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Statistical Inference

3 Confidence intervals, hypothesis tests and population comparisons
are statistical tools used in transportation planning (or at least they should
be)

3 They could be used to answer questions as the examples bellow

> Does crash occurrence at a particular intersection support the notion that it is a
hazardous location?

> Do traffic calming measures reduce traffic speeds?

> Does route guidance information implemented via a variable message sign system
successfully divert motorists from congested areas?

> Does altering the levels of operating subsidies to transit systems change their
operating performance?
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Random variable W

3 It corresponds to the mapping outcomes from random processes
> Flipping coins; weather events; pedestrian flows; etc.

3 Examples of random variables definition

1if heads Y = Total mass of students of
X = : .
0if tails random class

3 Why do we need to do this?

> Allows for using mathematical notation and tools to quantify random
processes

> What is the probability of some outcome of a random process?

PX=1)=1—a« P(Y<500)=1—«a
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Discrete vs. Continuous W
Random Variables

3 Discrete variable (X1)

> Variable that can only take on a certain number of distinct or separate
values

3 Continuous variable (X2)
» Variable can have an infinite number of values within an interval
3 Examples

_|1if heads X2 = Total mass of students of
X1 = : .
0if tails - random class .
X1 = Year that a 0 325,6754211... 500
random student was
born

X1 = # of pedestrians crossing X2 = Exact winning time of
the street over 15° 100m run
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Probability distributions of discrete W
random variables

3 X=# of “*heads” after 3 flips of a fair coin (where Heads =0; Tails =1)

3 8 possible outcomes: HHH; HHT;HTH;HTT, THH; THT; TTH; TTT

A

Px=3)=1/8 ] I I ]
0 1 2 3
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Probability distributions of continuous W
random variables &,

3 XIs a continuous random variable

O P(1=<X=<2)=7?=1x1/5=1/5

3 P(4=<X=<4.1/3)=

0 P(2,9=<X=<3,1)=7=0,2x1/5=1/5x1/5=1/25

3 P(2,99=<X=<3,01)=1/50x1/5=1/250

3 P(2,999=<X=<3,001)=1/500x1/5=1/2500

3 P(X=3)=? 1 _A Prob. Density
Function (PDF)
(uniform)

1/5
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Probability distributions of random W

variables
9 Let X = exact time mean speed 1 | Eﬂgugﬁ’zﬁgﬂ
of a traffic flow (uniform) — f(x)
3 What is the prob. of the speed 05_
being exactly 20km/h?
> P(X=20)=0,45777
> NO!!

0 10 20 30 40 50 Kt
a What is the prob. of the speed being approx. 20km/h?
Q P(|X-2|<2)=?

Q Integral of the PDF from 18 to 22 (Green area)

0 P(IX — 20| < 2) = [ f(x).dx
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Confidence Intervals W

3 An interval calculated using sample data that contains the true
population parameter with some level of confidence
> There is a X% probability that it contains the true parameter FEUP
3 This is called a confidence interval (Cl) and can be constructed for an
array of levels of confidence
> Lower confidence limit (LCL)
> Upper confidence limit (UCL).

* The wider a confidence interval, the
more confidence exists that it
contains the true population e >
parameter (e.g., mean, variance, etc. )| 2Tt tenl o st

set formula...

Source: www.sciencesoftware.com
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Confidence Interval W
for p with known o2 |

3 Central Limit Theorem

> Whenever a sufficiently large random sample is drawn from any
population with mean x and standard deviation o, the sample mean is
approximately normally distributed with mean X and standard
deviation G/ Jn.

» Standardization of the variable X is

_ XM where  z-N©.1)

‘= oTin
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Confidence Interval W
for p with known 62 @

< |

Source: www.cnx.org

3 The confidence interval is (I-) ,and Z_, is the value of Z
such that the area in each of the tails under the standarad
normal curve is (a/2).

3 The confidence interval estimator of 1z can be written as:

— o
XtZy, -
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Example 1

3 A 95% confidence interval is desired for the mean vehicular
speed on a specific road. The assumption of normality is
assumed. The sample size is n = 1296, and the sample mean is
58.86. Suppose a long history of prior studies has shown the
population standard deviation as o= 5.5. Calculate the
Confidence Interval for 4.
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Example 1 - Answer

0]

o/2 \/E
3 Let X be the continuous variable of the “vehicular speed on a specific

road”, with mean w and standar deviation o

3 Itis said that:
> n=1296:X=58.86: =55

3 Useful formula: X +Z

3 The confidence interval is the following, for a = 0,05

< 58,86 1,96 x —— % @58,8610,30@[58,56;59,16]

“n f V1296

where, Z_,=1,96 for o = 0,05, assuming that X follows a Normal Distribution.
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Confidence Interval for the Mean with @
Unknown Variance

3 In most cases the population variance is not known. On the contrary,
it is estimated from the data (estimated from the sample data). *

3 When the population variance is unknown and the population is
normally distributed, a (1 — o) confidence interval for 4 is given by:

S

Xtt, —

, Where s is the standard deviation and t_, is the value of the t distribution with n-1
degrees of freedom.
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Assuming the previous example what would be the confidence interval when one considers
that the population variance is not known?

Example 2 - Answer

Answer:
3 Useful formula: X +
% \/_
3 Let X be the continuous variable of the “vehicular speed on a specific road”, with mean u
and standar deviation o.
O Itis said that:
> n=1296; X=58,86; s = 4,41 (if you go back to your calculation of sample standard deviation of
speeds database of the exercise from previour lecture).
3 The confidence interval is the following, for a = 0,05:

= 5886+1.96x L < 58,86£0,24 <>[58,61;59,10]

B f V1296

where, t,=1,96 for & = 0,05 and n-1=1295 Degress of Freedom.
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Confidence Interval for a Population Proportion

3 We might be interested in the relative frequency of some characteristic
In a population

> e.0. % of people who uses public transport

3 An estimate of the population proportion, p, whose estimator is p has an
approximate normal distribution when n is sufficiently large. The mean of
the sampling distribution p is the population proportion p and the standard
deviation is p% ( where g=1-p).

O The (I-a) confidence interval for the population proportion, p is given
by

AN

ﬁizoc/Z %

, Where p is the number “sucesses” devided by the sample size.
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Example 3

3 Atransit planning agency wants to estimate, at a 95% confidence i
level, the share of transit users in the daily commute “market” (% of FEUP
commuters using transit). A random sample of 100 commuters is
obtained and it is found that 28 people in the sample are transit
users. Calculate the confidence interval of the average proportion p
of transit users.
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Example 3 - Answer

VANEIAN

3 Useful formula: p= 7, x rd
2 n

3 Let p be the continuous variable of the “proportion of transit users’.

3 ltis said that:
> n=100;p=28100=028and g = 1- p =0,72.

3 The confidence interval is the following, for a = 0,05:

AN A

A

p=Z, ﬂ©0,28¢1,96*\/
2 n

0,28x0,72
100

< 0,280,088 < [0,192;0,368]

where, Z,,,=1,96 for o = 0,05.
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Confidence Interval for the Population W
Variance

3 Sometimes (e.g. traffic safety), interest is on the population
variance.

> E.g.,variability in speeds is correlated with the frequency of crashes

3 A confidence interval for s?, assuming the population is normally
distributed, is given by

(n-1)s*> (n-1)s’
Xi/2 , X%—oc/2

_ (n—-1)s?

o2

X

and X~ 2 then

> 12,218 the value of the 2 distribution with n-1 degrees of freedom

> The area in the right-hand tail of the distribution is %2, , while the area in
the left-hand tail of the distribution is 2.,
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v2 Distribution @

X

Three x? distributions
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A 95% confidence interval for the variance of speeds on the road of example 1 is

Example 4

desired.
Answer:
2 2
3 Useful formula: | " _21)5 (n _ Ds
Xoy2 X1-ay2

O Let s? be the continuous variable of “sample variance of vehicular speed on a

specific road” .
3 ltis said that:

> n=100; s2=19,51 (if you go back to your calculation of sample standard
deviation of speeds database of the exercise from previous lecture).

0

The confidence interval is the following, for & = 0,05:

2 ? 2
Ky Ky

where, ¥?,»,=129,56 and y7,_,,=74,22, for n-1=99 Degress of Freedom.

: ] - [15,05;26,02]
129,56 74,22

e o fio s -4
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Hypothesis Tests (l)

7 Hypothesis tests are used to assess the evidence on whether a
difference in a population parameter (a mean, variance,
proportion, etc.) between two or more groups is likely to have arisen ~ FEUP
by chance or whether some other factor is responsible for the
difference.

3 Two competing statistical hypotheses:

> The null hypothesis (H,) is an assertion about one or more population
parameters assumed to be true

> The alternative hypothesis, (H.), is the assertion of all situations not
covered by the null hypothesis (i.e., wrong).

3 They constitute a set of hypotheses that covers all possible values of
the parameter or parameters in question.
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Visualization of Hypothesis testing W

Ho : 1=ty
Ha : :u:/: Ho

L

»s &
- L 4

“Z(a/2) 0 Z(a2)
Fail to reject H, [
l{t.":a\ | .“'4" () ' Kk'fa't | ."'.',
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Hypothesis Tests (ll)

3 An hypothesis test aim to determine if is appropriate to reject or not
the null hypothesis.

3 The nature of the hypothesis test is determined by the question being
asked
> E.g., if speed signals are expected to change the mean of vehicle speeds, then
a null hypothesis of no difference in means is appropriate.
3 The process is the following:
> the empirical evidence is assessed

> The results of the test will either refute or fail to refute the null hypothesis
based on a pre-specified level of confidence (/-«).
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Hypothesis Tests (lll)

3 It can never be proved that a statistical hypothesis is true using
the results of a statistical test.

3 We simply admit that H, cannot be ruled out by the observed
data.

3 However, errors do occur among possible results of a test of

hypothesis, including type | and Il errors.
Reality
Test Result H, is true H, is false

Reject Correct decision

Decision
Do not reject
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Visualizing Type | errors W

’//\\ Ho: u = po
\ Hatp# po

95% of all sample =0

means ( X;) are
hypothesized to
be in this region

7
- Mo If we took a sample
Fail to reject the null hypothesis > L > and it was by chance
X1 .

v

Fail to reject the null hypothesis « like x5, we would

Fail o reject the null hypothesis E—— incorrectly reject the
' ' null hypothesis.

A
v

Fail to reject the null hypothesis L

Reject the null hypothesis fsi _ Type | error

Fail to reject the null hypothesis a is the “level of
_ tolerance” or our

X7 tolerance for making a
Type | error.

A
\ 4

A

=2
(@)

A
\4

Fail to reject the null hypothesis
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Visualizing Type Il errors W

’//\\ Ho: u = po
| Hq: p# po

95% of all sample =0

means ( X;) are
hypothesized to
be in this region

If we took a sample
and it was by chance

Ho like x,, we would

Reject the null hypothesis « — > . incorrectly fail to
X1 : :
Reject the null hypothesis 7 > i LeJeCtl;[he null
X2 | , = othesis.
Reject the null hypothesis X | yP
Fail to reject the null hypothesis < _ Type Il error
Reject the null hypothesis ) fsi g B is the probability of
- L — & ! committing Type |l error. The
Reject the null hypothesis X value of B varies with
Reject the null hypothesis “ 7 | > | experimental factors.
7
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Type | and Il errors and Level of W
significance

* As o decreases so does the Type | error. The critical value to reject the null
hypothesis moves outwards thus “capturing” more sample means.

a=0,10 a=0,05 a=0,01

Reject H, Reject H, Fail to Reject H,,
J ( J

Ho Ho Ho

» However the move outward of the critical values may also “capture” a mean from a
different population off to the side. We would fail to reject the null H when indeed we
should. Thus the chance of Type |l error increases as o decreases.
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Main causes of Type | and |l errors

3 When selecting samples we are always subject to the randomness
of data and the chance of getting “wrong” samples

3 We may, by random chance alone, select a sample that is not
representative of the population

> Sample of one “type” of data not ranging the full range of possible
types (for example, by chance only, interview young white collars)

> Sample being in the far out tails of the sampling distribution
3 Sampling techniques may be flawed / biased

> Wrong sample frame

> Wrong sampling approach

> Systematic error in the collection procedure
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Type | and type Il errors, in statistics (lll)

3 Since both probabilities «z and S reflect probabilities of making
errors, they should be kept as small as possible.

> There is a trade-off between the two.
> Usually, the probability of making a Type Il error is often ignored.
3 The smaller the «, the larger the £

> Making « really small increases the probability of making a Type Il error, all
else being equal.

3 The consequences of making Type | and Type Il errors, as well as
the research question, should guide the decision on which statistical
error is least desirable.
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Hypothesis Tests (V)

3 As discussed previously, the decision of whether the null hypothesis
IS rejected (or not) is based on the rejection region.

3 Two tailed test;

H :u=c . _X—H

H u=c

> If [Z'|=Z,, then the probability of observing this value (or larger) is ¢
H, is rejected in favor of H..

> If |Z'|<Z., then the probability of observing this value (or smaller) is
(/—a). H, fails to be rejected.
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Example S

O Assuming the data of example 1, test the following hypothesis: FEUP

H, :u=060
H :u=60
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Example 5 — Answer ()

3 Relevant formulas:

> Confidence interval: XtZ,, %
» Standardized test statistic: 7" = i -l
3 Test of hypothesis: / n
H,:u=60
H_ :u=60

3 Let X be the continuous variable of “vehicular speed on a
specific road".
3 It is said that: 1= 58,86km/h; o= 5,5km/h; and n =1296.
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Example 5 — Answer (Il)
3 Interval of confidence

X < 58,86+1,96x 22 < 58,86+0,30 < [58,56;59,16] ¢

1 f V1296

> Since the value of 60km/h is within the rejection area, then we reject the
null hypothesis, that the mean speed in that road is 60km/h.

3 Standardized test statistic

X - u  58,80-60,00

AL

> Since the test statistic |-7,46| = 7,47 is greater than 1,96, the critical value
for a two-tailed test at the 5% level of significance, the null hypothesis is
rejected.

> As expected, a confidence interval and the standardized test statistic lead
to identical conclusions.

>)<

=-7,46
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Hypothesis tests (VI) W

A Testing the Population Mean with Unknown Variance
~_X-1  wheret hastdistribution with n-1 degrees of freedom ‘4t
S

3 Testing the Population Variance

(1=1)s> where X?"has y? distribution with n-1 degrees of
X* =>——"— freedom, when the population variance is normally
distributed with variance equal to s?.

3 Testing for a Population Proportion

A

7+ — PP where the estimated sample proportion p” is equal to
\P9/m the number of “successes” observed in the sample
divided by the sample size, n,and g = 1-p.
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Example 6

3 A test of whether the variance of speeds on Indiana roads
is larger than 20 is calculated at the 5% level of
significance, assuming a sample size of 100, the sample
variance is 19,51km/h.

3 The parameter of interest is the population variance, and
the hypothesis to be tested is:

H,:6% <20

Ha:cs2 > 20
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Example 6 — Answer (l)

3 Relevant formulas: 2
> Standardized test statistic:. X* = (n=1)s

02

3 Test of hypothesis:
HO:G2 <20

H 6 >20

3 Let X be the continuous variable of “vehicular speed
variance on a specific road".

3 It is said that; s = 19,51km/h; and n=100.
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Example 6 — Answer (ll) W

3 The standardized test statistic Is:

n-1)s*  99(19.51)

62

X?* = ( =96.57

3 The critical value for a chi-squared random variable with 99
degrees of freedom, o =0.05 and a right-tailed test is
123.77?7 =chisqr.inv.rt(0,05;99)

3 As such, the null hypothesis cannot be rejected at the 0.05
level of significance.
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Hypothesis tests W
Comparing two populations |,

3 Comparing parameters of two different populations is extremely ¢%
useful in transport studies FEUP

> Example: compare quantities such as speeds, accident rates, pavement
performance, efc.

3 These tests could be about:
> Differences in means
> Differences in proportions
> Differences in variances
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Testing the difference between two W
means: Independent samples (l) &2

3 The test of hypothesis and standardized test statistics are:

()_(1 _YZ)_(Hl _Hz)

HO:ua_ub:O Z*:
sZ 55
H:pn —u, #0 1 4 72
n,
* For small populations a t N
_ . . ] . S S
distribution is used with the ( /n, ¥ /nz)
. df =
following number of degrees of / (512 T (Sg T
freedom h) o\
n,—1 n,—1

39/59
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Testing the difference between two W
means: Independent samples (ll) &

3 When both universe variances are equal there Is an
alternative test for the difference between two population

means, using the t distribution
t- B ()_(1 —Y:.)_(“[ _.u.:.)
(1 1)

Iso|—+
n

l": ) ]

’ l 2 ."l

> This test uses a pooled variance, s,

oy =1)s; +(n, —1)s;
$2 | 2

l!?

n, +mn, —2
> The degrees of freedom in this equation are n,+n,-2
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Example 6

3 Interest is focused on whether the cancellation of the NMSL (National
Maximum Speed Law) had an effect on the mean speeds on Indiana
roads.

3 To test this hypothesis, 744 observations in the period before and
552 observations in the period after cancellation are used. A 5%

significance level is used.

3 Descriptive statistics show that average speeds in the before and
after periods are X =57,65and X= 60,48, respectively. Further,
the variances for the before and after the cancellation periods are
si=16,4 and s;; = 19,1, respectively.

3 Test the competing hypotheses :  Hy:H, —H, =0

H:u —un, #0
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Example 6 — Answer =

3 Relevant formula and calculation:
(Z—Z)—(ua—ub) (60,48-57,65)~0

R B \/19,1 16,4
a _I__b +
550 " 744

7%= ~11,89

> Since the test statistic 11,89 is much larger that 1,96, the critical
value for a two-tailed test at the 5% significance level, and so the
null hypothesis is rejected.

> This result indicates that the mean speed increased after the
repeal of the NMSL and that this increase is not likely to have
arisen by random chance.
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Testing the difference between two means: W
Paired Observations

7 Paired observations exist when the change in one condition is
tested with the same individuals.

3 This results in a improved experiment, because it removes
variations in the measurements due to different characteristics of
the individuals.

> For example testing different types of tires on different sets of vehicles or in the
same set.

3 The test of hypothesis is:

H,:u, =0 . . X, -
o withH; =W, —H, and ¢ = Sd .
H ., #0 %E

, Where: 4 the average difference between each pair of observations;
sq standard deviation of the differences
ng number of paired observations
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Testing the difference between two W
population proportions g,

3 The method pertains to data measured on a qualitative (nominal),
rather than a quantitative, scale.

3 With samples sufficiently large the difference between proportions is
approximately normally distributed

3 The test of hypothesis is:

—+— combined proportions
. X X, of both samples
and 7 _
n, +n p1_x1/n pz_xz/nz
3 If the difference between proportlons is some constant ¢

Hy:py=p, <0 Z =— (plA Pz)A .
with \/Pl(l—p1)+p2(1—p2)
nl

H,p,—p,=0 with Z° , where p Is the
H,;:p,-p,#0 J

H:p,-p,>0 n,
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Non-Parametric tests W

3 Non- parametric methods are used in situations where only fewer
stringent assumptions could be met (less information contained in
the data)

3 Non-parametric methods should be used when:

> Sample data are frequency counts
> The sample data are measured using an ordinal scale

> The research hypothesis are not concerned with specific parameters
(e.g9. uand &)

> Requirements like approximate normality, large sample size and
continuous variables are violated
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The purpose of Sampling

3 Transport demand analysis often requires estimates of the
characteristics of large populations:

> Levels of usage of public transportation;
> Number of trips per individual;
> Car ownership levels.
3 Since we cannot survey the entire population, we should resort to
survey a part of it.
3 Sampling makes it possible to estimate these characteristics with
adequate accuracy while:
> Saving money and time;
> Reducing survey administration problems;
> Minimizing intrusion.

Phd in Transportation Systems / Transport Demand Modelling 46/59



Definition of sampling terms (I)

3 Population - The set of all things (people, objects, firms, etc.) for
which we wish to estimate its characteristics.

T Population Element - An individual unit within the population.

3 Sampling Unit - An element that makes up a sample such as
people, dwelling units, stores and products. It could comprise a
number of population elements such as individual persons in a
household.

3 Sampling Frame - A list of sampling units (or a source of
information) used to draw a sample. For mobility surveys data
from the census is very useful.

3 Sampling Strategy -The rule of selecting sampling units from the
sampling frame.
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Definition of sampling terms (ll)

3 Sampling error -The error in an estimate of a population L)
characteristic which is based on a sample rather than a census. FEUP

3 Non-response bias - The error due to the inability to collect

information from some respondents in a sample (usually refusals to
answer the survey).

T Response bias - The error due to systematic distortion of survey
responses. Several reasons:
> social desirability;
> prestige seeking;
> post purchase or behavior justification.
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The process

1. Define population
2. |dentify sampling frame (List of sampling units)

3. Select sampling strategy (How to select sampling units
from the sampling frame)

4. Determine sample size
5. Draw sample/collect data
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Sampling strategies

3 Probability Sampling - Any sampling method in which the chance
of any population element’s inclusion in the sample is known and
greater than zero.

> Can be used to obtain statistically valid estimates of population
characteristics.

> Allows calculation of the magnitudes of sampling errors.

3 Non-Probability Sampling - Any sampling method in which the
probability of any population element’s inclusion in the sample is
unknown; e.g., convenience and judgmental sampling.
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Sampling methods (l)

3 Simple Random Sampling
> Each element has an equal chance of being chosen.

3 Systematic Random Sampling

> Randomly select a value between 1 and k=N/n. Choose randomly 1<=j<=k
and then select all the following elements j, j+k... j+(n-1)k.

O Stratified Random Sampling

> The population is subdivided (stratified) into mutually exclusive groups;

> A simple random sample is then chosen independently from each group
(stratum).

> It has a lower variance than a random sample.
> Best when variance within strata is very low.

Total variance = variance between strata + variance within
strata

Phd in Transportation Systems / Transport Demand Modelling 51/59



Sampling methods (ll)

3 Cluster Sampling

> A random sample of groups is selected and all members of the
groups become part of the sample.

3 Multi-Stage Sampling

> Consists of several sampling methods used sequentially to select
groups of sampling units.

3 Sequential Sampling

> An initial small sample is taken and analyzed. Based on the results, a
decision is made on subsequent sampling.
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Factors that determine sample size

3 Number of groups and subgroups in the sample that need to be
analyzed

3 Required accuracy / effect size

3 Cost

3 Variability within the population

3 Level of confidence and power
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Simple random sample W
Basic formulas

3 Everyone has the same probability of being interviewed

3 The inclusion of someone in the sample doesn't influence the
possible inclusion of other

3 Estimation of scalar values (average value)
Absolute error for an infinite population : €= Llay2 Jn

Wwhere t,, is the Student law for a level of significance of o and sample size of n

Correcting for a finite population et ')N —n
! \,H\J N
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Simple random sample W
Basic formulas

Relative error (in 1.2
number of standard 1 |T
deviations ) it becomes 0s u
independent from the p°
variance of the variable 06 -
that we want to estimate 0.4 \\
£ 1 ’N —n 02 4
B - = t(r,."'2 — 0 | T T T
Sx vny N 0 100 200 300 400 500

N — Sample size

Sample dimension as a function
of relative error

2 2
. Nt; /2 ta /2
- NB*+tZ, B?
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Proportions W
Sample size |,

For p the proportion of a certain cell the confidence interval semi

lenght is:
(S' — Za ‘-"2 ‘pq
“Nn

From the previous expression we have

Zc?i » (1—p)

BRE

When we fix the significance level and the relative error expected
the sample varies with the ratio (1-p)/p

n =
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Stratified Sample (I)

3 The population is divided into strata and a sample is taken from
each.

3 Stratified sampling is worthwhile if
> The population variance differs by strata, and/or
> The cost of data collection differs by strata.

3 Proportionate Allocation

ng = Pg Ns

p, the proportion of group g in the population leg =1
N, sample size in stratum g
N, total sample size
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Stratified Sample (ll)

3 Optimal Allocation:

> Minimizes variance of the estimator X subject to budget constraint
(Ben Akiva and Lerman (1985), chapter 8)

. DPg9y/ \rc—g
7 Zgzl Pg Og /V"'rC_g ’
, Where o, is the standard deviation of stratum g
C, is the unit cost of data collection in stratum g
3 Often it is a 2-step process
> Small, simple random sample to learn about strata

> Optimal sample

N
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