- Please justify all your answers.
- This test has two pages and three groups. The total of points is 20.0

Let X_{n} be the amount of inventory in a warehouse at the beginning of day n. Suppose $X_{1}=S$, where S is a fixed positive number. Let D_{n} be the size of the demand on day n and assume that $\left\{D_{n}: n \in \mathbb{N}\right\}$ is a sequence of i.i.d. r.v. with common c.d.f. F. Admit that as soon as the inventory goes below $s(s<S)$, it is instantaneously replenished to S. Then $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a regenerative process.
Draw a sample path of $\left\{X_{n}: n \in \mathbb{N}\right\}$. Determine $\lim _{n \rightarrow+\infty} P\left(X_{n} \geq x\right)$ in terms of $m(t)$, the renewal function generated by the sequence on inter-renewal times $\left\{D_{n}: n \in \mathbb{N}\right\}$.

- Regenerative process

$\left\{X_{n}: n \in \mathbb{N}\right\}$
$X_{n}=$ inventory level at the beginning of day n
$X_{1}=S$
$D_{n}=$ size of the demand on day n
$D_{n} \stackrel{\text { i.i.d. }}{\sim} D \sim F, \quad n \in \mathbb{N}$

- Obs.

$$
X_{n+1}=\left\{\begin{array}{l}
\max \left\{0, X_{n}-D_{n}\right\}, \quad s<X_{n} \leq \\
\max \left\{0, S-D_{n}\right\}, \quad X_{n} \leq s
\end{array}\right.
$$

- Sample path of $\left\{X_{n}: n \in \mathbb{N}\right\}$ and $\{X(t): t \geq 1\}$ (where $X(t)=$ inventory level at time t

- Auxiliary functions and r.v.
$m(t)$, renewal function generated by the sequence on inter-renewal times $\left\{D_{n}: n \in \mathbb{N}\right\}$
$S_{1}=$ time between two days beginning with inventory level equal to S
$E\left(S_{1}\right)=1+m(S-s) \quad$ (check sample path)
$E\left(S_{1}\right)<+\infty \quad$ (the renewal function is finite in finite time)
$U_{x}=$ time spent in state $\leq x$ during $\left[0, S_{1}\right)$
$E\left(U_{x}\right)=m(S-x) \quad$ (check sample path)

- Requested limit

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} P\left(X_{n} \geq x\right) & =\frac{E\left(U_{x}\right)}{E\left(S_{1}\right)} \\
& =\frac{m(S-x)}{1+m(S-s)} .
\end{aligned}
$$

1. Suppose a customer keeps switching between brands $1,2,3$, and 4 every month according to the TPM
$\mathbf{P}=\left[\begin{array}{cccc}0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$
(a) Draw the associated transition diagram and classify the states of this DTMC. Are the states periodic?

- DTMC

$\left\{X_{n}: n \in \mathbb{N}\right\}$
$X_{n}=$ brand acquired on the $n^{t h}$ month

- State space
$\mathscr{S}=\{1,2,3,4\}$
-TPM

- Transition diagram

- Classification of the states of the DTMC

Judging by the transition diagram, all states communicate with one another, thus $\mathscr{S}=$ $\{1,2,3,4\}$ is a finite single closed communicating class [hence the DTMC has a finite state space and is irreducible]. With that being said, [by Prop. 3.35,] all states are positive recurrent.

- The transition diagram leads to the conclusion that we can only return to state 1 after $3,6, \ldots$ transitions, thus $d(1)=g c d\left\{n \in \mathbb{N}: P_{11}^{n}>0\right\}=3$ and this state is aperiodic. The same holds for the remaining states of this closed (and positive recurrent) communicating class, $\mathscr{S}=\{1,2,3\}$. [After all (a)periodicity is a class property.]
(b) Admit the initial brand X_{1} is uniformly distributed in the state space. Calculate the probability that (1.0) the customer acquires brand 4 at the end of the first trimester.

- Initial state

$X_{1} \sim \operatorname{Uniform}(\{1,2,3,4\})$

- Requested probability

Since the initial state of this DTMC is X_{1} (instead of X_{0}) we have to adapt the results in the list of formulae:

$$
\begin{aligned}
\underline{\alpha} & =\left[P\left(X_{1}=i\right)\right]_{i \in \mathscr{S}} \\
& =\left[\begin{array}{lll}
1 / 4 & 1 / 4 & 1 / 4 \quad 1 / 4 \\
\underline{\alpha}^{n} & =\left[P\left(X_{n+1}=i\right)\right]_{i \in \mathscr{S}} \\
& \stackrel{\text { form. }}{=} & \underline{\alpha} \times \mathbf{P}^{n} .
\end{array} .\right.
\end{aligned}
$$

Thus,

$$
\underline{\alpha}^{2}=\left[P\left(X_{2+1}=i\right)\right]_{i \in \mathscr{S}}
$$

$$
=\underline{\alpha} \times \mathbf{P}^{2}
$$

$P\left(X_{2+1}=4\right)=\underline{\alpha} \times \mathbf{P} \times 4$ th. column of \mathbf{P}
$=\underline{\alpha} \times\left[\begin{array}{cccc}0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right] \times\left[\begin{array}{c}0.5 \\ 0 \\ 0 \\ 0\end{array}\right]$
$=\left[\begin{array}{llll}1 / 4 & 1 / 4 & 1 / 4 & 1 / 4\end{array}\right] \times\left[\begin{array}{c}0 \\ 0.5 \\ 0 \\ 0\end{array}\right]$
$=0.125$
(c) Given that $X_{1}=1$, calculate the expected number of months until brand 4 is acquired Note: Check the footnote!

- Importan

Let us consider another DTMC with absorbing state/brand 4 and sub-stochastic matrix get us consider another DetwC with absorbing state/brand 4 and sub-sto
governsitions between the transient states ($T=\{1,2,3\}$) given by

$$
\mathbf{Q}=\left[\begin{array}{ccc}
0 & 0 & 0.5 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- Requested expected value

$\tau=\inf \left\{n \in \mathbb{N}: X_{n} \notin T\right\}$ is the number of monthly acquisitions until brand 4 is acquired. Furthermore [(see Prop. 3.116)], the result in the footnote yields

$$
\left[E\left(\tau \mid X_{1}=i\right)\right]_{i \in T} \stackrel{\text { form. }}{=} \quad(\mathbf{I}-\mathbf{Q})^{-1} \times \underline{1}
$$

$$
=\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
0 & 0 & 0.5 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\right)^{-1} \times \underline{1}
$$

$$
=\left[\begin{array}{ccc}
1 & 0 & -0.5 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]^{-1} \times \underline{1}
$$

$$
=\left[\begin{array}{lll}
2 & 1 & 1 \\
2 & 2 & 1 \\
2 & 2 & 2
\end{array}\right] \times\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] .
$$

Thus, the requested expected value is $E\left(\tau \mid X_{1}=1\right)=4$
(d) What is the probability that the customer acquires brand 4 before brand 3, given $X_{1}=2$? Note: You may have to consider states 3 and 4 absorbing, identify sub-stochastic matrices \mathbf{Q} and \mathbf{R} and calculate $(\mathbf{I}-\mathbf{Q})^{-1} \times \mathbf{R}$.
${ }^{1}$ The following result may come handy: $\left[\begin{array}{ccc}1 & 0 & -0.5 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]^{-1}=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 2 & 1 \\ 2 & 2 & 2\end{array}\right]$

- Important

To calculate the requested probability, we have to consider another DTMC, whose states/brands 3 and 4 (filling) are absorbing and whose associated TPM is

$$
\mathbf{P}^{\star}=\left[\begin{array}{cccc}
0 & 0 & 0.5 & 0.5 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The substochastic matrices governing the transitions between the transient states ($T=\{1,2\}$ of this DTMC and the transitions from the transient to the absorbing states ($\bar{T}=\{3,4\}$) are

$$
\begin{aligned}
\mathbf{Q} & =\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
\mathbf{R} & =\left[\begin{array}{cc}
0.5 & 0.5 \\
0 & 0
\end{array}\right],
\end{aligned}
$$

respectively.

- Requested probability

Keeping in mind that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right],
$$

we get
$\mathbf{U}=\left[u_{i k}\right]_{i \in T, k \in \bar{T}}$
$=\left[P\left(\text { reach absorbing state } k \mid X_{1}=i\right)\right]_{i \in T, k \in \bar{T}}$
$\stackrel{\text { form }}{=}(\mathbf{I}-\mathbf{Q})^{-1} \times \mathbf{R}$
$=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right)^{-1} \times \mathbf{R}$
$=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]^{-1} \times \mathbf{R}$
$=\frac{1}{1 \times 1-(-1) \times 0}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \times\left[\begin{array}{cc}0.5 & 0.5 \\ 0 & 0\end{array}\right]$
$=\left[\begin{array}{ll}0.5 & 0.5 \\ 0.5 & 0.5\end{array}\right]$
Therefore the probability that the customer acquires brand 4 before brand 3, given $X_{1}=2$, is equal to

$$
\begin{aligned}
u_{24} & =P\left(X_{\tau}=4 \mid X_{1}=2\right) \\
& =0.5 .
\end{aligned}
$$

2. Let $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ be a branching process describing the size of generation n. Admit that $X_{0}=1$ and the number of offspring per individual has p.g.f. given by

$$
P(s)=0.15+0.05 s+0.03 s^{2}+0.07 s^{3}+0.4 s^{4}+0.25 s^{5}+0.05 s^{6}, \quad s \in[0,1] .
$$

(a) Verify that the extinction probability is equal to $\pi \simeq 0.159293$.

- Branching proces
$\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$
$X_{n}=$ size of generation n
$X_{0}=1$
$X_{n}=\sum_{l=1}^{X_{n-1}} Z_{l}, n \in \mathbb{N}$

- Number of offspring per individual

$Z_{l} \equiv Z_{l, n}=$ number of offspring of the $l^{t h}$ individual of generation n $Z_{l}^{\text {i.i.d. }} \underset{\sim}{l} Z, l \in \mathbb{N}$

P.g.f. of the number of offspring per individual

$P(s)=E\left(s^{Z}\right)=\sum_{j} s^{j} \times P(Z=j)=0.15+0.05 s+0.03 s^{2}+0.07 s^{3}+0.4 s^{4}+0.25 s^{5}+0.05 s^{6}, s \in[0,1]$
Probability of extinction
Since

$$
\left.E(Z) \stackrel{\text { form. }}{=} \quad \frac{d P(s)}{d s}\right|_{s=}
$$

$=\left.\quad\left(0.05+0.06 s+0.21 s^{2}+1.6 s^{3}+1.25 s^{4}+0.3 s^{5}\right)\right|_{s=}$
$=0.05+0.06+0.21+1.6+1.25+0.3$
$=3.47$
$>\quad 1$
the probability of extinction, $\pi \stackrel{\text { form. }}{=} \lim _{n \rightarrow+\infty} P\left(X_{n}=0 \mid X_{0}=1\right)$, is the smallest positive number satisfying

$$
\pi \stackrel{\text { form. }}{=} \sum_{j=0}^{+\infty} \pi^{j} \times P_{j}
$$

$=P(\pi)$.
Indeed, we have
$0.159293=P(0.159293)$
$\simeq 0.15+0.05 \times 0.159293+0.03 \times 0.159293^{2}+0.07 \times 0.159293^{3}+0.4 \times 0.159293^{4}$ $+0.25 \times 0.159293^{5}+0.05 \times 0.159293^{6}$
$\simeq 0.159293$
(b) Obtain the probability that the process is extinct in the second generation.

- Requested probability

$\pi_{2}=P\left(X_{2}=0 \mid X_{0}=1\right)$
$=\quad P_{2}(0)$
$\stackrel{\text { form. }}{=} \quad P[P(0)]$
$=P\left[0.15+0.05 \times 0+0.03 \times 0^{2}+0.07 \times 0^{3}+0.4 \times 0^{4}+0.25 \times 0^{5}+0.05 \times 0^{6}\right]$
$=\quad P(0.15)$
$=P\left(0.15+0.05 \times 0.15+0.03 \times 0.15^{2}+0.07 \times 0.15^{3}+0.4 \times 0.15^{4}+0.25 \times 0.15^{5}\right.$ $\left.+0.05 \times 0.15^{6}\right)$
$=0.158633$.

Group 3-Continuous time Markov chains

9.0 points

1. Let $X(t)$ be the state of a machine $(0 \equiv \mathrm{on} ; 1 \equiv \mathrm{off})$ at time t. Admit $\{X(t): t \geq 0\}$ is a CTMC with transition probability matrix given by

$$
\mathbf{P}(t)=\left[\begin{array}{cc}
0.6+0.4 e^{-5 t} & 0.4-0.4 e^{-5 t} \\
0.6-0.6 e^{-5 t} & 0.4+0.6 e^{-5 t}
\end{array}\right]
$$

(a) Determine $P[X(3.4)=1, X(3.8)=0 \mid X(0)=0]$.

- CTMC

$\{X(t): t \geq 0\}$
$X(t)=$ state of a machine at time t

- State space

$\mathscr{S}=\{0,1\}$
$0 \equiv$ on; $1 \equiv$ off

- TPM

$$
\mathbf{P}(t)=[P[X(t)=j \mid X(0)=i]]_{i, j \in \mathscr{S}}=\left[\begin{array}{ll}
0.6+0.4 e^{-5 t} & 0.4-0.4 e^{-5 t} \\
0.6-0.6 e^{-5 t} & 0.4+0.6 e^{-5 t}
\end{array}\right]
$$

- Requested probability

$$
\begin{array}{rll}
P[X(3.4)=1, X(3.8)=0 \mid X(0)=0] \quad & = & P[X(3.4)=1 \mid X(0)=0] \\
& \times P[X(3.8)=0 \mid X(3.4)=1, X(0)=0] \\
& \\
& \text { Markovprop. } & P[X(3.4)=1 \mid X(0)=0] \\
& \times P[X(3.8)=0 \mid X(3.4)=1] \\
& \text { timehomog. } & P[X(3.4)=1 \mid X(0)=0] \\
& & \times P[X(0.4)=0 \mid X(0)=1] \\
& = & \left(0.4-0.4 e^{-5 \times 3.4}\right) \times\left(0.6-0.6 e^{-5 \times 0.4}\right) \\
& \simeq & 0.207520 .
\end{array}
$$

(b) Derive the infinitesimal generator \mathbf{R} of this CTMC and draw the associated rate diagram.

- Infinitesimal generator

This matrix has entries

$$
r_{i j}= \begin{cases}q_{i j}, & i \neq j \\ -v_{i}=-\sum_{m \in \mathscr{S}} q_{i m}, & j=i\end{cases}
$$

where

$$
\begin{aligned}
q_{i j} & =\lim _{h \rightarrow 0^{+}} \frac{P_{i j}(h)}{h}, i \neq j \\
v_{i} & =\lim _{h \rightarrow 0^{+}} \frac{1-P_{i i}(h)}{h} .
\end{aligned}
$$

In this case, we have

$$
\begin{aligned}
& q_{01}=\quad \lim _{h \rightarrow 0^{+}} \frac{P_{01}(h)}{h} \\
& =\quad \lim _{h \rightarrow 0^{+}} \frac{0.4-0.4 e^{-5 h}}{h} \\
& \begin{array}{cl}
\text { L'Hôpital rule } & \lim _{h \rightarrow 0^{+}} \frac{0.4 \times 5 \times e^{-5 h}}{=} \\
= & 0.4 \times 5
\end{array} \\
& =2 \\
& q_{10}=\quad \lim _{h \rightarrow 0^{+}} \frac{P_{10}(h)}{h} \\
& =\quad \lim _{h \rightarrow 0^{+}} \frac{0.6-0.6 e^{-5 h}}{h} \\
& \stackrel{L^{\prime} \text { Hôpital rule }}{=} \lim _{h \rightarrow 0^{+}} \frac{0.6 \times 5 \times e^{-5 h}}{1} \\
& =0.6 \times 5 \\
& 3 \\
& -v_{0} \quad=\quad-q_{01} \\
& -2 \\
& -v_{1} \quad=\quad-q_{10}
\end{aligned}
$$

Consequently,
$\mathbf{R}=\left[r_{i j}\right]_{i, j \in \mathscr{S}}$
$=\left[\begin{array}{cc}-2 & 2 \\ 3 & -3\end{array}\right]$.

[Alternatively, we could find
 ``` R:

\frac{dP(t)}{dt}=P(t)\times\mathbf{R}=\mathbf{R}\timesP(t).```}

Recall that the rate diagram of a CTMC is a directed graph - with no loops - in which each state is represented by a node and there is an arc going from node \(i\) to node \(j\) (if \(q_{i j}>0\)) with \(q_{i j}\) written on it.

(c) Obtain the equilibrium probabilities \(P_{j}=\lim _{t \rightarrow+\infty} P[X(t)=j \mid X(0)=0]\), for \(j=0,1\).
- Equilibrium probabilities \(P_{j}=\lim _{t \rightarrow+\infty} P[X(t)=j \mid X(0)=0]\)
\(P_{0}=\lim _{t \rightarrow+\infty} P[X(t)=0 \mid X(0)=0]\)
\(=\lim _{t \rightarrow+\infty} P_{00}(t)\)
\(=\lim _{t \rightarrow+\infty}\left(0.6+0.4 e^{-5 t}\right)\)
\(=0.6\)
\(P_{1}=\lim _{t \rightarrow+\infty} P[X(t)=1 \mid X(0)=0]\)
\(=\lim _{t \rightarrow+\infty} P_{01}(t)\)
\(=\lim _{t \rightarrow+\infty}\left(0.4-0.4 e^{-5 t}\right)\)
\(=0.4\).
2. A small crude-oil unloading port has four berths. When all unloading berths are full, arriving tankers have to wait. Tankers arrive according to a Poisson process with a rate of one tanker every 2 hours. The unloading time per tanker follows an exponential distribution with mean equal to 4 hours.
(a) Find the probability that an arriving tanker has to wait for an available unloading berth.

\section*{- Birth and death queueing system}

M/M/m
\(m=4\)
- Birth/death rates
\(\lambda_{k}=\lambda=\frac{1}{2}, \quad k \in \mathbb{N}_{0}\)
\(\mu_{k}= \begin{cases}k \mu=k \times \frac{1}{4}, & k \in\{1,2, \ldots, m-1\} \\ m \mu=m \times \frac{1}{4} & k \in\{m, m+1, \ldots,\}\end{cases}\)
- Traffic intensity/ergodicity condition
\[
\rho=\frac{\lambda}{m \mu}=\frac{\frac{1}{2}}{4 \times \frac{1}{4}}=0.5<+\infty
\]
- Performance measure (in the long-run)
\(L_{s}=\) number of tankers at the port
- Requested probability

An arriving tanker has to wait for an available unloading berth with probability
\[
P\left(L_{s} \geq m\right)
\]
\[

\]
\[
\begin{aligned}
P\left(L_{s} \geq m\right) & =\frac{\frac{4}{3}}{1+2+2+\frac{4}{3}+\frac{4}{3}} \\
& =\frac{4}{23} \\
& \simeq 0.173913 .
\end{aligned}
\]
(b) On average, how many tankers are at the port and how long does a tanker spend at the port?
- Performance measures (in the long-run)
\(L_{s}=\) number of tankers at the port
\(W_{s}=\) time (in hours) spent by an arriving tanker at the port

\section*{- Requested expected value}
\(E\left(L_{s}\right)=m \rho+\frac{\rho}{1-\rho} C(m, m \rho)\)
\(\stackrel{(a)}{=} 4 \times 0.5+\frac{0.5}{1-0.5} \times 0.173913\)
\(=2.173913\) (tankers)
\(E\left(W_{s}\right)=\frac{1}{\mu}+\frac{C(m, m \rho)}{m \mu(1-\rho)}\)
\(\simeq \frac{1}{0.25}+\frac{0.173913}{4 \times 0.25 \times(1-0.5)}\)
\(-\frac{1}{.25}+\frac{4 \times 0.25 \times(1-0 .}{}\)
[Alternatively, by invoking Little's law, \(E\left(L_{s}\right)=\lambda E\left(W_{s}\right) \Leftrightarrow E\left(W_{s}\right)=\frac{E\left(L_{s}\right)}{\lambda} \simeq \frac{2.173913}{0.5}=4.347826\).]
(c) The port management is considering building another unloading berth if tankers spend more than 4 hours at the port with a probability larger than 0.5 . Is this the case?
- Performance measure (in the long-run)
\(W_{s}=\) time (in hours) an arriving tanker spends at the port
- Requested probability

Since \(\rho=0.5 \neq \frac{m-1}{m}=0.75\)
\[
\begin{array}{rll}
P\left(W_{s}>t\right) & \stackrel{\text { form }}{=} & {\left[1+\frac{e^{\mu(1-m(1-\rho)) t}}{1-m(1-\rho)} \times C(m, m \rho)\right] e^{-\mu t}} \\
t=4, m=4, \lambda=0.5, \mu=0.25, \rho=0.5, e t c . & {\left[1+\frac{e^{0.25 \times(1-4 \times(1-0.5) \times 4}}{1-4 \times(1-0.5)} \times 0.173913\right] e^{-0.25 \times 4}} \\
& \simeq & 0.344343 .
\end{array}
\]
- Comment

Since \(P\left(W_{s}>4\right) \simeq 0.344343 \ngtr 0.5\) there is no need to build an additional unloading berth.```

