) 
4. Determine sample size
5. Draw sample/collect data
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Sampling strategies

! Probability Sampling - Any sampling method in which the chance 
of any population element’s inclusion in the sample is known and 
greater than zero.
Ø Can be used to obtain statistically valid estimates of population 

characteristics.
Ø Allows calculation of the magnitudes of sampling errors.

! Non-Probability Sampling - Any sampling method in which the 
probability of any population element’s inclusion in the sample is 
unknown; e.g., convenience and judgmental sampling.
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Sampling methods (I)

! Simple Random Sampling
Ø Each element has an equal chance of being chosen.  

! Systematic Random Sampling
Ø Randomly select a value  between 1 and k=N/n. Choose randomly 1<=j<=k

and then select all the following elements j, j+k… j+(n-1)k.

! Stratified Random Sampling
Ø The population is subdivided (stratified) into mutually exclusive groups;  
Ø A simple random sample is then chosen independently from each group 

(stratum). 
Ø It has a lower variance than a random sample. 
Ø Best when variance within strata is very low.

Total variance = variance between strata + variance within 
strata
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Sampling methods (II)

! Cluster Sampling 
Ø A random sample of groups is selected and all members of the 

groups become part of the sample.
! Multi-Stage Sampling

Ø Consists of several sampling methods used sequentially to select 
groups of sampling units.

! Sequential Sampling
Ø An initial small sample is taken and analyzed. Based on the results, a 

decision is made on subsequent sampling.
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Factors that determine sample size

! Number of groups and subgroups in the sample that need to be 
analyzed 

! Required accuracy / effect size 

! Cost

! Variability within the population 

! Level of confidence and power
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Simple random sample 
Basic formulas 

! Everyone has the same probability of  being interviewed
! The inclusion of someone in the sample doesn´t influence the 

possible inclusion of other

! Estimation of scalar values (average value)

Absolute error for an infinite population :

,where ta/2 is the Student law  for a level of significance of a and sample size of n

Correcting for a finite population 
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Simple random sample 
Basic formulas 

Relative error (in 
number of standard 
deviations ) it becomes 
independent from the 
variance of the variable 
that we want to estimate 

Sample dimension as a function 
of relative error 
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Proportions
Sample size 

For p the proportion of a certain cell the confidence interval semi 
lenght  is:

From the previous expression we have 

When we fix the significance level and the relative error expected 
the sample varies with the ratio (1-p)/p
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Stratified Sample (I)

! The population is divided into strata and a sample is taken from 
each.

! Stratified sampling is worthwhile if
Ø The population variance differs by strata, and/or
Ø The cost of data collection differs by strata.

! Proportionate Allocation

pg the proportion of group g in the population

Nsg sample size in stratum g

Ns total sample size
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Stratified Sample (II)

! Optimal Allocation:
Ø Minimizes variance of the estimator      subject to budget constraint 

(Ben Akiva and Lerman (1985), chapter  8)

, where sg is the standard deviation of stratum g
Cg is the unit cost of data collection in stratum g

! Often it is a 2-step process
Ø Small, simple random sample to learn about strata
Ø Optimal sample

X
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