

Sistemas Digitais (SD)

Circuitos Sequenciais Básicos: Flip-Flops

Aula Anterior

Na aula anterior:

- ► Elementos básicos de memória
- ▶ Latches
 - Latch RS
 - Latch RS sincronizado
 - Latch D
- ▶ Flip-Flops

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
01/Mar a 05/Mar	Introdução	Sistemas de Numeração	
08/Mar a 12/Mar	Álgebra de Boole	Elementos de Tecnologia	
15/Mar a 19/Mar	Funções Lógicas	Minimização de Funções	VHDL
22/Mar a 26/Mar	Minimização de Funções	Def. Circuito Combinatório; Análise Temporal	P1
29/Mar a 02/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
05/Abr a 09/Abr	Circuitos Combinatórios	Circuitos Combinatórios	L1
12/Abr a 16/Abr	Circuitos Combinatórios	Circuitos Sequenciais: Latches	P2
19/Abr a 23/Abr	Circuitos Sequenciais: Flip-Flops	Caracterização Temporal	P3
26/Abr a 30/Abr	Registos	Contadores	L2
03/Mai a 07/Mai	Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	P4
10/Mai a 14/Mai	Síntese de Circuitos Sequenciais Síncronos	Memórias	L3
17/Mai a 21/Mai	Exercícios Tes	Máq. Estado Microprogramadas: Circuito de ste 1)dos e Circuito de Controlo	P5
24/Mai a 28/Mai	Máq. Estado Microprogramadas: Microprograma	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	P6
31/Mai a 04/Jun	Lógica Programável	P7	L4
07/Jun a 11/Jun			

Sumário

■ Tema da aula de hoje:

- ▶ Flip-Flops
 - Flip-flop master-slave
 - Flip-flop JK
 - Flip-flop edge-triggered
- ▶ Simbologia

Bibliografia:

- M. Mano, C. Kime: Secções 5.3 e 5.6
- G. Arroz, J. Monteiro, A. Oliveira: Secção 6.4

Circuitos Síncronos

Latches vs. Flip-Flops

Os circuitos básicos de memória podem ser classificados em latches e flip-flops.

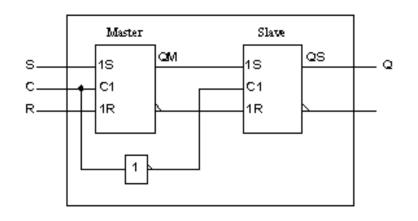
Latches:

- Se a entrada de activação (enable) de um latch sincronizado estiver ligada ao sinal de relógio, o seu estado está continuamente a ser actualizado enquanto o relógio estiver a 1.
- Como não é possível garantir que o estado dos latches se mantem estável durante a fase em que o sinal de relógio estiver a 1, não é também possível garantir que todos os latches mudem sincronamente num circuito complexo.
- Os latches têm aplicações muito específicas (menos complexos, mais rápidos), nomeadamente em <u>circuitos assíncronos</u>.

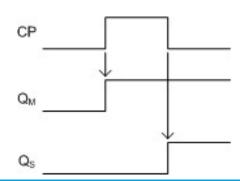
Circuitos Síncronos

Latches vs. Flip-Flops

 Os circuitos básicos de memória podem ser classificados em latches e flip-flops.

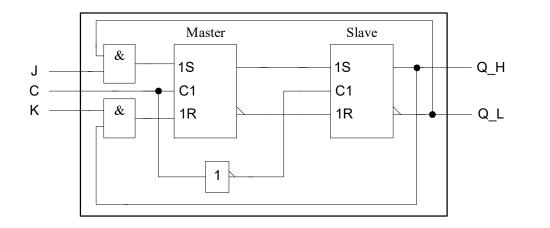

Flip-Flops:

- Os flip-flops mudam as saídas apenas quando há uma variação do relógio (diz-se que são sensíveis ao <u>flanco</u>).
- Este modo de funcionamento garante que o seu estado só é alterado uma única vez em cada período de relógio.
- Esta característica permite que se utilize quase todo o período de relógio para geração de novos valores nas entradas.
- Os <u>circuitos síncronos</u> utilizam, na grande maioria dos casos, flip-flops (sensíveis ao flanco).



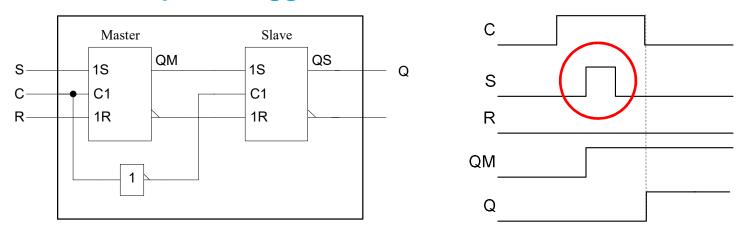
Flip-Flop Master-Slave

- ▶ O flip-flop Master-Slave consiste na ligação em cascata de 2 latches sincronizados, com sinais de controlo complementares.
- ► Funcionamento: o mestre "aceita" ordens de Set ou Reset enquanto C = 1, mas só "passa" a ordem ao escravo quando C = 0;
- ▶ Do ponto de vista das saídas externas o estado apenas muda após a transição de 1 → 0 do relógio.


Exemplo: S=1 R=0

Caso Particular: Flip-Flop JK Master-Slave

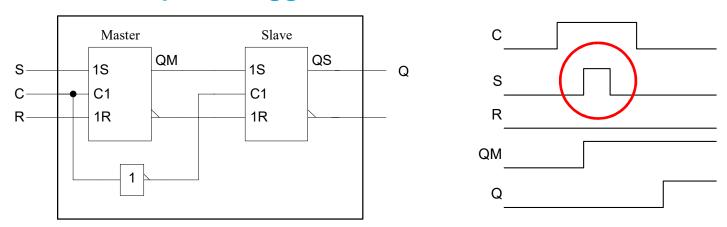
▶ O flip-flop JK permite eliminar o estado indefinido, mantendo 2 entradas e, portanto, 4 funcionalidades distintas.


J	K	Q _{n+1}	
0	0	Q_n	HOLD
0	1	0	RESET
1	0	1	SET
1	1	$\overline{Q_n}$	TOGGLE

Nota: continua a só existir mudança de estado (variação nas saídas) após a transição de relógio de $1 \rightarrow 0$.

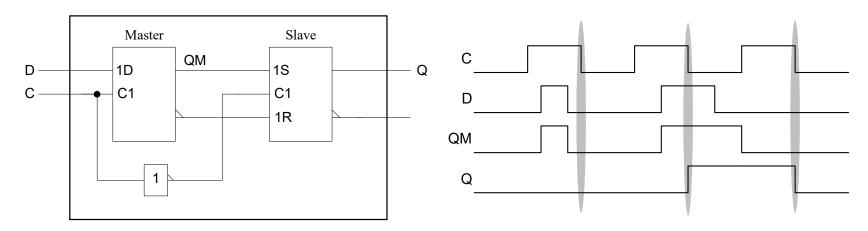
Flip-Flops Master-Slave

➤ Os flip-flops master-slave respondem aos valores na entrada que existam durante o semi-período em que C = 1. Por isso, são também chamados de pulse-triggered.

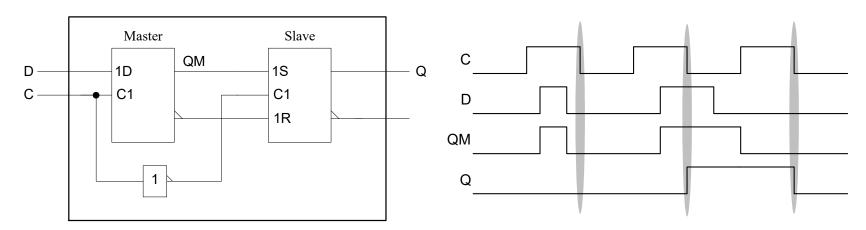


▶ No entanto, para o seu funcionamento correcto, não devem ser permitidas variações nas entradas durante o pulso de relógio.

Flip-Flops Master-Slave

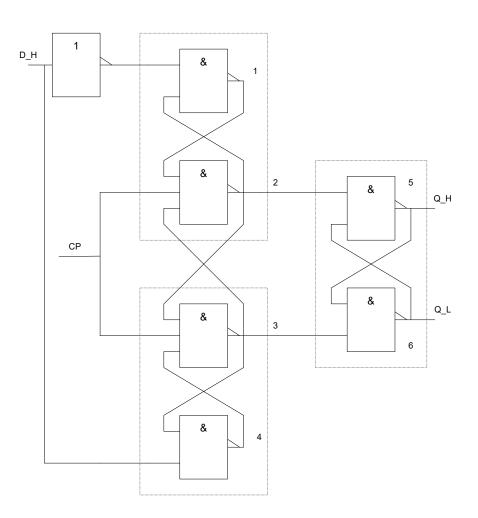

▶ Os flip-flops master-slave respondem aos valores na entrada que existam durante o semi-período em que C = 1. Por isso, são também chamados de pulse-triggered.

Problema: se durante o pulso de relógio R = 0 e S = 0 → 1 → 0, esperar-se-ia que o flip-flop mantivesse o estado, pois a última ordem é de HOLD. No entanto, o Mestre respondeu à ordem de SET e é essa ordem que é passada ao Escravo.


Flip-Flops Edge-Triggered

- ➤ Os flip-flops edge-triggered ignoram o pulso enquanto este se mantém num valor constante, e apenas reagem à transição de relógio.
- ▶ Uma estrutura tipo master-slave em que o Mestre é um flip-flop D funciona como edge-triggered (e não como pulse-triggered): o estado que é passado do Mestre para o Escravo é sempre o estado definido pelas entradas na transição de relógio.

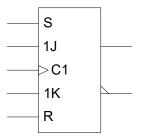
Flip-Flops Edge-Triggered


- ➤ Os flip-flops dizem-se positive-edge-triggered se reagem à transição de relógio 0 → 1.
- ➤ Os flip-flops dizem-se negative-edge-triggered se reagem à transição de relógio 1 → 0.

Flip-Flop D Edge-Triggered

Os flip-flops D positive-edgetriggered são habitualmente realizados com o circuito ao lado.

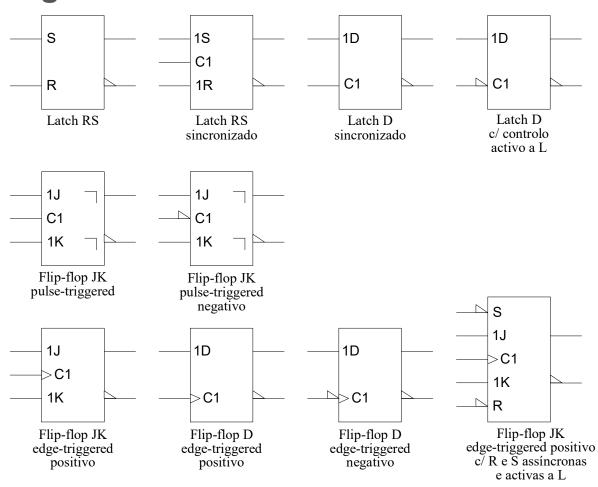
CP	D_H	Q_{n+1}
	L	L
	Н	Н
	-	Qn
L	-	Qn
Н	_	Qn



Entradas Assíncronas

- ► Alguns flip-flops incluem entradas adicionais que permitem fazer o SET ou o RESET <u>assíncronamente</u>, i.e., independentemente do relógio.
- ▶ A entrada de **set assíncrono** é também às vezes designada por "direct set" ou "preset", e a entrada de **reset assíncrono** é também às vezes designada por "direct reset" ou "clear".

Exemplo:


Flip-flop JK com R e S assíncronos

S	R	С	J	K	Q _{n+1}	
0	0	\uparrow	0	0	Q _n	HOLD
0	0	\uparrow	0	1	0	RESET
0	0	\uparrow	1	0	1	SET
0	0	\uparrow	1	1	\overline{Q}_n	TOGGLE
1	0	X	Χ	Χ	1	SET
0	1	X	Χ	Χ	0	RESET
1	1	X	Χ	Χ	U	Indefinido

Latches e Flip-Flops

Simbologia

Próxima Aula

Tema da Próxima Aula:

- ▶ Caracterização temporal
- ► Metodologia de sincronização temporal

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás