

Operational Research at the service of Operating Room Management

Daniel Santos, Inês Marques

Centre for Management Studies, Instituto Superior Técnico, University of Lisbon

KU Leuven, February 24, 2020

ImproveOR

Building decision support tools for improved Operating Room Management

Scope

Surgical activity has a substantial impact in hospitals.

- concerns with equity and speed of access;
- increasing demand but scarce resources.

Surgical activity has a substantial impact in hospitals.

- concerns with equity and speed of access;
- increasing demand but scarce resources.

Operational Research techniques can help but need to **take into account real-life issues such as uncertainty, stakeholder preferences, etc.,** in order to be applicable in practice.

This is especially important in the health care sector since "workers" are **highly-specialized**, "customers" present with possible **life-threatening** situations, and demand for resources (e.g., surgical time, beds, etc.) is **never certain**.

Part I

Designing master surgery schedules with downstream unit integration via stochastic optimization

- Introduction
- 2 The master surgery scheduling problem
- 3 Downstream unit integration
- 4 Stochastic optimization model
- 5 Preliminary (proof of concept) results
- 6 Conclusion

Introduction

A master surgery schedule is a timetable for the operating theater.

- strategic decisions define the operating theater time blocks;
- surgical specialties/groups or surgeons are allocated to those blocks;
- tactical decision and cyclical.

	Mon		Tue		Wed		Thu		Fri	
Room	1	2	1	2	1	2	1	2	1	2
М	<i>SS</i> ₄	SS_2	SS_1	<i>SS</i> ₃	<i>SS</i> ₄	SS_2	SS_1	<i>SS</i> ₃	SS_4	SS ₄
Α	SS_1	SS_2	SS_1	SS_3	SS_1	SS_1	SS_1	SS_3	SS_4	SS ₃

Table: Example of a master surgery schedule - one week, two ORs, two shifts.

Introduction

Tactical decision:

- demand and availability for each specialty is known;
- surgeries are not scheduled at this point, however
- predicted impact should be taken into account.

Introduction

Tactical decision:

- demand and availability for each specialty is known;
- surgeries are not scheduled at this point, however
- predicted impact should be taken into account.

Downstream unit integration:

- wards, ICU, ...;
- overutilization leads to cancellations or early discharges;
- strong impact on patient safety;
- historical data can be used to predict utilization rates.

The master surgery scheduling problem

Formal definition

Master surgery (block) scheduling problem:

- assign surgical specialties to operating theater time blocks;
- minimize or maximize some objective;
- subject to demand and availability;
- subject to cyclical nature;
- subject to ...

Sets and indices					
$t \in T$	days in the master surgery schedule cycle				
$s \in S$	surgical specialties				
$b \in B$	operating theater time blocks (day, room and shift)				
Parameters					
p_s	expected benefit for assigning each surgical specialty				
d_s	demand of each surgical specialty				
a_s	availability of each surgical specialty				
Decision variables					
X_{sb}	1 if surgical specialty s is assigned to block b ; 0 otherwise				

Table: Notation (part 1)

Base formulation

$$\begin{aligned} & \text{Maximize } \sum_{s \in S} \sum_{b \in B} p_s x_{sb} \\ & \text{subject to: } \sum_{s \in S} x_{sb} \leq 1 & \forall b \in B, \\ & \sum_{b \in B} x_{sb} \geq d_s & \forall s \in S, \\ & \sum_{b \in B} x_{sb} \leq a_s & \forall s \in S, \\ & x_{sb} \in \{0,1\} & \forall s \in S, \ \forall b \in B. \end{aligned}$$

Downstream unit integration

Bed requirements

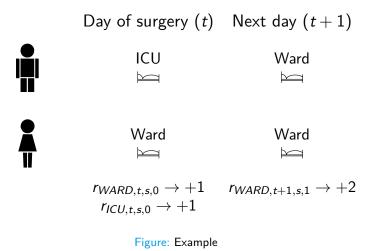
Surgical specialty assigned to a block \Rightarrow patients requiring beds. Instead of "blindly" designing the master surgery schedule, we can take this certain uncertainty into account.

Surgical specialty assigned to a block \Rightarrow patients requiring beds. Instead of "blindly" designing the master surgery schedule, we can take this certain uncertainty into account.

Sets and indices	
$I \in L$	bed types
$\theta \in \{0,1,,\Theta\}$	"days ago"

Table: Notation (part 2)

We define $r_{lts\theta}$ as the number of beds of type l required in day t by surgical specialty s assigned to a block θ days ago. These parameters are random variables with a probability distribution that may be estimated using historical data.



The master surgery schedule is cyclical, but bed requirements are not:

- two cycles: T and U = kT, where $k \in \mathbb{N}$;
- $k = +\infty$ would be more realistic (non-cyclical);
- "sufficiently large" k should be enough.

For every i = 1, ..., k, let U_i be the i-th time period of length T.

- for each time period we have bed requirements $r^{i}_{lts\theta}$;
- identically distributed to $r_{lts\theta}$.

Stochastic optimization model

Subsets					
$B(u-\theta)$	blocks of day $(u- heta) \mod T$, with $u \in U$				
Parameter	S				
C_{I}	number of beds of type / available				
α	penalty for every bed used above capacity				
γ	maximum overutilization				
Decision variables					
УIu	number of extra beds of type \emph{I} used in day \emph{u}				

Table: Notation (part 3)

The benefit parameter "naturally" guarantees that operating rooms are not underutilized \Rightarrow recourse objective function penalizes overutilization:

$$\mathsf{Minimize} \ \sum_{\mathit{I} \in \mathit{L}} \sum_{\mathit{u} \in \mathit{U}} \alpha \ \mathit{y_{\mathit{lu}}}$$

The benefit parameter "naturally" guarantees that operating rooms are not underutilized \Rightarrow recourse objective function penalizes overutilization:

$$\mathsf{Minimize} \ \sum_{\mathit{I} \in \mathit{L}} \sum_{\mathit{u} \in \mathit{U}} \alpha \ \mathit{y_{\mathit{Iu}}}$$

Bed requirements roll over to the following days \Rightarrow add them all up and limit them by the corresponding capacity:

$$\sum_{s \in S} \sum_{\theta=0}^{\Theta} \sum_{b \in B(u-\theta)} r^{j}_{lus\theta} x_{sb} \leq C_{l} + y_{lu} \qquad \forall l \in L, \ \forall i \in \{1, \ldots, k\}, \ \forall u \in U_{i}$$

Most hospitals have dedicated operating room time for non-elective patients:

- whole operating rooms or divided among several;
- pre-planned in the master surgery schedule;
- random variables $\overline{r}_{lt\theta}^{i}$.

Assuming that every urgent patient is admitted:

$$\sum_{s \in S} \sum_{\theta=0}^{\Theta} \sum_{b \in B(u-\theta)} r^{j}_{lus\theta} x_{sb} + \sum_{\theta=0}^{\Theta} \overline{r}^{j}_{lu\theta} \le C_{l} + y_{lu} \quad \forall l \in L,$$

$$\forall i \in \{1, \dots, k\}, \ \forall u \in U_{i}$$

Complete model

$$\begin{split} \text{Maximize} & \sum_{s \in S} \sum_{b \in B} \rho_s x_{sb} - E[Q(x,r)] \\ \text{subject to:} & \sum_{s \in S} x_{sb} \leq 1 \\ & \sum_{b \in B} x_{sb} \geq d_s \\ & \sum_{b \in B} x_{sb} \geq a_s \\ & \sum_{b \in B} x_{sb} \leq a_s \\ & x_{sb} \in \{0,1\} \end{split} \qquad \forall b \in B,$$

where Q(x, r) is the optimal value of the second stage model

$$\begin{split} & \text{Minimize } \sum_{l \in L} \sum_{u \in U} \alpha \ y_{lu} \\ & \text{subject to: } \sum_{s \in S} \sum_{\theta = 0}^{\Theta} \sum_{b \in B(u - \theta)} r^i_{lus\theta} x_{sb} + \sum_{\theta = 0}^{\Theta} \overline{r}^i_{lu\theta} \leq C_l + y_{lu} \quad \ \forall l \in L, \forall i \in \{1, \dots, k\}, \ \forall u \in U_i \\ & 0 \leq y_{lu} \leq \gamma \qquad \qquad \forall l \in L, \ \forall u \in U \end{split}$$

Preliminary (proof of concept) results

Generating patients

For every i-th time period of length T and for every surgical specialty we generate patients (elective and non-elective) which will require a bed:

- the number of patients;
- their paths (ICU only, ICU then ward, ward only);
- their length of stay in the ICU and/or ward;
- \Rightarrow coefficients of the x variables in the bed requirement constraints.

Historical data is fundamental to estimate probabilities (i.e., frequency).

- results so far are based on randomly generated data;
- we are now preparing real data.

Summary of the results

				Wa	ard OvUt	ICU OvUt	
α	γ	Time (s)	Benefit	Max	Avg	Max	Avg
1	0	6	4523	0	0	0	0
1	1	374	4635	1	0.0000412	1	0.000412
1	2	546	4848	2	0.000343	2	0.000962
1	3	49	5143	3	0.000989	3	0.001786
3	0	5	4523	0	0	0	0
3	1	308	4632	1	0.0000412	1	0.000275
3	2	3058	4830	2	0.000247	2	0.000824
3	3	42	5129	3	0.000907	3	0.001374

Table: Preliminary results (T = 7, |S| = 10, $|B| = 10 \times 2$, $k = 52 \times 20$)

Solutions for one sample only \Rightarrow use Benders decomposition.

Conclusion

Conclusions

We present a stochastic optimization model to integrate downstream units in the design of master surgery schedules.

- improve patient safety;
- improve the efficiency of the operating theater;
- different approach compared to the literature;
- solvable sample size can be improved;
- requires real (good) data.

Future work:

- subdividing surgical specialties for a more accurate prediction;
- solving bigger sample sizes and faster using Benders decomposition;
- real data.

Other possible extensions:

- different ICU and/or ward configurations, such as shared wards;
- workload balance among nurses in different wards;
- workload balance among surgeons in the operating room;
- fairness/equity in operating room time distribution (to whom? patients, surgeons, ...).

Part II

(Near) Future research

Stakeholder preferences

In health care, many different groups of highly-specialized people are involved in the decision making.

- doctors, anesthetists, nurses, administration, ...;
- conflicting, although entirely valid, opinions;
- a compromise is needed for the schedule to be accepted in practice;
- are patients stakeholders?

In health care, many different groups of highly-specialized people are involved in the decision making.

- doctors, anesthetists, nurses, administration, ...;
- conflicting, although entirely valid, opinions;
- a compromise is needed for the schedule to be accepted in practice;
- are patients stakeholders?

Step 1:

Write down a list of objectives and constraints arising from stakeholders, both in the field and in the literature.

Step 2:

Develop a generic multi-objective optimization framework that can handle most (all?) requirements simultaneously.

Thank you for your attention!

daniel.rebelo.santos@tecnico.ulisboa.pt

The authors acknowledge the support provided by FCT and P2020 under the project PTDC/EGE-OGE/30442/2017, Lisboa-01.0145-Feder-30442

