

DEPARTAMENTO Introduction to Stochastic Processes MMA, LMAC

2nd. Semester – 2018/2019 2019/07/10 – 9:45AM. Room P12

Duration: 90 minutes

Test 2 (Recurso)

- · Please justify all your answers.
- This test has TWO PAGES and THREE GROUPS. The total of points is 20.0.

Group 1 — Renewal Processes

2.0 points

Let X_n be the amount of inventory in a warehouse at the beginning of day n. Suppose $X_1 = S$, where (2.0) S is a fixed positive number. Let D_n be the size of the demand on day n and assume that $\{D_n : n \in \mathbb{N}\}$ is a sequence of i.i.d. r.v. with common c.d.f. F. Admit that as soon as the inventory goes below s (s < S), it is instantaneously replenished to S. Then $\{X_n : n \in \mathbb{N}\}$ is a regenerative process.

Draw a sample path of $\{X_n: n \in \mathbb{N}\}$. Determine $\lim_{n \to +\infty} P(X_n \ge x)$ in terms of m(t), the renewal function generated by the sequence on *inter-renewal times* $\{D_n: n \in \mathbb{N}\}$.

Regenerative process

 $\{X_n: n \in \mathbb{N}\}$

 X_n = inventory level at the beginning of day n

 $X_1 = S$

 D_n = size of the demand on day n

$$D_n \stackrel{i.i.d.}{\sim} D \sim F, \quad n \in \mathbb{N}$$

• Obs

$$X_{n+1} = \begin{cases} \max\{0, X_n - D_n\}, & s < X_n \le S \\ \max\{0, S - D_n\}, & X_n \le s \end{cases}$$

• Sample path of $\{X_n : n \in \mathbb{N}\}\$ and $\{X(t) : t \ge 1\}\$ (where X(t) = inventory level at time t

· Auxiliary functions and r.v.

m(t), renewal function generated by the sequence on *inter-renewal times* $\{D_n : n \in \mathbb{N}\}$

 S_1 = time between two days beginning with inventory level equal to S

 $E(S_1) = 1 + m(S - s)$ (check sample path)

 $E(S_1) < +\infty$ (the renewal function is finite in finite time)

 U_x = time spent in state $\leq x$ during $[0, S_1)$

 $E(U_x) = m(S - x)$ (check sample path)

· Requested limit

$$\lim_{n \to +\infty} P(X_n \ge x) = \frac{E(U_x)}{E(S_1)}$$
$$= \frac{m(S - x)}{1 + m(S - s)}.$$

Página 1 de 2

Group 2 — Discrete time Markov chains

9.0 points

1. Suppose a customer keeps switching between brands 1, 2, 3, and 4 every month according to the TPM

$$\mathbf{P} = \left[\begin{array}{cccc} 0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right].$$

- (a) Draw the associated transition diagram and classify the states of this DTMC. Are the states periodic? (1.5)
 - DTMC

 $\{X_n:n\in\mathbb{N}\}$

 X_n = brand acquired on the n^{th} month

State space

$$\mathcal{S} = \{1, 2, 3, 4\}$$

• TPM

$$\mathbf{P} = \left[\begin{array}{cccc} 0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

· Transition diagram

- · Classification of the states of the DTMC
 - Judging by the transition diagram, all states communicate with one another, thus $\mathscr{S}=\{1,2,3,4\}$ is a finite single closed communicating class [hence the DTMC has a finite state space and is irreducible]. With that being said, [by Prop. 3.35,] all states are positive recurrent.
 - The transition diagram leads to the conclusion that we can only return to state 1 after 3,6,... transitions, thus $d(1) = \gcd\{n \in \mathbb{N}: P_{11}^n > 0\} = 3$ and this state is aperiodic. The same holds for the remaining states of this closed (and positive recurrent) communicating class, $\mathscr{S} = \{1,2,3\}$. [After all (a)periodicity is a class property.]
- (b) Admit the initial brand X_1 is uniformly distributed in the state space. Calculate the probability that (1.0) the customer acquires brand 4 at the end of the first trimester.
 - Initial state

 $X_1 \sim \text{Uniform}(\{1, 2, 3, 4\})$

· Requested probability

Since the initial state of this DTMC is X_1 (instead of X_0) we have to adapt the results in the list of formulae:

$$\begin{array}{rcl} \underline{\alpha} & = & [P(X_1=i)]_{i \in \mathscr{S}} \\ & = & [1/4 & 1/4 & 1/4 & 1/4] \\ \underline{\alpha}^n & = & [P(X_{n+1}=i)]_{i \in \mathscr{S}} \\ & \stackrel{form.}{=} & \underline{\alpha} \times \mathbf{P}^n. \end{array}$$

Página 2 de 2

Thus,

$$\underline{\alpha}^{2} = [P(X_{2+1} = i)]_{i \in \mathscr{S}}$$

$$= \underline{\alpha} \times \mathbf{P}^{2}$$

$$P(X_{2+1} = 4) = \underline{\alpha} \times \mathbf{P} \times 4\text{th. column of } \mathbf{P}$$

$$= \underline{\alpha} \times \begin{bmatrix} 0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0.5 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= [1/4 \quad 1/4 \quad 1/4 \quad 1/4] \times \begin{bmatrix} 0 \\ 0.5 \\ 0 \\ 0 \end{bmatrix}$$

$$= 0.125$$

(c) Given that $X_1 = 1$, calculate the expected number of months until brand 4 is acquired. (2.0)

Note: Check the footnote!¹

• Important

Let us consider another DTMC with absorbing state/brand 4 and sub-stochastic matrix governing the transitions between the transient states ($T = \{1, 2, 3\}$) given by

$$\mathbf{Q} = \left[\begin{array}{ccc} 0 & 0 & 0.5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

· Requested expected value

 $\tau = \inf\{n \in \mathbb{N} : X_n \not\in T\}$ is the number of monthly acquisitions until brand 4 is acquired. Furthermore [(see Prop. 3.116)], the result in the footnote yields

$$\begin{split} [E(\mathbf{r} \mid X_1 = i)]_{i \in T} & \stackrel{form.}{=} & (\mathbf{I} - \mathbf{Q})^{-1} \times \underline{1} \\ &= & \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0.5 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right)^{-1} \times \underline{1} \\ &= & \begin{bmatrix} 1 & 0 & -0.5 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}^{-1} \times \underline{1} \\ &= & \begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 2 & 2 & 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \\ &= & \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}. \end{split}$$

Thus, the requested expected value is $E(\tau \mid X_1 = 1) = 4$.

(d) What is the probability that the customer acquires brand 4 before brand 3, given $X_1 = 2$? (2.0) **Note:** You may have to consider states 3 and 4 absorbing, identify sub-stochastic matrices **Q** and **R** and calculate $(\mathbf{I} - \mathbf{Q})^{-1} \times \mathbf{R}$.

Important

To calculate the requested probability, we have to consider another DTMC, whose states/brands 3 and 4 (*filling*) are absorbing and whose associated TPM is

$$\mathbf{P}^{\star} = \left[\begin{array}{cccc} 0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

The substochastic matrices governing the transitions between the transient states $(T = \{1,2\})$ of this DTMC and the transitions from the transient to the absorbing states $(\overline{T} = \{3,4\})$ are

$$\mathbf{Q} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 0.5 & 0.5 \\ 0 & 0 \end{bmatrix},$$

respectively.

· Requested probability

Keeping in mind that

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]^{-1} = \frac{1}{ad-bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right],$$

we get

$$\begin{aligned} \mathbf{U} & = & & [u_{ik}]_{i \in T, k \in \overline{T}} \\ & = & & [P(\text{reach absorbing state } k \,|\, X_1 = i)]_{i \in T, k \in \overline{T}} \\ & \stackrel{form}{=} & & (\mathbf{I} - \mathbf{Q})^{-1} \times \mathbf{R} \\ & = & & \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right)^{-1} \times \mathbf{R} \\ & = & & \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}^{-1} \times \mathbf{R} \\ & = & & \frac{1}{1 \times 1 - (-1) \times 0} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0.5 & 0.5 \\ 0 & 0 \end{bmatrix} \\ & = & & \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} \end{aligned}$$

Therefore the probability that the customer acquires brand 4 before brand 3, given $X_1=2$, is equal to

(1.5)

$$u_{24} = P(X_{\tau} = 4 \mid X_1 = 2)$$

= 0.5.

2. Let $\{X_n:n\in\mathbb{N}_0\}$ be a branching process describing the size of generation n. Admit that $X_0=1$ and the number of offspring per individual has p.g.f. given by

$$P(s) = 0.15 + 0.05 s + 0.03 s^2 + 0.07 s^3 + 0.4 s^4 + 0.25 s^5 + 0.05 s^6, s \in [0, 1].$$

(a) Verify that the extinction probability is equal to $\pi \approx 0.159293$.

Branching process

$${X_n : n \in \mathbb{N}_0}$$

 $X_n = \text{size of generation } n$
 $X_0 = 1$

$$X_n = \sum_{l=1}^{X_{n-1}} Z_l, n \in \mathbb{N}$$

· Number of offspring per individual

 $Z_l \equiv Z_{l,n} = \text{number of offspring of the } l^{th}$ individual of generation n $Z_l \stackrel{i...d.}{\sim} Z, l \in \mathbb{N}$

· P.g.f. of the number of offspring per individual

$$P(s) = E(s^Z) = \sum_{j} s^j \times P(Z = j) = 0.15 + 0.05 s + 0.03 s^2 + 0.07 s^3 + 0.4 s^4 + 0.25 s^5 + 0.05 s^6, s \in [0, 1]$$

· Probability of extinction

Since

$$E(Z) \begin{vmatrix} form. & dP(s) \\ = & \frac{d}{ds} \Big|_{s=1} \\ & = & \left(0.05 + 0.06s + 0.21s^2 + 1.6s^3 + 1.25s^4 + 0.3s^5 \right) \Big|_{s=1} \\ & = & 0.05 + 0.06 + 0.21 + 1.6 + 1.25 + 0.3 \\ & = & 3.47 \end{vmatrix}$$

the probability of extinction, π $\stackrel{form.}{=} \lim_{n \to +\infty} P(X_n = 0 \mid X_0 = 1)$, is the smallest positive number satisfying

$$\pi \stackrel{form.}{=} \sum_{j=0}^{+\infty} \pi^{j} \times P$$
$$= P(\pi).$$

Indeed, we have

$$\begin{array}{lll} 0.159293 & = & P(0.159293) \\ & \simeq & 0.15 + 0.05 \times 0.159293 + 0.03 \times 0.159293^2 + 0.07 \times 0.159293^3 + 0.4 \times 0.159293^4 \\ & & + 0.25 \times 0.159293^5 + 0.05 \times 0.159293^6 \\ & \simeq & 0.159293 \end{array}$$

(b) Obtain the probability that the process is extinct in the second generation.

· Requested probability

$$\pi_{2} = P(X_{2} = 0 \mid X_{0} = 1)$$

$$= P_{2}(0)$$

$$form.$$

$$= P[P(0)]$$

$$= P[0.15 + 0.05 \times 0 + 0.03 \times 0^{2} + 0.07 \times 0^{3} + 0.4 \times 0^{4} + 0.25 \times 0^{5} + 0.05 \times 0^{6}]$$

$$= P(0.15)$$

$$= P(0.15 + 0.05 \times 0.15 + 0.03 \times 0.15^{2} + 0.07 \times 0.15^{3} + 0.4 \times 0.15^{4} + 0.25 \times 0.15^{5} + 0.05 \times 0.15^{6})$$

$$= 0.158633.$$

Group 3 — Continuous time Markov chains

9.0 points

(1.0)

(2.0)

1. Let X(t) be the state of a machine $\{0 \equiv 0 \text{ n}; 1 \equiv 0 \text{ ff}\}$ at time t. Admit $\{X(t): t \geq 0\}$ is a CTMC with transition probability matrix given by

$$\mathbf{P}(t) = \begin{bmatrix} 0.6 + 0.4 e^{-5t} & 0.4 - 0.4 e^{-5t} \\ 0.6 - 0.6 e^{-5t} & 0.4 + 0.6 e^{-5t} \end{bmatrix}$$

(a) Determine $P[X(3.4) = 1, X(3.8) = 0 \mid X(0) = 0]$.

• CTMC

 $\{X(t): t \ge 0\}$

X(t) = state of a machine at time t

· State space

$$\mathcal{S} = \{0, 1\}$$

$$0 \equiv \text{on}; \ 1 \equiv \text{off}$$

Página 5 de 2

• TPM
$$\mathbf{P}(t) = \left[P[X(t) = j \mid X(0) = i] \right]_{i,j \in \mathscr{S}} = \begin{bmatrix} 0.6 + 0.4 e^{-5t} & 0.4 - 0.4 e^{-5t} \\ 0.6 - 0.6 e^{-5t} & 0.4 + 0.6 e^{-5t} \end{bmatrix}$$

· Requested probability

$$P[X(3.4) = 1, X(3.8) = 0 \mid X(0) = 0] = P[X(3.4) = 1 \mid X(0) = 0] \times P[X(3.8) = 0 \mid X(3.4) = 1, X(0) = 0] \times P[X(3.8) = 0 \mid X(3.4) = 1, X(0) = 0] \times P[X(3.8) = 0 \mid X(3.4) = 1] \times P[X(3.8) = 0 \mid X(3.4) = 1] \times P[X(3.8) = 0 \mid X(3.4) = 1] \times P[X(3.4) = 1 \mid X(0) = 0] \times P[X(0.4) = 0 \mid X(0) = 1] \times P[X($$

(1.5)

- (b) Derive the infinitesimal generator **R** of this CTMC and draw the associated rate diagram.
 - · Infinitesimal generator

This matrix has entries

$$r_{ij} = \begin{cases} q_{ij}, & i \neq j \\ -v_i = -\sum_{m \in \mathcal{S}} q_{im}, & j = i \end{cases}$$

where

$$q_{ij} = \lim_{h \to 0^+} \frac{P_{ij}(h)}{h}, i \neq j$$

$$v_i = \lim_{h \to 0^+} \frac{1 - P_{ii}(h)}{h}.$$

In this case, we have

$$q_{01} = \lim_{h \to 0^{+}} \frac{P_{01}(h)}{h}$$

$$= \lim_{h \to 0^{+}} \frac{0.4 - 0.4e^{-5h}}{h}$$

$$= \lim_{h \to 0^{+}} \frac{0.4 \times 5 \times e^{-5h}}{1}$$

$$= 0.4 \times 5$$

$$= 2$$

$$q_{10} = \lim_{h \to 0^{+}} \frac{P_{10}(h)}{h}$$

$$= \lim_{h \to 0^{+}} \frac{0.6 - 0.6e^{-5h}}{h}$$

$$= \lim_{h \to 0^{+}} \frac{0.6 \times 5 \times e^{-5h}}{1}$$

$$= 0.6 \times 5$$

$$= 3$$

$$-v_{0} = -q_{01}$$

$$= -2$$

$$-v_{1} = -q_{10}$$

$$= -3$$

Consequently,

$$\mathbf{R} = [r_{ij}]_{i,j \in \mathscr{S}}$$
$$= \begin{bmatrix} -2 & 2 \\ 3 & -3 \end{bmatrix}.$$

[Alternatively, we could find $\mathbf{R} : \frac{dP(t)}{dt} = P(t) \times \mathbf{R} = \mathbf{R} \times P(t)$.]

Rate diagram

Recall that the rate diagram of a CTMC is a directed graph — with no loops — in which each state is represented by a node and there is an arc going from node i to node j (if $q_{ij} > 0$) with q_{ij} written on it.

- (c) Obtain the equilibrium probabilities $P_j = \lim_{t \to +\infty} P[X(t) = j \mid X(0) = 0], \text{ for } j = 0, 1.$ (1.0)
 - Equilibrium probabilities $P_j = \lim_{t \to +\infty} P[X(t) = j \mid X(0) = 0]$ $P_0 = \lim_{t \to +\infty} P[X(t) = 0 \mid X(0) = 0]$ $= \lim_{t \to +\infty} P_{00}(t)$ $= \lim_{t \to +\infty} (0.6 + 0.4 e^{-5t})$ = 0.6 $P_1 = \lim_{t \to +\infty} P[X(t) = 1 \mid X(0) = 0]$ $= \lim_{t \to +\infty} P_{01}(t)$ $= \lim_{t \to +\infty} (0.4 0.4 e^{-5t})$
- 2. A small crude-oil unloading port has four berths. When all unloading berths are full, arriving tankers have to wait. Tankers arrive according to a Poisson process with a rate of one tanker every 2 hours. The unloading time per tanker follows an exponential distribution with mean equal to 4 hours.
 - (a) Find the probability that an arriving tanker has to wait for an available unloading berth. (1.5)
 - · Birth and death queueing system

M/M/mm=4

· Birth/death rates

$$\begin{split} \lambda_k &= \lambda = \frac{1}{2}, \quad k \in \mathbb{N}_0 \\ \mu_k &= \begin{cases} k \, \mu = k \times \frac{1}{4}, \quad k \in \{1, 2, \dots, m-1\} \\ m \, \mu = m \times \frac{1}{4} \quad k \in \{m, m+1, \dots, \} \end{cases} \end{split}$$

• Traffic intensity/ergodicity condition

$$\rho = \frac{\lambda}{m\mu} = \frac{\frac{1}{2}}{4 \times \frac{1}{4}} = 0.5 < +\infty$$

· Performance measure (in the long-run)

 L_s = number of tankers at the port

· Requested probability

An arriving tanker has to wait for an available unloading berth with probability

$$P(L_s \ge m) = \frac{\frac{4}{3}}{1 + 2 + 2 + \frac{4}{3} + \frac{4}{3}}$$
$$= \frac{4}{23}$$
$$\approx 0.173913.$$

(b) On average, how many tankers are at the port and how long does a tanker spend at the port?

(1.5)

Performance measures (in the long-run)

 L_s = number of tankers at the port

 W_s = time (in hours) spent by an arriving tanker at the port

· Requested expected value

$$E(L_s) = m\rho + \frac{\rho}{1-\rho}C(m,m\rho)$$

$$\stackrel{(a)}{\simeq} 4 \times 0.5 + \frac{0.5}{1-0.5} \times 0.173913$$

$$= 2.173913 \text{ (tankers)}$$

$$E(W_s) = \frac{1}{\mu} + \frac{C(m,m\rho)}{m\mu(1-\rho)}$$

$$\simeq \frac{1}{0.25} + \frac{0.173913}{4 \times 0.25 \times (1-0.5)}$$

$$= 4.347826 \text{ (hours)}.$$
[Alternatively, by invoking Little's law, $E(L_s) = \lambda E(W_s) \Leftrightarrow E(W_s) = \frac{E(L_s)}{\lambda} \simeq \frac{2.173913}{0.5} = 4.347826.$]

- (c) The port management is considering building another unloading berth if tankers spend more than (1.5) 4 hours at the port with a probability larger than 0.5. Is this the case?
 - Performance measure (in the long-run)

 W_s = time (in hours) an arriving tanker spends at the port

Requested probability

Since $\rho = 0.5 \neq \frac{m-1}{m} = 0.75$

$$P(W_{s} > t) = \begin{cases} form \\ = \\ 1 + \frac{e^{\mu[1 - m(1 - \rho)]t}}{1 - m(1 - \rho)} \times C(m, m\rho) \end{bmatrix} e^{-\mu t} \\ = \\ t = 4, m = 4, \lambda = 0.5, \mu = 0.25, \rho = 0.5, etc. \\ \approx \\ = \\ 0.344343. \end{cases} \left[1 + \frac{e^{0.25 \times [1 - 4 \times (1 - 0.5)] \times 4}}{1 - 4 \times (1 - 0.5)} \times 0.173913 \right] e^{-0.25 \times 4}$$

• Commen

Since $P(W_s > 4) \simeq 0.344343 \not > 0.5$ there is no need to build an additional unloading berth.

Página 8 de 2