
Advanced Plasma Physics

Computational Projects

In these notes, we enclose the basic ideas for some interesting computational problems for those
students who have not yet decided what project to tackle. This is a proposal that we may discuss
in the classes and adapt to your own interests. Be aware that the most fruitful projects are those
which we have fun with.

1 Ion-solitonic turbulence

As we have seen, ion waves deviate from their acoustic behaviour for short enough wavelengths,
i.e. kλDe ∼ 1. This is a manifestation of the violation of the quasi-neutrality condition ne ' ni,
and the ion waves become dispersive. When taking into account the non-linearity in the convection
term in the fluid equations, dispersion competes with the non-linearity and gives origin to solitons,
as described by the Kortweg-de Vries (KdV) equation. Solitons are non-linear waves that behave
as particles, as they do not deform much.

In strong turbulence situations, we may expect that an array of solitons may be produced.
As such, we could describe a turbulent ion plasma waves as a “gas” of solitons. As such, if you
promote solitons to particles, they must admit their own kinetic description. This project aims
at constructing a kinetic (Klimontovich) equation for KdV solitons. For that, you should start by
writting the Lagrangian from which KdV solitons arise and then construct the two-soliton inter-
action. Once you have done that, you can use the variational method to express the Hamiltonian
of each (xi, vi) pair of solitons and consider that the gas interacts via two-body potentials, then
culminating in a Vlasov-like equation for solitons. You final task will be comparing your model
with the numerical solutions of the KdV equations for a gas of solitons. A similar approach to
dark-solitons in Bose-Einstein condensates can be found here, while a discussion for KdV solitons
can be checked here.

2 Vlasvov-Poisson systems with particle-in-cell (PIC) methods

As we have seen in class, Vlasov equations can be obtained from the smoothening of the Klimon-
tovich equation. One very simple and efficient approach to the Klimontovich equation (and eventu-
ally Vlasov) is based on the particle-in-cell (PIC) method. The latter consists in drawing randomly
a finite number of particles and evolving them in time according to the Lorentz force. The phase-
space is divided into cells, composed of a number or particles Nc, for which the fields are computed.
Then, each “superparticle” (in a total ofNp) is evolved in agreement with the field resulting from the

averaging inside each cell. Considering a 1d problem, f = f(x, v, t) =
∑
k

δ(x− xk(t))δ(v − vk(t)),

the relevant equations to be solved are

ẋk = vk, v̇k =
q

m
E(xk, t).
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Discretizing time in intervals of t∆t, the leap-frog method can be used to compute the quantities
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You may use develop your own PIC code to investigate the validity of some of the features investigate
in classes

a) Dispersion relation of Langmuir waves

b) Non-linear regimes of the Landau Damping

c) Saturation of two stream instabilities.

A nice starting point for the numerical implementation of PICs can be found here. A home-made
PIC cold developed by our colleague Ricardo Fonseca at IST is the ZPIC, that you can download
and run here.

3 Plasmon instabilities in dual-gate field-effect transistors (FETs)

As we have seen in class, a gated two-dimensional plasma - a field-effect transistor (FET) - can
display instabilities due to the presence of asymmetric boundary conditions between the source and
the drain (the celebrated Dyakonov-Shur instability).
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Figure 1: Left panel: the schematics of a field-effect transistor (FET) configuration. The asym-
metric boundary conditions lead to the Dyakonov-Shur instability. Right panel: the 2D electron
density at the drain as a function of time, displaying an initial linear growth followed by nonlinear
saturation.

You could try to investigate another instability mechanism taking place in dual-gated FETs,
i.e. in a configuration where the gate voltages vary periodically between two values, U1 and U2. We
may expect that the successive wave reflections may be amplified, leading to the “plasma bloom”
instability. You could modify TETHYS - the 2D hydrodynamical code developed by Pedro Cosme
- and investigate the dynamical aspects of the plasma bloom instability. You may also develop an
analytical model to predict some features, such as the instability growth rate, and compare with
your code.

4 Magnetized plasmonic instabilities in Corbino FETS

Another interesting configuration to investigate instabilities in 2DEGs is the so-called Corbino ge-
ometry, consisting of a FET of cylindrical geometry. These configuration is particularly interesting
for investigations of the viscosity of electrons in graphene, for example. Following the lines of the
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Figure 2: Left panel: A field-effect transistor in the Corbino geometry. The scheme of Phys. Rev.
Lett. 113, 235901 (2014) used to investigate the viscosity of graphene electrons. (Copyright)

authors M. Khavronin and collaborators in Phys. Rev. Applied 13, 064072, you could investigate
the dynamics of the plasma in the presence of magnetic field. For that, you could be interested in
adapting the 2D version of TETHYS.
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