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1. Radiating systems 

1.1 Fields radiated by a generic current distribution 

Consider a generic source (antenna) described by the electric current density  j r . The 

electromagnetic fields emitted by the antenna are determined by a vector potential  A r : 

0

1


 H A ,   

0

1

j
  E H j .     (1.1) 

The vector potential is given by: 

   
0

0 4

jke
dV



 

 


r r

A r j r
r r

.       (1.2) 

The function 
0

0 4

jke



 

 


r r

r r
 is the fundamental solution of the Helmholtz’s equation: 

 2 2
0 0 0k        r r .       (1.3) 

Hence, the vector potential satisfies: 

2 2
0 0k    A A j .        (1.4) 

Using the vector identity 2   , the electric field can be written explicitly in terms 

of the vector potential as follows: 

 2
0

0 0 0

1 1
k

j j  
   E A A j .      (1.5) 
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1.2 Far-field region 

Suppose that the antenna is localized near the origin and is confined within some region with 

largest dimension L, so that r L  . For observation points far from the source ( r L ) one can 

write: 

2 2 2 2
2

1
2 1 2r r r

r
            
 

r r r r r r .      (1.6) 

Note that the term 2 2 2 2/r r L r   is negligible as compared to the other two terms. Using the 

Taylor series 1 1 / 2x x   , one finds that: 

2

1
ˆ1r r

r
          
 

r r r r r r .        (1.7) 

Here ˆ / rr r  is the observation direction, which only depends on  ,  : 

ˆ ˆ ˆ ˆcos sin sin sin cos      r x y z . 

 

For r L , one can use the approximations: 

1 1

r


r r
, 0 0 0 ˆjk jk r jke e e    r r r r .      (1.8) 

The term 
1
r r

 is evaluated with a zero-order approximation ( r r r ), whereas 0jke  r r  is 

evaluated with the 1st-order approximation ( ˆr    r r r r ). The reason is that due to the 

periodicity of the complex exponential, the phase corrections are negligible only when they are 
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much less than 2 . If one writes  0 0 0

higher-order1st-orderzero-order

ˆk k r k       r r r r , the 1st-order term is 

much smaller than the zero-order term, but it is not necessarily much smaller than 2 , and 

hence it cannot be neglected. It can be show that the higher order corrections are negligible 

( 2  ) only if 2
02 /r L  . 

Substituting Eqs. (1.8) into Eq. (1.2) one finds that in the far-field region the vector potential 

is given by: 

   
 

 
0 0

0 ˆ
0 0far-field

ˆ

ˆ
4 4

jk r jk r
jke e

dV e
r r

 
 

 
    r r

f r

A r j r f r


.    (1.9) 

The function  ˆf r  is essentially a Fourier transform of the current distribution. This function 

depends exclusively on the direction of observation, i.e.,  , f f , and thereby determines the 

directional properties of the far-field. The radial dependence of the field is determined uniquely 

by the factor 
0

4

jk re

r



, which describes a spherical wave. 

The electromagnetic fields in the far-field are obtained by substituting Eq. (1.9) in Eq. (1.1). 

For example,  

   

 

0

0 0

far-field
ˆ

4

ˆ                
4 4

jk r

jk r jk r

e

r

e e

r r



 



 

 
  

 
 

     
 

H r f r

f r f

      (1.10) 

In the second identity, we used  g g g     f f f . To proceed, we note that in spherical 

coordinates: 

    

2 2

2

ˆ ˆˆ ˆ ˆ ˆsin sin
1 1

0
sin sin

sin sin

1 1
ˆ      sin ...

sin

r

r r

r r r r

r r
f rf r f f rf r f

r f rf o
r r

   

   

   

 

 
 




       

        
 

r θ φ r θ φ

f

r

    (1.11) 
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In the second identity, we used / 0r    because  , f f . By evaluating the determinant in 

the second identity one can check that  f  decays as 1/ r  as r  . A term that decays as 

1/ nr  is denoted by 
1

n
o

r
 
 
 

. Using this result one finds that: 

   
0

2far-field

1
ˆ

4

jk re
o

r r

         
  

H r f r .       (1.12) 

From the formula of the gradient in spherical coordinates: 

0 0 0

0
0

1
ˆ ˆ1

4 4 4

jk r jk r jk r

r

e e e
jk

r r jk r r  

      
          
     

r r . From here one gets: 

   
0

0 2far-field

1
ˆ ˆ

4

jk re
jk o

r r

       
 

H r r f r .      (1.13) 

The correction term falls-off as 
2

1
o

r
 
 
 

  and is negligible when 0 1k r  , or equivalently when 

0r  .  

Following a similar analysis, it can be shown that the electric field 
0

1

j
 E H  in the far-

field region satisfies: 

      
0

2

0 2far-field
0

1 1
ˆ ˆ ˆ

4

jk re
jk o

j r r 

        
 

E r r r f r .     (1.14) 

It is convenient to introduce the vector: 

           0 ˆ1 1
ˆ ˆ ˆ ˆ ˆ ˆ

0 0
jk

e dV e
I I

          r rh r r r f r j r r r .   (1.15) 

Here,  0I  is the feeding current of the antenna. The current distribution j  includes the 

polarization and conduction currents on the materials that form the antenna. The complex vector 

 ˆ
eh r  has units of length and is known as the antenna effective height. The effective height 

only depends on the direction of observation  ,e e  h h . Furthermore, from the properties of 
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the vector product, it is clear that  ˆ ˆ 0e  h r r . Hence, the effective height is a vector of the 

form: 

  , ,
ˆˆ ˆ

e e eh h  h r θ φ ,        (1.16) 

with  , , ,e eh h     and  , , ,e eh h    .  

The electric field in the far-field region can be expressed in terms of the effective height: 

     
0

0 0far-field
0 ,

4

jk r

e

e
jk I

r
  





E r h .      (1.17) 

This result is completely general and applies to any antenna. The directional properties of the 

radiated field are completely determined by the effective height. The far-field region is defined 

by the three conditions used in the derivation: 

2
0 0,            ,          2 /   r L r r L    .     (1.18) 

Furthermore, from Eqs. (1.13)-(1.14) it is clear that: 

   
far-field far-field

ˆ ˆ0   E r r H r r .      (1.19) 

This means that the radiated fields are transverse (perpendicular) to the direction of 

observation r̂  (direction of propagation). Thus, in spherical coordinates they are of the form 

 
far-field

ˆ ˆE E  E r θ φ   and  
far-field

ˆ ˆH H  H r θ φ . 

 Comparing Eqs. (1.13)-(1.14) one sees that    0far-field far-field
ˆ E r H r r . Calculating the 

vector product of both sides of this equation with r̂ , one gets 

      0 0far-field far-field far-field
ˆ ˆ ˆ     r E r r H r r H r 1. From here it follows that: 

   0far-field far-field
ˆ E r H r r ,     

far-field far-field
0

1
ˆ


 H r r E r .  (1.20) 

 

                                                 
1 Note that           A B C B A C C A B . 
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This shows that the electric and magnetic fields are also perpendicular to each other. Thus, in 

the far-field region the wave is transverse electromagnetic (TEM). Furthermore, the field 

amplitudes in the far-field are related by the free-space impedance: 

0far-field far-field
E H .         (1.21) 

Note that the electromagnetic fields of a plane wave that propagates in free-space are linked 

precisely as in Eqs. (1.20)-(1.21), with the direction of propagation  d̂  in the place of the 

direction of observation r̂ .  

1.3 Radiation intensity 

The (time-averaged) Poynting vector is  *av

1
Re

2
 S E H . In the far-field region, it is of 

the form 
*

av far-field
0

1 1
ˆRe

2 

       
   

S E r E . Using the vector identity in the footnote 1 and Eqs. 

(1.19) and (1.21) one finds that the Poynting vector is oriented along the radial direction: 

 
2 2

0
av far-field

0

ˆ ˆ
2 2




 
E H

S r r .       (1.22) 

Thus, in the far-field the energy flows along the radial direction. This confirms that the wave is 

spherical. 
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The radiation intensity of the antenna (power radiated per solid angle) is given by: 

2

2 2
av far-field

0
far-field

2
U S r r


 

E
.      (1.23) 

It can be expressed in terms of the effective height as  
0

2

2
0 0

0

1
0

2 4

jk r

e

e
U jk I r

r


 



 h , which is 

the same as: 

   
2

2 2220 0
02 2

0

0 0
32 8

e
eU k I I

 
 

 
h

h .    (1.24) 
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2. Linear antennas 

2.1 The dipole antenna 

The dipole antenna consists of a metallic cylinder fed through its center point by some generator 

or transmission line. The voltage at the antenna terminals is inV  and the feeding current is  0I . 

The dipole length is denoted by L and the radius of the cylindrical wire by a. 

 

It is assumed that L a , which corresponds to the so-called “thin wire approximation”. In 

such case, one can assume that the current density is oriented along the axis of the dipole: 

ˆzjj z .  For a very good conductor, the current density is confined near the surface of the 

metallic wire. The total current flowing along z is    , ,zI z j x y z dxdy  , with the integral 

taken over a cross-section ( .z const ) of the wire. 

As discussed in Chapter 1, the fields radiated by an antenna are fully determined by the 

vector potential [Eq. (1.2)], which depends on the current  I z . The problem is that the current 

distribution is usually unknown. The calculation of the currents induced on the materials that 

form the antenna is in general a very complicated problem, and requires the use of numerical 



 
Antennas 

 

 10 

methods. In the next sub-section, we show that for a dipole antenna  I z  can be obtained from 

the solution of an integral equation. 

2.2 Hallén’s integral equation 

The idea to find the unknown current distribution is to explore the fact that the fields radiated 

by the current must satisfy some constraints on the dipole surface. 

To develop this idea, let us first evaluate the electric field radiated by  I z . It is clear that 

ˆzAA z  because the current density is directed along z. Hence, using Eq. (1.5) one finds that the 

z-component of the electric field away from the source region is given by: 

2 2
2
02

z
z z

c A
E k A

j z
 

   
.        (2.1) 

Let us evaluate zE  over the z-axis (  0,0, zr ). The metal is assumed to be a perfect 

electric conductor (PEC), and the dipole is supposed to be a hollow cylindrical tube, so that the 

current is completely confined to the surface ( 2 2 2x y a   ). Then, for  0,0, zr , we can 

write: 

     
 

2 2 2 2

22           

x x y y z z

a z z

         

  

r r
.       (2.2) 

From Eq. (1.2), one finds that along the z-axis: 

 
 

 

 
 

 

22
0

22
0

0 22

0 22

4

       =
4

jk a z z

z z

jk a z z

e
A dV j

a z z

e
dz I z

a z z







  

  

 
 

 
 





r

 (over the z-axis).   (2.3) 

From Eqs. (2.1) and (2.3), it should be clear that zE  is fully determined by the current on the 

antenna. 
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The dipole surface is defined by / 2 / 2z L   , where L is the length of the dipole. Here, 

  is the generator gap width. Now the key point is that for a perfectly conducting metal, zE  is 

required to vanish on the surface of the dipole. Due to this reason, zE  will also be 

(approximately) zero over the axis of the hollow metallic tube:  

0zE  ,   / 2 / 2z L   .     (2.4) 

                              

On the other hand, the voltage at the antenna terminals is 
/2 /2

/2 /2

in zV E dz
 

 

     E dl . Assuming 

that the gap width is very small compared to L and that the electric field is approximately 

constant in the gap, one obtains in zV E   . Hence, over the dipole region of the z-axis one has: 

0,             / 2 / 2

,      / 2
z in

z L
E V

z

   
 
   

      (2.5) 

For an infinitesimal gap 0  , the electric field diverges to infinity at the origin (generator) 

and vanishes elsewhere ( 0 / 2z L   ). Therefore, it can be approximated by a delta-function: 

 z inE V z  ,  (region / 2z L  of the z-axis).    (2.6) 

Combining the above result with Eq. (2.1), we find that: 

 
2

2
02 2

z
z in

d A j
k A V z

dz c

    .       (2.7) 
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This differential equation can now be solved for zA . It is clear that for 0z  , zA  is a 

solution of the homogeneous equation 
2

2
02

0z
z

d A
k A

dz
  , and thereby is a linear combination of 

 0cos k z  and  0sin k z : 

   
   

1 0 2 0

1 0 2 0

cos sin ,      0

cos sin ,        0
z

C k z C k z z
A

C k z C k z z

     
.      (2.8) 

By symmetry, the current, and thereby also zA , must be an even function of z. This requires 

that 1 1C C  and 2 2C C  . This implies that: 

   1 0 2 0cos sinzA C k z C k z  .       (2.9) 

Substituting the above formula into Eq. (2.7) and taking into account that 

        
2

2
0 0 0 0 0 02

sin cos sgn sin 2
d d

k z k k z z k k z k z
dz dz

    , it is found that 

0 2 2
2 in

j
k C V

c


  , or equivalently 2 2

inV
C j

c
  . This shows that the vector potential along the 

dipole axis is: 

   1 0 0cos sin
2

in
z

V
A C k z j k z

c
  .       (2.10) 

Combining this result with Eq. (2.3), we obtain the so-called Hallén’s integral equation (here 

1 0/C C %  is some unknown constant): 
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     
 

 

22
0/2

0 0 22
0 /2

cos sin
2 4

jk a z zL
in

L

V e
C k z j k z dz I z

a z z 

  



  
 

% .   (2.11) 

The unknowns of the equation are C% (a complex number) and  I z  (a complex function). The 

current is subject to the physical constraint 

 / 2 0I L  ,         (2.12) 

i.e., it must vanish at the dipole ends. The Hallén equation must be satisfied for any / 2z L .  

In general, an “integral equation” is an equation of the form: 

     ,g z dz K z z f z    ,       (2.13) 

with  g z  some given function and  f z  the unknown of the equation. The term  ,K z z  is 

known as the kernel of the equation. Evidently, for the Hallén’s equation the kernel is 

 
 

 

22
0

22
,

4

jk a z ze
K z z

a z z

  

 
 

. The numerical solution of the Hallén’s equation will be discussed 

in detail in the context of the computational work. 

2.3 Sinusoidal current approximation 

Fortunately, it is possible to obtain an approximate formula for the current  I z  based on a 

transmission line analogy. The idea is the following. Consider a transmission line terminated in 

open-circuit.  The current in the line is a superposition of two counter-propagating waves: 

     line 0 0
j x j xI x I x I x I e I e         . Let us pick the origin of the x-axis to be at the end of 

the line. Then,  0 0I  , i.e., 0 0I I   . This implies that  line sinmI x I x   with 02mI jI  .  
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Now the key observation is that a dipole antenna can be regarded as a deformed transmission 

line, with the two conductors bent by 90º, as illustrated in the figure. The sinusoidal current 

approximation is based on the hypothesis that after the deformation of the line the current 

distribution remains unchanged. To explore the consequences of this hypothesis, it is convenient 

to consider a primed reference axis such that 0x   is the point where the line is bent. It is clear 

that / 2x x L   , so that  line sin
2m

L
I x I x     

 
. 

The bending transforms the horizontal positive x -axis into the vertical positive z -axis 

( x z  , lineI I ). Hence, for 0z  , the current on the dipole is given by 

  0sin
2m

L
I z I k z

    
 

. We replaced 0k  , because the two conductors of the equivalent 

line are surrounded by air. In a transmission line the two conductors transport anti-paralllel 

currents (with opposite signs). In contrast, after the deformation the currents in the two 

conductors (the arms of the dipole) become parallel (have the same sign). This means that  I z  

must be an even function of z  so that: 

  0sin
2m

L
I z I k z

    
 

, (sinusoidal current approximation).   (2.14) 



 
Antennas 

 

 15 

For a sufficiently long dipole, mI  represents the peak (maximum) current:  max mI z I  . For 

a dipole with length inferior to half-wavelength ( 0 / 2L   or equivalently 0 / 2 / 2k L  ), the 

peak current is   0max sin
2m

k L
I z I  . 

2.4 Far-field of the dipole 

The far-field of the dipole antenna is determined by the effective height [Eq. (1.15)]. Using 

ˆzjj z , one gets: 

     

     

     

0

0

0

ˆ

/2
ˆ

0
/2

/2
ˆ

0
/2

1
ˆ ˆˆ

0

1
ˆ ˆˆ   

0

1
ˆ ˆˆ   

0

jk
e z

L
jk

zx y
L

L
jk

x y
L

dV j e
I

dz e dx dy j
I

dz e I z
I

 

 

  


 

  


   

 
      

 
 

    
 



 



r r

r r

r r

h r z r r

r z r r

z r r

     (2.15) 

Taking into account that   ˆˆ ˆ ˆ ˆˆ sin sin     z r r φ r θ  and that ˆ ˆ ˆ cosz z      r r r z , one gets: 

ˆ
e ehh θ ,  with  

 
 

0

/2
cos

/2

sin
0

L
jk z

e

L

I z
h dz e

I
 




  .    (2.16) 

Thus, the dipole electromagnetic fields in the far-field zone are given by: 

 
 

far-field

far-field

ˆ

ˆ

E

H









E r θ

H r φ
,  with  

 
0

0 0

0

0
4

/

jk r

e

e
E jk I h

r
H E



 











.    (2.17) 

2.5 Effective height with the sinusoidal current approximation 

Within the sinusoidal current approximation [Eq. (2.14)], the (scalar) effective height is given 

by: 

   
0

/2
cos

0

/2

sin
sin

0 2

L
jk z

me

L

L
h dz I k z e

I
 



    
  .      (2.18) 

with the feeding current 
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  00 sin
2m

k L
I I .         (2.19) 

The integral can be evaluated explicitly yielding the closed-form result: 

     
0

2

0
m

e

I
h P

I k
  , with  

0 0cos cos cos
2 2

sin

k L k L

P





      
     .  (2.20) 

The function  P   is known as the pattern factor. The dipole radiation intensity [Eq. (1.24)] 

can be expressed in terms of the pattern factor as: 

 
2 20

28 mU I P
 


 .       (2.21) 

Clearly, the pattern factor determines the directional properties of the antenna (radiation pattern). 

The pattern factor depends uniquely on the height of the dipole L relative to the free-space 

wavelength.  A sketch of the current profile (snapshot in time) and of the pattern factor for 

different values of 0/L   is shown in the figure below. As seen, the radiation pattern becomes 

more directive as the the dipole length increases for 0/ 1.0L   . In particular, the half-power 

beamwidth (HPBW) decreases from 90º (for a short-dipole) down to 78º for 0/ 0.5L   , and to 

47º for 0/L  . In contrast, for 0/ 1.5L    the radiation pattern is formed by multiple lobes. Thus, 

increasing the length of the dipole beyond some threshold value does not lead to a more directive 

beam. 
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The formation of multiple lobes occurs because when 0/ 1.0L    the sign of the instantaneous 

current varies along the dipole antenna. Note that the instantaneous current is: 

      0, Re sin cos
2

j t
m

L
i z t I z e I k z t           

.    (2.22) 

 

The sinusoidal current approximation was used and it is assumed that mI  is real-valued. For 

0/ 1.0L    the sign of  ,i z t  is independent of z  for a fixed t (see the figure for the case of the 

half-wavelength dipole). In such conditions, all the antenna sections radiate in phase and hence 

there is a constructive interference of the radiated fields. In contrast, when 0/ 1.0L    the 
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sections of the antenna where  , 0i z t   radiate fields in opposition of phase with respect to the 

sections of the antenna where   , 0i z t  . This leads to a destructive interference of the radiated 

fields and to the formation of nulls and multiple lobes in the radiation pattern. The multiple lobes 

appear for 0/ 1.2L   . 

 

2.6 Radiated power and radiation resistance 

The power radiated by a dipole antenna can be found by integrating the radiation intensity 

[Eq. (2.21)] over all the solid angles: 

 
2 20

28 mradP Ud I P d
 


     .      (2.23) 

Using      2 2 2

0

sin 2 sin
d

P d P d d P d


        


     1 4 2 43 , one gets: 

 
2 20

0

sin
4 mradP Ud I P d

   


    .     (2.24) 

The radiation resistance of a dipole antenna   2
2 / 0rad radR P I  is given by (see Eq. (2.19)): 

  20

2 0 0

1
sin

2
sin

2

radR P d
k L

   



 
 
 

 .      (2.25) 
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For a half-wavelength dipole ( 0 / 2L  , i.e., 0k L  ) one finds that 

   2 20

0 0

sin 60 sin
2radR P d P d

       


    with  
/2

cos cos
2

sin
P



 




 
 
  . Doing the 

integration numerically: 

  /2
73.1radR


  .         (2.26) 

Proceeding similarly, it is possible to show that for 0L   and 03 / 2L   one has: 

 radR

  ,   3 /2

105.3radR


       (2.27) 

2.7 Input impedance 

The input impedance of the dipole antenna is defined as  

 0
in

in in in

V
Z R jX

I
   .        (2.28) 

(the input impedance can also be denoted as a a aZ R jX  ). The input impedance of the dipole 

antenna can be rigorously calculated from the solution of the Hallén’s integral equation. The 

variation of the resistance and reactance with 0/L   is depicted in the figure below: 

  

In general, inR  depends on the radiation resistance and on the loss resistance: 

in rad LR R R  . For a lossless antenna, one has in radR R . This means that the input resistance of 

a dipole antenna can be estimated using Eq. (2.25) [see also Eqs. (2.26)-(2.27)]. For a short-
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dipole ( 0/ 1L   ) the input resistance is similar to that of a Hertz dipole, and hence 

short-dipole
0radR  . 

 

The variation of the reactance inX  with 0/L   can be justified using the transmission line 

analogy of Sect. 2.3. In fact, if one supposes that the bending of the line conductors does not 

significantly influence the input reactance it follows that: 

dipole line
length L length /2

in in
l L

X X


         (2.29) 

where  line line
Imin inX Z  is the reactance of the equivalent transmission line with length 

/ 2l L . For a transmission line terminated in open-circuit, one has 

   0 0 0line
cot cot / 2inZ jZ l jZ k L    , where 0Z  is the characteristic impedance of the line. 

Thus, the analogy yields: 

 dipole 0 0
length L

cot / 2inX Z k L  .      (2.30) 

The formula predicts that the antenna is resonant (
dipole

0inX  ) when 0 3
, ,...

2 2 2

k L  
  (zero of 

the cotangent function), or equivalently 0 00.5 ,1.5 ,...L    This prediction is in good agreement 

with the exact 
dipoleinX  represented in the prevous figure. The first resonance of the antenna 

occurs for a height slightly (a few percent) shorter than 00.5L  . Thus, when 00.5L   the 

dipole is resonant and hence can be directly fed by a transmission line, ideally with a 
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characteristic impedance near   /2
73.1radR


  . An antenna with 01.5L   is also resonant, but 

it is not interesting for applications because of its multiple-lobe radiation pattern. It is worth 

noting that an antenna with 01.0L   has an extremely large input impedance (typically on the 

order of M ) and hence it is a rather inefficient radiator, as it is inevitably strongly mismatched 

from the feeding line.  

For a short dipole the input reactance inX  is very large and negative. Due to this reason it is 

difficult to design a transformer that can match a short dipole to a typical feed. The property 

0inX   shows that a short dipole behaves as a capacitor, consistent with the fact that its near-

field is predominantly electric. 

2.8 The half-wavelength dipole 

As discussed in the previous section, the half-wavelength dipole is particularly interesting for 

applications. For a half-wavelength dipole 0 / 2L   or equivalently 0k L  . This leads to: 

 
/2

0 mI I


 .         (2.31) 

   
/2

0

2
eh P

k
  , with  

/2

cos cos
2

sin
P



 




 
 
   .  (2.32) 

In particular, the far-field of the half-wavelength dipole is given by: 

 
0

0/2

cos cos
2

0
sin 2

jk re
E jI

r 

 


 


 
 
  .     (2.33) 

The electric field intensity can be written as: 

   0

/2

cos cos cos cos
602 2

0 0
2 sin sin

E I I
r r

  

  

   
   
     .    (2.34) 

The directive gain of the dipole antenna is given by: 



 
Antennas 

 

 22 

    2

4
1/ 4 0
2

iso rad
rad

U U U
g

U P R I




   .     (2.35) 

Hence, using Eq. (2.21) 

 

 
   

2 20
/22 2 20

2

4 1208
1 73.10
2

m L

rad
rad

I P
g P P

RR I


    





   .    (2.36) 

This shows that: 

2

/2

cos cos
2

1.64
sinL

g


 



 
 
  .      (2.37) 

The directive gain has rotation symmetry about the z-axis, i.e. about the dipole axis. 

Furthermore, the radiation pattern has mirror-symmetry with respect to the xoy plane. The 

radiation maximum occurs for º90  , so that the directivity is: 

/2 /2
max 1.64

L
D g 

  .       (2.38) 

Thus, the half-wavelength dipole is slightly more directive than the Hertz dipole ( 1.5HertzD  ). 

The half-power beamwidth of the 0 / 2L   dipole is 78º. 

2.9 Further discussion about the resonant condition  

The feeding current of an antenna (  0I ) may be regarded as the response to the input voltage 

( inV ). The two quantities are related through the input impedance: 

   
0 in

in

V
I

Z 
 .        (2.39) 

Thus, 
 
1

inZ 
 may be regarded as the transfer function of a system with input inV  and output 

 0I . Is it possible to have a response (  0 0I  ) without an input ( 0inV  )? Clearly, this may 
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be feasible only for some (resonant) frequency ( r ) that ensures that   0in rZ   , so that the 

transfer function has a pole. In such conditions, the antenna is said to be resonant at the 

frequency r  because it can emit energy (initially stored in the system) even though the 

excitation voltage is identical to zero ( 0inV  ).  

An antenna supports multiple natural modes, i.e., multiple resonances. When the generator that 

feeds the antenna is switched off, let us say at 0t  , there is still energy in the near-field of the 

antenna. For 0t  , the antenna will oscillate freely (natural mode) and radiate away all stored 

energy with frequency r . 

In general, both the input resistance and the reactance depend on frequency 

   in in inZ R jX   . Let us consider a real-valued frequency 0  for which  0 0inX   . Let 

us show that the system is resonant near 0 . To do this, we suppose that the variations of 

 inR   near 0  are negligible so that    0in inR R  . Furthermore, the reactance is expanded 

in a Taylor series around 0 :            0 0 0 0 0in in in inX X X X             . These 

approximations yield: 

     0 0 0in in inZ R j X      .      (2.40) 

As previously noted, it is possible to have oscillations in the antenna without an input when 

  0in rZ   . Solving this equation with respect to r   one finds that: 
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 
 

0
0

0

in
r

in

R
j

X


 


 


.        (2.41) 

The resonance frequency is complex-valued r r rj     . This means that the time variation of 

the natural (free) oscillations (without any excitation) is of the form r r rj t j t te e e    . The real 

part of the resonance frequency ( 0r   ) determines the time period of the oscillations 

( 2 / rT   ). The imaginary part (
 
 

0

0

in
r

in

R

X





 


) determines the decay rate of the oscillations. 

The oscillations are exponentially damped ( 0rte   ) because they describe the relaxation of 

the energy initially stored in the system1. The duration (lifetime) of the natural oscillation is 

roughly lifetime

1

2 r







. 

For example, suppose that a dipole antenna is excited by a generator with some oscillation 

frequency   and that the generator is switched off at 0t  . For 0t  , the dipole antenna will 

support damped oscillations with a frequency 0   determined by  0 0inX   . This condition is 

satisfied when 0k L   (half-wavelength dipole), which yields 0 /c L  . This discussion 

explains why a half-wavelength dipole antenna is an efficient radiator:  0k L   corresponds to a 

natural frequency of the antenna, i.e., a frequency for which the antenna supports free 

oscillations without any excitation. When the excitation frequency matches the resonant 

frequency the oscillations can be rather strong, similar to any other resonant system. 

2.10 Image method 

So far, we discussed the radiation of antennas in free-space. However, in practice the antennas 

are positioned near other objects. The image method is a powerful technique that enables 

                                                 
1 The described analysis is meaningful only when r r   , so that the Taylor series expansion can be justified.  
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reducing a radiation problem where the emitter is in the vicinity of a metal (planar) surface to a 

radiation problem where the emitter is in free-space. 

 

To begin with, we start with a simple electrostatic problem. Consider a point charge q positioned 

at a distance h from a metal surface (plane 0z  ). The metal is assumed to be a perfect 

conductor, so that the electric field component parallel (tangent) to the surface must vanish 

( tan 0E ), or equivalently the electrostatic potential    must be a constant on the metal surface  

(
0

.
z

const

 ). The point charge attracts charges of opposite sign in the metal and induces a 

nontrivial charge distribution on the metal surface. The unknown charge distribution must ensure 

that the total electric potential (created by itself and by the point charge) satisfies 
0

.
z

const

 . 

Finding the induced charge distribution is not a simple problem! 

      

Fortunately, there is an easy way. We consider an auxiliary problem where the metal plane is 

removed and where a second (image) point charge q  is placed at the mirror symmetric point 
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with respect to 0z  . The potential created by the two point charges can be found trivially from 

Coulomb’s theory: 

0 1 0 24 4P

q q

r r


 


  .        (2.42) 

For any point on the plane 0z  , one has 1 2r r . This implies that 
0

0
z



 . Thus, the 0z   

plane of the auxiliary problem is a plane of constant potential, and thereby it cannot be 

distinguished from a perfect electric conductor (PEC). In particular, the  0z   plane of the 

auxiliary problem can be replaced by a PEC without perturbing the fields in the region 0z  . 

Such configuration corresponds precisely to the original problem. Thus, the solution of the 

original problem (with the metal plane) is coincident with the solution of the auxiliary problem 

[Eq. (2.42)] (without the metal plane but with an image charge).  

       

The same ideas can be generalized to solve more complex dynamical problems, for example 

to find the radiation from a (Hertz) dipole placed in the vicinity of a metal plate. There are two 
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cases of interest: i) horizontal dipole, ii) vertical dipole. To understand what is the image of a 

dipole, we recall that a dipole consists of two point charges with opposite signs separated by 

some distance. Thus, in analogy with the electrostatic case discussed previously, we find that the 

image of a vertical dipole is another vertical dipole oriented in the same direction, whereas the 

image of a horizontal dipole is an anti-parallel horizontal dipole (see the figure). The radiation 

from the dipole in the vicinity of a metal plate is coincident (in the half-space 0z  ) with the 

field emitted by the dipole and by its image in free-space. Note that the field emitted by two 

Hertz dipoles can be easily found using the superposition principle. 

 

The same idea can be applied to more complex current distributions, as an arbitrary current 

distribution can always be regarded as a collection of Hertz dipoles. This concept is illustrated in 

the figure below. 



 
Antennas 

 

 28 

    

2.11 The monopole antenna 

The monopole antenna consists of a cylindrical conductor with height monoL  above a metal-

ground plane (figure below, left). The antenna is excited by a voltage generator ( monoV ), as 

illustrated in the figure. From the image method, the monopole antenna can be reduced to an 

equivalent dipole antenna with height dip mono2L L  (figure below, right). The fields radiated by 

the two antennas are identical in the region 0z  . Furthermore, the current distributions 

(    
mono dip

I z I z   for 0z  ) and the feeding currents are also identical (    
mono dip

0 0I I ). 

On the other, the input voltage is two times larger for the equivalent dipole antenna: 

dip mono2V V .  
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Due to these properties the input impedance of the monopole antenna is half of the input 

impedance of the equivalent dipole: 

   
dipmono

mono dip

mono dip

/ 2 1

20 0
in in

VV
Z Z

I I
   .      (2.43) 

For example, for mono 0 / 4L   one has 
dip 0mono 0

dipmono
/2/4

1 73.1
36.5

2 2in in
LL

Z Z
 

    . Thus, a 

monopole antenna with height mono 0 / 4L   is resonant. 

On the other hand, since the radiated fields are identical in the half-space 0z  , the radiation 

intensity of the two antennas are identical for 0z  : 

dip

mono

,     0< <90º

0,          90º< <180º

U
U





 


.      (2.44) 

Since the monopole does not radiate to the lower-half space, it emits only half of the power of 

the equivalent dipole: 

mono
dip

1

2rad radP P .       (2.45) 
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Combining the two previous equations, one sees that the directive gain 4 / radg U P  satisfies: 

dipmono
dip

mono mono dip

44
2 ,      for 0< <90º

/ 2

0,                                                   for 90º< <180º

rad rad

UU
g

g P P







 

 



.   (2.46) 

Thus, the directivity of the monopole satisfies: 

mono dip
2D D .        (2.47) 

For example, for mono 0 / 4L   the directivity of the monopole is 

dip 0

dip,
mono /2

2 2 1.64 3.28
L

D D


    . The monopole is more directive than the equivalent dipole 

because all the radiated energy is channeled to the 0z   half-space. 
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3. Receiving antenna 

3.1 The receiving antenna 

So far, our study was focused on radiation problems where the antenna is regarded as an emitter. 

An excitation with a generator gives rise to the radiation of an electromagnetic wave that 

propagates in space. However, an antenna can also be used as “receiver” of some incident 

electromagnetic wave. The incident wave induces an electric signal at the antenna terminals, 

which are typically connected to a load L L LZ R jX  .  

 

Usually, in typical systems the incident wave can be approximated by a plane wave. A 

generic plane wave propagating in free-space has an electric field of the form 

0
ˆinc inc

0

ijke  r dE E .         (3.1) 

Here, 0 /k c  is the free-space wave number, inc
0E  is a constant (complex) vector (which gives 

the electric field at the origin; the antenna terminals are supposed to be centered at the origin), 

 , ,x y zr  is the position vector, and ˆ id  is a unit vector that determines the direction of 

propagation of the wave.  
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The vector inc
0E  is constrained by the condition inc

0
ˆ 0i E d , which guarantees that the 

electric field is orthogonal to the direction of propagation. Furthermore, the vector inc
0E  

determines the polarization state of the incident wave (e.g., circular, elliptical or linear 

polarization). The direction of arrival of the wave, as seen by the antenna, is  

ˆˆ i i r d .         (3.2) 

Since inc inc
0 0

ˆˆ 0i i    E r E d  the vector inc
0E  can be written in terms of the vectors ˆ ˆ,i iθ φ  

associated with the considered spherical coordinate system: 

inc
1 20
ˆ ˆi ii iE E E θ φ .         (3.3) 

The incident electromagnetic wave induces currents on the materials that form the antenna. 

The antenna response depends on ˆ ir  and inc
0E , i.e., it depends on the direction of arrival of the 

incident wave, on the field amplitude, and on the polarization state.  

In practice, one is mostly interested in understanding how the incident wave affects the 

voltage and current at the antenna terminals and finding the power delivered to the load. 

3.2 Simultaneous excitation 

To understand how an antenna reacts to an incident wave it is useful to consider the general 

scenario of a simultaneous excitation by a feeding current (  0I , enforced by some current 

generator) and by an incident plane wave ( incE ), so that the antenna is operated simultaneously 

as an emitter and a receiver. 
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Thus,  0I  and inc
0E  may be regarded as the inputs of the system, i.e., the parameters that 

determine the system response, and any other quantities of interest (e.g., the electromagnetic 

fields at some point of space) are ouputs. In particular, the voltage V  at the antenna terminals 

can be seen as a function of  0I  and inc
1 20
ˆ ˆi ii iE E E θ φ : 

  1 20 , ,i iV V I E E .        (3.4) 

Now the key point is that the Maxwell’s equations are linear (it is also assumed that all the 

materials that form the antenna are linear). Due to this reason, the input-output relations in the 

frequency domain are forcibly linear, independent of the complexity of the antenna! Thus, it is 

possible to write: 

  1 21 20 i ir r
aV Z I h E h E   .       (3.5) 

for some (unknown) constants 1 2, ,r r
aZ h h  that may depend on frequency and on the antenna. It is 

convenient to introduce the vector: 

1 2
ˆ ˆr r i r i

e h h h θ φ .         (3.6) 
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The vector r
eh  is known as the effective length of the receiving antenna1 and has units of length 

[m]. Note that ˆ 0r i
e  h r . The voltage at the antenna terminals can be written as: 

  inc
00 r

a eV Z I  h E .        (3.7) 

The formula is valid for arbitrary excitations and in particular we can consider two special 

cases: (i) the antenna is fed only by the current generator ( inc
0 0E ) and (ii) the current generator 

is turned off (  0 0I  ) so that the antenna terminals are in open-circuit.  

 

In case (i) it is obvious that the antenna is operated in transmitting mode. In this situation 

 0aV Z I , so that  / 0aZ V I , which is nothing but the input impedance of the transmitting 

antenna studied in the earlier chapters: 

input impedance of the transmitting antennaa inZ Z  .   (3.8) 

In case (ii), it is possible to identify inc
0

r
eV  h E  as the voltage ocV  induced by the incident 

wave at the antenna terminals when they are in open-circuit: 

inc
0

r
oc eV  h E .         (3.9) 

Thus, the general input-output relation (3.7) can be written as: 

                                                 
1 In this definition it is implicit that the origin is coincident with the antenna terminals, so that the incident field is referred to the antenna 
terminals.  
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 0a ocV Z I V  .        (3.10) 

3.3 Equivalent circuit of the receiving antenna 

Consider again the scenario of Sect. 3.1, where the antenna terminals are connected to a load 

L L LZ R jX  , rather than to a current generator. Due to the presence of the load the current 

entering into the antenna terminals  0I  can be nontrivial. Evidently, the antenna is indifferent 

to how the current  0I  is “generated”. Its response is fully determined by the values of  0I  

and of inc
0E , independent of the internal structure of the (lumped) element connected to its 

terminals (a generator or a load). This means that Eq. (3.10) remains valid when the current 

generator is replaced by a load (see the figure in page 31). Based on this observation and on Eq. 

(3.10), we obtain the following equivalent circuit for the receiving antenna: 

 

 

 

 

 

    

 

The current  0LI I   is the current flowing on the load. The equivalent circuit, despite its 

simplicity, characterizes fully (and exactly) the response of the antenna from the point of view of 

the load. The receiving antenna is equivalent to a generator with open-circuit voltage 

inc
0

r
oc eV  h E  and with internal impedance aZ . As previously mentioned, the internal impedance 

aZ  is nothing more than the impedance of the antenna operated as a transmitter. The voltage ocV  

LVV

 0I
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is proportional to the incident electric field. In general ocV  depends on the polarization of the 

incoming wave and depends on the direction of arrival of the wave    ˆ ,i i i
oc oc ocV V V   r . 

3.4 Power delivered to a load and impedance matching 

The power delivered to a load can be easily found using the equivalent circuit of the receiving 

antenna: 

   2 2*1 1 1
Re Re

2 2 2L L L LLr LP V I Z I R I   .      (3.11) 

Since the current flowing on the load is oc
L

a L

V
I

Z Z



, one gets: 

   
2 2

2 2 2

1 1

2 2
L L

oc ocr

a L a L a L

R R
P V V

R R X XZ Z
 

  
.    (3.12) 

We used L L LZ R jX   and a a aZ R jX  .  

For a given incident wave and antenna, the values of ocV  and a a aZ R jX   are fixed. In 

such a case, the power extracted from the incident field depends on the load:  ,r r L LP P R X . 

The optimal load is the one that maximizes rP . Evidently, to maximize rP  we need to ensure that 

(i) 0a LX X   and (ii) that 
 2

L

a L

R

R R
 is maximal. The plot of the function 

 2
L

a L

R

R R
 as a 

function of LR  is illustrated in the figure below.  
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The maximum is reached when L aR R . The conjunction of (i) and (ii) shows that the 

optimal load impedance is a conjugated matched load: 

  *

optL a a aZ Z R jX   .        (3.13) 

The power delivered to the optimal load is: 

 
2

opt 8

oc

r
a

V
P

R
 .         (3.14) 

Note that  optrP  is the maximum power that the antenna can extract from a given incident wave. 

Typically the wave that arrives at an antenna can be a rather weak signal and thus it is essential 

to guarantee a good impedance matching (if necessary using an impedance transformer). 

The power delivered to a generic load can be written in terms of  optrP  as follows: 

 optr i rP C P .       (3.15) 

where 

   2 2

4 a L
i

a L a L

R R
C

R R X X


  
.      (3.16) 

is the impedance matching coefficient. The impedance matching coefficient satisfies: 

0 1iC  .         (3.17) 

The maximum 1iC   is reached for a matched load (   *

optL aZ Z ) and the minimum 0iC   for 

any purely reactive load. 

3.5 Polarization matching, available power and effective area 

Let us now analyze in greater detail the formula for the open-circuit voltage inc
0

r
oc eV  h E . It is 

clear from the properties of the inner product (Schwarz inequality): 

inc
0

r
oc eV  h E .       (3.18) 
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Note that for a generic complex vector A  one has 
22 2 2*

x y zA A A    A A A . The 

Schwarz inequality becomes an identity only when inc,*
0~r

eh E . Here the “tilda” symbol means 

that r
eh  is proportional to inc,*

0E . Notice that the electric field needs to be conjugated1. 

It is convenient to introduce the coefficient: 

2inc
0

2 2inc
0

r
e

p
r
e

C



h E

h E
.        (3.19) 

From the previous discussion, it is evident that 0 1pC  , and that 

inc
0

r
oc e pV C h E .       (3.20) 

The coefficient pC  is totally insensitive to the intensity of the incident field (value of inc
0E ). 

However, it depends on the polarization state of the wave, which is determined by the 

“orientation” of the complex vector inc
0E . Due to this reason pC  is known as the “polarization 

matching coefficient”. When 1pC   the incoming wave is polarization matched to the antenna. 

The condition 1pC   is satisfied when: 

inc ,*
0 ~ r

eE h ,  (polarization matching condition: 1pC  ).    (3.21) 

The coefficient pC  describes how the wave polarization affects the received power. Indeed, 

from Eqs. (3.14)-(3.15), it is possible to write: 

2 2inc
0

8

r
e

r i p
a

P C C
R


h E

.      (3.22) 

                                                 
1 When inc,*

0
r
e ch E  with c some constant, one has 

2inc inc
0 0

r
oc eV c  h E E . Hence, 

inc inc inc
0 0 0

r
oc eV c E E h E , which confirms that the Schwarz inequality becomes an identity. 
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The received power can also be expressed in terms of the Poynting vector intensity 

2inc
0inc

02
S




E
 

as follows: 

inc
r i p efP C C A S ,       (3.23) 

where by definition 

2

0

4

r
e

ef
a

A
R




h
       (3.24) 

is the effective area of the receiving antenna. Note that the effective area depends exclusively on 

the antenna parameters and is independent of the incident wave. Equation (3.23) shows that for a 

given intensity of the incident wave ( incS  fixed) the maximum power that can be collected by the 

antenna is  

inc
a efP A S .       (3.25) 

Due to this reason aP  is known as the available power. The received power is coincident with 

the available power when 1iC   (load is matched to the antenna) and when 1pC   (polarization 

of the wave is matched to the antenna). In other words, the received power is coincident with the 

available power when there is both polarization and impedance matching. 

      The parameter efA  has units of area. It may be heuristically understood as the “area” from 

which the antenna can collect energy from. Recall that the power that goes through some surface 

  with area A  is given by inc incˆP ds S A 


  S n . The effective area can be rather different 

from the physical area of the antenna, especially for electrically small antennas. For electrically 

large antennas the physical area and effective area are typically of the same order of magnitude.  
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3.6 Reciprocity theorem 

One of the most remarkable results of antenna theory is that the properties of an antenna in 

receiving mode are strictly determined by the properties of the same antenna in transmitting 

mode. For example, if an antenna radiates efficiently in a certain direction of space then it also 

captures efficiently the radiation that arrives along the same direction. The theoretical basis of 

this fundamental result is the “reciprocity theorem” which is the topic of discussion of the 

present section. 

 

The theorem considers an arbitrary physical environment, under two different excitations extj  

and extj . The properties of the environment (which may be formed by arbitrarily shaped 
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dielectric bodies or conductors) are described by the space varying permittivity  , ,x y z   

and space varying permeability  , ,x y z  . The fields  , E H  radiated by the (external) 

current density extj  satisfy the frequency domain Maxwell’s equations: 

j   E H ,  ext j    H j E       (3.26a) 

Similarly, the fields  , E H  radiated in the second scenario with the excitation extj  satisfy: 

j   E H , ext j    H j E       (3.26b) 

The reciprocity theorem in differential form establishes that the two field distributions  

(associated with different excitations in the same physical environment) are constrained by: 

  ext ext                E H E H E j E j .      (3.27) 

The proof of the theorem is relatively straightforward. Using the vector identity 

        A B A B B A  and the Maxwell equations (3.26) one gets: 

 
                      

                   
ext

ext

j j

j j

 
 

            

          

           

E H E H H E

E j E H H

E j E E H H

.     (3.28) 

By interchanging the symbols ' and ''  one readily sees that 

  ext j j                 E H E j E E H H . Notice that the last two terms on the right-

hand side of the equation are unchanged when the symbols ' and ''  are interchanged. Subtracting 

the two equations member by member one obtains Eq. (3.27), which proves the theorem.  

A more enlightening version of the theorem is obtained by integrating both sides of Eq. (3.27) 

over some arbitrarily shaped volume V. From Gauss’ theorem, the integral of the divergence of a 

vector field is identical to the flux over the boundary surface: ˆ
V

ds


    F F n . This property 

yields the reciprocity theorem in integral form: 

   ˆ ext ext

V

ds dV


                n E H E H E j E j .    (3.29) 
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In the context of antenna theory, it is especially interesting to take the volume V as the entire 

space. In such a case, the contribution from the surface integral vanishes. To prove this, take V as 

a spherical surface of radius R centered at the origin of the coordinate system. In this case, the 

unity normal vector is the radial vector ˆ ˆn r . For a sufficiently large R, the fields can be 

approximated by the far-field formulas [Eq. (1.20)]:    0far-field far-field
ˆ E r H r r  and 

   
far-field far-field

0

1
ˆ


 H r r E r . Hence, we have that: 

 
far-field

0 0

1 1
ˆ ˆ ˆ

 
  

                 
n E H r E r E E E .    (3.30) 

The last identity is obtained using           A B C B A C C A B  and taking into account that 

 
far-field

ˆ 0 r E r . But interchanging the ' and ''  symbols does not change the right-hand side of 

the above equation, and hence it follows that  
far-field

ˆ 0       n E H E H  (the correction term 

is on the order of 31/ R , which approaches zero faster than the area of the spherical surface 

approaches infinity). This confirms that the surface integral vanishes when R  . Thereby, we 

proved that: 

 
all space

0ext extdV         E j E j .       (3.31) 

This is a rather remarkable result: the fields radiated by two different and totally arbitrary current 

distributions in the same physical environment are not independent, and are required to satisfy 
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the above reciprocity constraint! Note that Eq. (3.31) is only applicable when the current 

distributions are localized in some bounded volume of space, so that the far-field approximation 

can be used.  

3.7 Application of the reciprocity theorem to antenna theory 

We will now use the reciprocity theorem to prove one of the key results of antenna theory: the 

effective height of an antenna in transmitting mode is identical to the effective height of the same 

antenna in receiving mode: 

r
e eh h           (3.32) 

We recall that r
eh  determines the voltage induced at the (receiving) antenna terminals when they 

are in open-circuit [see Eq. (3.9)], whereas eh  determines the far-field of the transmitting 

antenna [see Eq. (1.17)]. 

To prove that r
e eh h  we apply the reciprocity theorem to the scenarios illustrated in the figure 

below. 

 

The scenario on the left (' scenario) considers an arbitrary antenna fed by a current generator 

(transmitting antenna). The antenna radiates the fields  , E H . The gap distance between the 

antenna terminals is supposed to be dl  (very small compared to the wavelength). We suppose 
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that the antenna terminals are centered at the origin and that the current 0I   flows along z. 

Therefore, the external excitation in the first scenario is described by: 

 0 ˆext I dl  j z r .        (3.33) 

Note that extj  is the same as for an Hertz dipole (current distribution is constant over a length 

dl ). 

On the other hand, the second scenario ( ''  scenario) depicts the same antenna with its terminals 

in open-circuit. The antenna is illuminated by the fields created by a Hertz dipole positioned at 

the point dipr . The Hertz dipole is in the far-field of the antenna and is modeled by a current 

distribution of the form: 

 dip dipext   j j r r .        (3.34) 

Here, dipj  is an arbitrary vector that depends on the orientation of the Hertz dipole and on the 

feeding current. The total fields in this second scenario are  , E H . They can be seen as the 

superposition of the primary field radiated by the Hertz dipole alone in free-space ( incE ) plus 

the field back-scattered by the antenna ( bsE ), so that inc bs   E E E . 

Applying the reciprocity theorem [Eq. (3.31)] to the ' and ''  scenarios one finds that: 

   0dip dip ˆ0 0I dl      E r j E z .      (3.35) 

The voltage induced at the antenna terminals in the second scenario is 

 
/2

gap
/2

ˆ0
dl

dl

V dl


        E dl E z . Taking into account that V   is nothing more than the open-

circuit voltage at the antenna terminals ( ocV V  ), we find that: 

 0 dip dipocI V   E r j .       (3.36) 
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Next, we note that since the Hertz dipole is in the far-field of the antenna one can evaluate 

 dipE r  using Eq. (1.17), i.e.,    
0 dip

0dip 0 0
dip

ˆ
4

jk r
i

e

e
jk I

r






 E r h r  with dip dipr  r  the distance 

between the antenna terminals and the Hertz dipole. This implies that: 

 
0 dip

0 0 dip
dip

ˆ
4

jk r
i

oc e

e
V jk

r






  h r j .      (3.37) 

Since ˆ 0i
e  h r  it is possible to write     dip dip dip dipˆ ˆ ˆ ˆi i i i

e e e
              h j h j r r j h r j r . 

Hence, the voltage at the terminals of the receiving antenna is given by: 

   
0 dip

0 0 dip
dip

ˆ ˆ ˆ
4

jk r
i i i

oc e

e
V jk

r




 
    

  
h r j r r .      (3.38) 

To proceed, we calculate the complex amplitude of the incident field incE  radiated by the Hertz 

dipole ( incE ) evaluated the receiving antenna terminals (i.e., at the origin). It is given by: 

   

 

0 dip

0 dip

inc inc Hertz Hertz
0 0 0Hertz field

evaluated at the origin dip

0 0 dip
dip

ˆ0
4

ˆ ˆ                                       
4

jk r
i

e

jk r
i i

e
jk I

r

e
jk

r











     

  

E E h r

j r r

    (3.39) 

The identity in the first line follows from Eq. (1.17) and the identity in the second line from Eq. 

(1.15) evaluated with the current distribution of the Hertz dipole  dipj j r  (referred to a 

coordinate system centered at the dipole position). In the above, Hertz
eh  is the effective length of 

the Hertz dipole and  Hertz 0I  is the feeding current. From Eq. (1.15), one can see that 

     Hertz Hertz
dipˆ ˆ ˆ0 eI   h r j r r . The Hertz dipole effective length is evaluated along ˆ ir , as this 

is the direction along which the Hertz dipole sees the receiving antenna. Comparing Eqs. (3.38)-

(3.39) it is clear that: 

  inc
0ˆ i

oc eV  h r E .       (3.40) 
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This shows that the voltage induced on the terminals of the receiving antenna in scenario ''  is 

determined by the effective length of the transmitting antenna (  ˆ i
eh r ) and by the complex 

amplitude of the incident wave evaluated at the antenna terminals ( inc
0E ). Comparing with the 

definition of the effective length of the receiving antenna [Eq. (3.9)] and taking into account that 

the incident field is arbitrary, it follows that    ˆ ˆr i i
e eh r h r  as we wanted to prove. 

3.8 Relation between the effective area and power gain 

Using r
e eh h  it is possible to link the effective area of an antenna efA  (which describes how 

well it captures power in receiving mode) with the power gain G (which describes how directive 

is the transmitting antenna with respect to an isotropic emitter).  

The power gain is determined by: 

  2

4 4
1

0
2

in
a

U U
G

P R I

 
  ,       (3.41) 

where U is the radiation intensity and aR  is the input resistance of the antenna 

(  Re ina inR R Z  ). Thus, using Eq. (1.24) one finds: 

2

0 2
0

e

a

G
R





h

.         (3.42) 

Comparing the above formula with Eq. (3.24) and using the reciprocity result r
e eh h , one 

obtains the universal relation (valid for any antenna) between the effective area and the power 

gain: 

2
0

4efA G



 .         (3.43) 
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3.9 Friis formula 

Consider a scenario where the fields radiated by a generic emitter illuminate a generic receiving 

antenna. Using the theory developed so far, it is straightforward to relate the input power ( inP ) 

accepted by the emitter with the power captured by the receiver ( rP ) (see the figure). It is 

supposed that the two antennas are in the far-field of one another. The distance between the 

antennas is d. 

 

The Poynting vector associated with the field radiated by the emitter is determined by the power 

gain of the antenna ( EG ) 

 inc
2

,
4

in
E

P
S G

r
 


 .         (3.44) 

On the other end, the power captured by the receiving antenna is determined by its effective area 

  inc
, ,r i p ef R r d

P C C A S 


  . This means that: 

   ,2
, ,

4
in

r E ef R i p

P
P G A C C

d
   


  .       (3.45) 

Using the universal relation between the power gain and the effective area the same result can be 

written as: 

   
 

   
2

0
, ,2

0

, , , ,
4

in
r in E R i p ef E ef R i p

P
P P G G C C A A C C

d d

        
 

       
 

.  (3.46) 
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In the particular case of polarization and impedance matching, one finds that the power available 

at the terminals of the receiving antenna is    
2

0 , ,
4r a in E RP P P G G

d

    


      
 

. This is 

known as the Friis formula. 

3.10 Antenna polarization 

Consider a generic antenna operated as a transmitter. The far-field of the antenna is determined 

by its effective length [see Eq. (1.17)]. In particular, the field radiated by the antenna along the 

direction r̂  is proportional to the effective length:  rad ˆ~ eE h r . Evidently, the instantaneous 

field is: 

      radrad ˆRe ~ Rej t j t
et e e E E h r .      (3.47) 

(For simplicity in the last identity it was assumed that the proportionality constant that relates 

radE  and  ˆ
eh r  is real-valued). As discussed in Sect. 1.2, the effective length is a vector of the 

form   , ,
ˆˆ ˆe e eh h  h r θ φ  because  ˆ ˆ 0e  h r r . This guarantees that the electric field is 

orthogonal to the direction of the propagation ( r̂ ).  

 

The closed curve determined by the time evolution of  rad tE  in a full time cycle (with period 

2 /T   ) is known as the polarization curve. The polarization curve is perpendicular to the 
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direction of propagation of the wave. Because of the orthogonality condition  ˆ ˆ 0e  h r r  the 

polarization curve is generically an ellipse, with the particular (degenerate) cases of a 

circumference and of a line segment. The polarization of the antenna along the direction r̂  is 

said to be elliptical (circular, linear) when the corresponding polarization curve is an ellipse 

(circumference, line segment). Note that the antenna polarization is direction dependent. 

 

 For the cases of elliptical and circular polarization, there are two different polarization states for 

the same polarization curve. Indeed, there are two possible trajectories for the electric field, 

corresponding respectively to clockwise and anticlockwise rotations. The sense of rotation of the 

electric field is determined using the “right-hand rule”. This is done by imitating the trajectory of 

the electric field with the “right-hand” and by finding the corresponding orientation of the 

“thumb”. When the “thumb” direction is coincident with the direction of propagation ( r̂ ), the 

field is said to rotate to the “right”. Otherwise, it rotates to the “left”. For example, the leftmost 

panel of the above figure corresponds to a “right” elliptical polarization, whereas the middle 

panel to a left circular polarization. 

Let us write the complex amplitude of the electric field as: 

1 21 2ˆ ˆE E E u u .         (3.48) 

with 1 2ˆ ˆ 0 u u . It is assumed that the direction of propagation of the wave is determined by 

1 2
ˆ ˆ ˆ d u u . For antenna problems, one typically has 1

ˆˆ u θ , 2 ˆˆ u φ  and ˆ ˆd r . Then, it is easy 

to prove the following: 
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 When 1 2E E  and 1 2arg arg 90ºE E   the polarization state is circular. 

 When 1 0E   or 2 0E   or 1 2arg argE E  or 1 2arg arg 180ºE E   the polarization 

state is linear. 

 If none of the above holds true, then the polarization state is elliptical. 

Furthermore, in the case of circular polarization it can be shown that when 2 1arg arg 90ºE E   

the wave is left circularly polarized (LCP), whereas when 2 1arg arg 90ºE E   the wave is right 

circularly polarized (RCP). It is underlined that this result holds true only when the direction of 

propagation is 1 2
ˆ ˆ ˆ d u u . A general and simple way to find the sense of rotation is to determine 

the time evolution (trajectory) of the electric field on the polarization curve, e.g., by calculating 

 0t E  and  0t E . 

3.11 Optimal polarization for the incident wave 

Consider a receiving antenna with terminals in open-circuit illuminated by a plane wave (left 

panel of the figure below). As previously discussed, the voltage induced at the antenna terminals 

is inc
0oc eV  h E  with r

e eh h  the effective length of the antenna and inc
0E  the complex amplitude 

of the incident field evaluated at the antenna terminals. As proven in Sect. 3.5, the open-circuit 

voltage depends on the polarization of the incident wave, and for a fixed intensity of the energy 

flux of the incoming wave (fixed value of incS ) the amplitude ocV  is maximized when the 

polarization of the incident field is such that inc *
0 ~ eE h  [Eq. (3.21)]. In this case, the incident 

wave is polarization matched to the antenna (optimal polarization). 
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It is interesting to analyze the polarization curve of the incident field for the optimal case. The 

instantaneous incident field is such that: 

     inc inc *
0Re ~ Rej t j t

et e e E E h .      (3.49) 

Taking into account that    *Re ReA A  for a generic vector A , one finds with the help of 

Eq. (3.47) that      inc rad~ Re ~j t
et e t E h E , i.e., the optimal incident field is related to the 

field radiated by antenna in transmitting mode as: 

   inc rad~t tE E .       (3.50) 

Thus, the polarization curve of the (optimal) incident wave is identical to the polarization curve 

of the transmitting antenna, apart from some irrelevant scale factor. However, the trajectory of 

the electric field is different in the two cases because the time is flipped t t  (see an example 

for in the figure below). 
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Even though the absolute physical sense of rotation of the electric field is different in two cases,  

the state of polarization of the two waves ( incE  and radE ) is identical! For example, in the case of 

the figure both curves are associated with a right-elliptical polarization. The reason is that the 

direction of propagation is also flipped because ˆ id  (the direction of the propagation of the 

incoming wave) is related to the direction of observation as  ˆ ˆi i d r . Thus, it follows that the 

optimal polarization of the incident wave is the same as the antenna polarization! For example, if 

an antenna radiates a left circularly polarized wave in some direction of space and then the 

optimal polarization for the incoming wave when the antenna is used as a receiver is also a left 

circular polarization. 

It is somewhat intriguing that the absolute sense of rotation of the optimal polarization incE  and 

that of  radE  are different. The physical justification is rooted in the invariance of the Maxwell’s 

equations under a time reversal t t  (see the problem set 1). Specifically, if some field 

distribution satisfies the Maxwell’s equations, then the time-reversed field distribution also does. 

Under a time reversal the radiated fields are returned back to the antenna and thereby are 

associated with the optimal polarization state (    inc rad~t tE E )! 

3.12 The Poincaré sphere 

The polarization state of a wave can be geometrically represented on a sphere of unity radius, 

known as the Poincaré sphere. The coordinates of the polarization state on the sphere are found 

from two parameters AR  and   determined by the polarization curve.  
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As previously discussed, the polarization curve is generically an ellipse and lies on the plane 

generated by two vectors 1û  and 2û  perpendicular to the direction of propagation. By definition, 

0 180º   is the tilt angle determined by the major axis of the ellipse and some reference axis 

(typically 1û ). On the other hand, AR  is the axial ratio given by the quotient of the principal 

axes of the polarization ellipse: 

major axis
AR= 1

minor axis
 .        (3.51) 

We introduce an angle 45º 45º    defined by: 

cot AR   ,         (3.52) 

with the “+” sign (“-” sign) picked when the sense of rotation of the polarization curve is to the 

“left” (“right”). The coordinates of the polarization state on the Poincaré sphere are (see the 

figure for a geometrical interpretation): 

 pol. state cos 2 cos 2 ,sin 2 cos 2 ,sin 2     .    (3.53) 

                   

LCP

RCP
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The poles of the Poincaré sphere correspond to the two circularly polarized states (LCP and 

RCP) and the equator of the sphere is associated with the different linearly polarized states. 

The “polarization matching coefficient” pC  has an interesting geometrical interpretation in the 

Poincaré sphere.  

 

Specifically, suppose that both the polarization states of the antenna ( aP ) and of the wave ( wP ) 

are represented on the Poincaré sphere, as shown above. Let 2  be the angle defined by aP  and 

wP . Then, it can be shown that: 

2cospC  .         (3.54) 

Thus, using the Poincaré sphere one can visualize how well is the polarization of the incoming 

wave matched to the antenna. The polarization matching is good when the geometrical distance 

between aP  and wP  is small. The optimal polarization corresponds to the case a wP P  

( 1,   2 0ºpC   ). The worst “polarization” scenario is when aP  and wP  are antipodal points in 

the Poincaré sphere ( 0,   2 180ºpC   ). 

3.13 Examples with the dipole antenna 

Let us consider the particular case of a dipole antenna. The effective length of the antenna is of 

the form (see Sect. 2.4) ˆ
e ehh θ . This implies that the dipole antenna radiates a linearly 

polarized wave for any direction of the observation. Indeed, in the far-field the electric field 

oscillates exclusively along the θ̂  direction, and thereby the polarization curve is a line segment. 
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This means that the optimal polarization for an incoming wave that illuminates the antenna is 

also linearly polarized and must be directed along θ̂ . In fact, the polarization matching 

coefficient for a dipole antenna is: 

2
inc

2inc

ˆ i

pC



θ E

E
   (dipole antenna).      (3.55) 

When the incoming plane wave is linearly polarized the coefficient pC  can be written as: 

2cospC     (dipole antenna + linear pol.).    (3.56) 

where   is the angle between the incident electric field and the so-called incidence plane (see 

the figure below). 
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The incidence plane is by definition the plane generated by the antenna axis (z-axis) and the 

direction of arrival of the incoming wave ( ˆ id ). Only the component of the incident electric field 

parallel to the incident plane (the ˆ|| i θ  component) interacts with the antenna. The component 

perpendicular to the incidence plane ( ˆ i  φ ) is orthogonal to the antenna axis, and hence 

cannot induce a current on the dipole. 

When the incoming wave is circularly polarized, the incident field is of the form (see Sect. 3.10): 

 inc
0 0

ˆ ˆi iE j E θ φ .       (3.57) 

In this case, the polarization matching coefficient is: 

 
2

0
2 2 2

0

1 1

21ˆ ˆ
p

i i

E
C

jE j
  

 θ φ
   (circular pol.).   (3.58) 

Thus, as expected, the antenna is only sensitive to half of the incident energy flux. The other half 

is associated with an electric field oriented along ˆ iφ , which as explained above does not interact 

with the antenna. 
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4. Mutual and self impedances 

4.1 Antenna coupling 

In antenna systems it is often useful to place different radiating elements in the vicinity of one 

another. The most relevant examples are the antenna arrays where many identical radiating 

elements are excited simultaneously to obtain a tailored radiation pattern with some desired 

properties. In such systems, the typical distance between the radiating elements is on the order of 

half-wavelength, which corresponds to the near-field zone where the fields are strongly reactive 

and very intense. This coupling between the antennas can modify their radiation properties 

compared to the situation where an antenna stands alone in free-space.  

      

The electromagnetic fields in a system formed by several antennas (n=1,2,…, N) are completely 

determined by the currents at the feeding points (      1 20 , 0 ,..., 0NI I I ). In particular, the 

voltages at the antenna terminals ( 1 2, ,..., NV V V ) are functions of the currents. Thus, we have a 

multiple input-output system, as illustrated in the figure. The input-output relations are formally 

(we drop the label  0  to simplify the notations): 
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 
 

 

1 21 1

1 22 2

1 2

, ,...,

, ,...,

...

, ,...,

N

N

NN N

V V I I I

V V I I I

V V I I I







       (4.1) 

Now, because of the linearity of the Maxwell’s equations and of the materials that form the 

antennas, the input-output relations in the frequency domain are forcibly linear. This means that 

there are constants mnZ  (m,n=1,…,N) such that: 

11 1 12 2 11

21 1 22 2 22

1 1 2 2

....

....

...

....

N N

N N

N N NN NN

V Z I Z I Z I

V Z I Z I Z I

V Z I Z I Z I

   
   

   

       (4.2) 

The constants mnZ  dependent on the antenna and vary with frequency. It is evident that mnZ  has 

units of impedance. The set of equations (4.2) can be written in a compact way in a matrix form 

as  V Z I  where ,V I  are the column vectors with the voltages and currents at the antenna 

terminals, respectively, and Z  is the so-called impedance matrix: 

 

11 12 1 11

21 22 12 22

1 1

...

...

... ... ... ... ... ...

...

N

N N NN NN

V Z Z Z I

V Z Z Z I

V Z Z Z I

    
    
    
    
    

   
V Z I



     (4.3) 

The diagonal elements of the impedance matrix ( 11 22, ,...Z Z ) are known as the self-impedances, 

whereas the off-diagonal terms are the mutual impedances.  

The input impedance seen by the generator that feeds the m-th antenna is: 

 m-th
antenna

m
in

m

V
Z

I
         (4.4) 

For clarity, let us focus on the case of two antennas (N=2), for which it is possible to write: 
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 

 

2
11 121

1

1
21 222

2

in

in

I
Z Z Z

I

I
Z Z Z

I

 

 
.         (4.5) 

The impedance matrix is independent of the excitation and is exclusively determined by the 

antennas and their relative orientation and distance in space. In contrast, the previous formula 

shows that input impedance cannot be expressed alone only through the impedance matrix but 

that it also depends on the point of operation of the system determined by the current ratio 

1 2/I I :  

  1

2

function ,in ii

I
Z

I

 
  

 
Z .        (4.6) 

Due to this reason  in i
Z  is a “driving point impedance”. The design of a matching network that 

connects a generator to a given antenna requires the knowledge of the impedance matrix and of 

the intended point of operation determined by the current ratio 1 2/I I , i.e., of the driving point 

impedance. 

From the definition of the impedance matrix, one can see that the self-impedance of the n-th 

antenna is the input impedance seen at the antenna terminals when the remaining antennas are 

not excited, (i.e., when their terminals are in open-circuit). For example, for the case of two 

antennas, one has: 

 
2

1 input impedance when11 1 only the 1st 
1 antenna is fed0

in

I

V
Z Z

I


         (4.7) 

Strictly speaking 11Z  is not the antenna impedance 1aZ  discussed in earlier chapters. Indeed, 

1aZ  is the input impedance when the antenna stands alone in free-space, whereas 11Z  is the input 

impedance when the antenna is in vicinity of the other antennas, with the terminals of the other 

antennas in open-circuit. Evidently, 1aZ  and 11Z  become identical only when the relative 
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distance between the antennas approaches infinity. In practice, in most cases, the difference 

between 1aZ  and 11Z  is negligible. Thereby, it is common to use the approximation: 

, impedance of the n-th antenna alone in free-spacenn a nZ Z  .   (4.8) 

The currents induced on the materials that form the antennas are also linear functions of the 

feeding currents 1 2, ,..., NI I I . This means that the antenna coupling can change the radiation 

properties of each individual antenna. In particular, it can change the far-field properties of each 

antenna determined by the effective length eh . 

For example, analogous to the antenna input impedance, the effective length of a generic 

antenna depends on the antenna parameters and on the point of operation determined by the 

feeding currents: 

   n-th
antenna

function antenna parameters, feeding currentse nh .   (4.9) 

For example, for two antennas, the “driving” effective length of the first antenna is 

   2 1antenna 1
function antenna 1,antenna 2, /e I Ih .     (4.10) 

Fortunately, it is often possible to neglect the effect of the other antennas and of the point of 

operation on the effective length eh  of a given antenna. Thus, in most antenna systems one can 

assume that: 

   n-thn-th antennaantenna alone in free-space
e eh h .        (4.11) 

With this approximation, one can find the field radiated by a set of coupled antennas from their 

radiation properties alone in free-space and from the knowledge the feeding currents. We will 

develop further this point when we study antenna arrays. 

4.2 Reciprocity constraint on the mutual impedances 

The mutual impedances mnZ  ( m n ) are constrained by reciprocity as follows: 

mn nmZ Z .          (4.12) 
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In a matrix form, the same result is expressed as: 

TZ Z ,          (4.13) 

where the superscript T represents the transpose of a matrix. This means that the impedance 

matrix is symmetric. For example, for a system with two antennas 12 21Z Z . 

Let us prove the enunciated result for the case N=2. To this end, we consider the two 

scenarios illustrated in the figure below. They correspond to different excitations of the same set 

of antennas. In the first scenario the excitation is determined by the one-primed current vector 

 1 2

T
I I  I , and in the second scenario by the two-primed current vector  1 2

T
I I  I . The 

radiated fields in the first and second scenario are respectively   E H  and   E H . 

                 

From the reciprocity theorem, we know that [Eq. (3.31)] 

all space all space

ext extdV dV      E j E j .       (4.14) 

The external currents in each scenario (the generators) are localized near the antenna 

terminals. Hence, one has: 

all space gap antenna 1 gap antenna 2

ext ext extdV dV dV           E j E j E j .    (4.15) 
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Analogous to Sect. 3.7, it is assumed that the gap distance between the antenna terminals ( dl ) is 

very small compared to the wavelength and that the current is constant in the gap. This implies 

that the current density on the gap of the n-th antenna (n=1,2) is of the form 

 0ˆnext nI dl  j z r r . Here, 0nr  determines the coordinates of the gap of the n-th antenna and 

without loss of generality it is supposed that the gaps are oriented along ẑ . Taking all these into 

account, one finds that: 

  1 11 1

gap antenna 1

ˆextdV dl I V I          E j E r z .     (4.16) 

                                    

Similarly, one can show that 22

gap antenna 2

extdV V I      E j . Therefore, it follows that: 

1 21 2

all space

T
extdV V I V I              E j I V .     (4.17) 

In the above V  is a column vector with the double-primed voltages:  1 2

T
V V  V . Evidently, 

the same identity holds true when the single-primed and double-primed symbols are 

interchanged. Using this property in Eq. (4.14), we conclude that: 

T T     I V I V .         (4.18) 

Independent of the current excitation, the voltages and currents are linked by the impedance 

matrix  V Z I . This implies that: 

T T       I Z I I Z I .        (4.19) 
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The right-hand side of the above equation is a scalar number and hence it is identical to its 

transpose: 
TT T T T              I Z I I Z I I Z I . Thus, the reciprocity of the system implies that 

for any excitations , I I  it is necessary that  

  0T T    I Z Z I .        (4.20) 

The identity can hold true for arbitrary excitations only if the matrix TZ Z  vanishes. This 

confirms that the impedance matrix is necessarily symmetric, as we wanted to show. 

4.3 Mutual impedance with perturbation theory 

In general, the impedance matrix needs to be determined using numerical methods, e.g., using a 

modified Halléns-type equation for the coupled antennas. However, as discussed in the 

following, it is possible to estimate the mutual impedances using with the parameters of the 

uncoupled antennas.To this end, we consider the two scenarios depicted in the figure below. 

     

In the first scenario, the antenna 1 radiates alone in free-space. In the second scenario, the 

antenna 2 radiates in the vicinity of the first antenna, with the terminals of the antenna 1 in open-

circuit. Evidently, we want to apply the reciprocity theorem to the considered scenarios. 

However, we need to do it it carefully. The reciprocity theorem assumes that the material 

structures in the two scenarios are the same and that only the external excitations are different. 
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That evidently it not the case in the scenarios under analysis, as the second antenna is absent in 

the first scenario!  

We can circumvent this problem in a clever way. We will simply regard the second antenna as 

an “external current”. This can be done by including in extj  (which usually describes only the 

current in the generator gaps) the polarization and conduction currents induced in the materials 

that form the antenna 2, mat,ant2j . Thus, one can apply the reciprocity theorem in the usual way 

after the replacement mat,ant2 2ext ext     j j j j , where 2j  gives the total current in the antenna 2 

region. This yields: 

2

all space all space

extdV dV      E j E j .      (4.21) 

The term on the right-hand side can be evaluated explicitly as: 

1 1

all space gap 1

ext extdV dV I V          E j E j .      (4.22) 

The first identity uses the fact that in scenario 1 the external excitation is confined to the gap of 

the first antenna. The second identity is a consequence of Eq. (4.16). Since in the second 

scenario the first antenna is in open-circuit ( 1 0I  ), the open-circuit voltage is given by  

1 11 12 2 12 20V Z Z I Z I      . Using this result in Eq. (4.22) and substituting the resulting formula 

into Eq. (4.21) it is found that: 

2
12

1 2antenna 2

Z dV
I I


  

 
jE

.      (4.23) 

The parcel 
1I




E
 gives the field radiated by the antenna 1 alone in free-space normalized to the 

feeding current evaluated on the position of antenna 2. This term only depends on the fields 

radiated by the first antenna alone in free-space. On the other hand, the parcel 2

2I




j
 determines the 

current distribution in antenna 2 normalized to the feeding current when it is operated as an 
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emitter in the vicinity of antenna 1, with the terminals of antenna 1 in open-circuit. Strictly 

speaking, 2

2I




j
 can only be determined using numerical methods. However, to a first 

approximation (perturbation theory) we can assume that 2

2I




j
 is coincident with the current 

distribution in antenna 2 when it radiates alone in free-space. This approximation yields the 

formula: 

2
21 12

field radiated by antenna 1 current distribution induced on antenna 21 2antenna 2 alone in free-space calculated over when it radiates alone in free-spaceantenna 2

Z Z dV
I I


   

 
jE

.   (4.24) 

Note that the mutual impedances are written in terms of the current distribution and fields of the 

uncoupled antennas. 

4.4 Application to linear antennas 

Let us suppose now that antenna 2 is a linear antenna, e.g., a dipole antenna, so that the current 

distribution is approximately confined to a line segment oriented along the direction û . Then, 

the volume integral in Eq. (4.24) can be replaced by a line integral with the replacement 

2 2 ˆdV dl I j u . This yields the useful result: 

 
 
 

rad
21

21 12
field radiated by antenna 1 current distribution induced on (the linear) antenna 21 2antenna 2 alone in free-space calculated over when it radiates alone in   axis antenna 2 axis

ˆ

0 0

I u
Z Z dl

I I


   

E u

 free-space

.   (4.25) 

For simplicity, we dropped the primed and unprimed symbols. The integral is over the axis of the 

linear antenna (antenna 2). The variable u runs over the antenna 2 axis (see the figure). 
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The derived formula can be used to calculate the mutual impedance of dipole antennas in 

different situations in a relatively straightforward (but cumbersome!) way. The results of such 

calculations for the case of side-by-side and collinear half-wavelength dipoles are shown in the 

figure below ( 1 2 0 / 2L L   ; the mutual impedance is 21 12 m mZ Z R jX   ). 

                       

As could be expected, the mutual coupling is stronger for a side-by-side configuration. The 

mutual coupling typically is weaker for larger separations between the dipoles, and it is 
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insignificant for distances much larger than the wavelength (especially for the collinear dipole 

configuration).  

It is important to highlight that the real part of the mutual impedances can be either positive or 

negative! Specifically, if one writes 21 21 21Z R jX   the signs of the resistance ( 21R ) and 

reactance ( 21X ) are not constrained in any manner. Furthermore, the value of  21Z  depends on 

the relative polarity of the antenna terminals, i.e, on which terminals of the antennas are picked 

as the positive voltage terminals. For example, in the figure below the polarity of the terminals of 

antenna 2 is flipped in case II compared to case I. Due to this reason, it is simple to check that 

21 21case I case II
Z Z  . The self-impedances are however identical in both cases: 11 11case I case II

Z Z  

and 22 22case I case II
Z Z . 

 

4.5 Accepted power 

The power delivered to a set of antennas can be easily found from circuit theory. For the case of 

two antennas it is given by 

   * *
,tot ,1 ,2 1 1 2 2

1 1
Re Re

2 2in in inP P P V I V I    .       (4.26) 
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This result can be written in matrix form as  ,*
,tot

1
Re

2
T

inP  I V , where ,V I  are the column 

vectors with the voltages and currents at the antenna terminals. Using  V Z I  it is found that: 

 ,*
,tot

1
Re

2
T

inP   I Z I .          (4.27) 

Taking into account that the impedance matrix is symmetric ( TZ Z ), it can be shown that the 

accepted power is determined only by the resistance matrix  ReR Z : 

 ,*
,tot

1

2
T

inP   I R I .           (4.28) 

Evidently, for a passive system it is necessary that ,tot 0inP   for any excitation. This is only 

possible if R  is a positive definite matrix. For the case of two antennas, this requires that 

2
11 22 12 0R R R  . Thus, the strength (but not the sign) of the mutual resistance is constrained by 

the value of the self-resistances. To conclude, we note that the accepted power is coincident with 

the total radiated power when the antennas are lossless. 



 
Antennas 

 

 69 

5. Thermal noise 

5.1 Thermal radiation 

Microscopic systems are inherently characterized by some “agitation”. This agitation may be of 

quantum origin or due to thermal effects. In any of the cases, there is an incessant motion of 

matter (electrons, atoms, molecules, etc) at the nanoscale, and such vibrations lead to the 

emission of electromagnetic radiation. In other words, thermal effects cause a constant jiggling 

of the atoms, and these “fluctuations” lead to thermal emission. From the point of view of view 

of communication systems such radiation is “noise”. The level of noise determines the minimum 

power that one needs to deliver to a receiving antenna so that the incoming signal can be 

discriminated from the “thermal noise”. Thereby, it is essential to understand how to model 

thermal noise, what its origins are, and how to mitigate its effects. 

 

5.2 Equipartition law 

In order to characterize the radiation due to thermal fluctuations, we adopt a simple model where 

the system under study is a large box with dimensions L L L   filled with air. The walls of the 

box are made of some material, which is the source of thermal noise.  
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The radiation emitted by the walls of the box excites the natural modes of oscillation of the 

electromagnetic field. The natural modes are the oscillations supported by the field without an 

explicit external excitation.  

 

The energy stored in each “mode” is determined by the “equipartition law”. This fundamental 

principle essentially states that the probability of occupation of any state1 of a system is the 

same. A detailed analysis beyond the scope of interest of this course (based on statistical physics 

concepts), shows that due to the equipartition law the thermal energy of any electromagnetic 

field mode is equal to (neglecting quantum corrections): 

 
thermal energy
per mode

Bk T� .           (5.1) 

Here, 231.38 10 /Bk J K   is the Boltzmann constant and T is the temperature in Kelvin.  

Armed with this knowledge, next we want to determine the spectrum of the thermal energy 

inside the box. To do this, we need to find the electromagnetic modes, which is the topic of the 

next section. 

                                                 
1 A “state” in this context should not be confused with a mode. 
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5.3 The natural modes 

In general, the natural modes depend on boundary conditions at the box walls, and thereby on 

the material response. Here, to simplify the analysis and avoid considering any detailed material 

response, we will simply assume that the walls enforce the electromagnetic fields to satisfy 

periodic boundary conditions.  The natural modes of the electromagnetic field inside such 

idealized box can be easily found from the modes in free-space. In free-space the modes are 

nothing but the usual plane wave solutions of Maxwell’s equations. A generic plane wave is of 

the form: 

 0
je  k rE E ,           (5.2) 

where  0E  determines the polarization of the wave and ˆ ˆ ˆx y zk k k  k x y z  is the wave vector. In 

free-space it satisfies: 

 
2

c

    
 

k k .           (5.3) 

One can construct the modal fields in the box from the fields in free-space simply imposing the 

periodic boundary conditions. For example, for the walls at / 2x L   the fields must satisfy: 

   / 2, , / 2, ,L y z L y z  E E .         (5.4) 

The above condition is equivalent to 
   0 0/2, , /2, ,

j j

L y z L y z
e e   

   
k r k r

r r
E E , which leads to 

1xjk Le  . Thereby, the allowed values for the x-component of the wave vector are 2 /x xk n L , 

where 0, 1, 2,...xn     is an integer number. Proceeding in the same way for the other two pairs 

of walls, it can be easily shown that the wave vector must be of the form: 

2 2 2
ˆ ˆ ˆx y zn n n

L L L

  
  k x y z , , , 0, 1, 2,...x y zn n n           (5.5) 
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Let us now find the distribution of modes in frequency. Specifically, let us count the number of 

modes N , with an oscillation frequency   less than  . Evidently, from Eq.  (5.3), the modes 

with    have a wave vector k  such that: 

 / ck .           (5.6) 

It is possible to visualize geometrically this condition representing each mode in the spacek  

with a “point” (blue dot). The number of modes N  with oscillation frequency less than   is 

determined by the number of points inside the sphere of radius /k c . 

 

From Eq. (5.5), the distance between adjacent points in every direction of space is exactly 

2 / L . Hence, each point in the spacek  occupies the volume  3
2 / L . The number of the 

points inside the sphere is roughly the volume of the sphere 
3

34 4

3 3
k

c

     
 

 divided by the 

volume occupied by each point. Thus, the number of modes N  is approximately: 

 

3

3
3

3 2

4
13

2
32

c
N L

c

L



 




 
        

  
 
 

.        (5.7) 



 
Antennas 

 

 73 

The leading factor of 2 takes into account that there two independent polarization states of the 

electromagnetic field per mode. As seen, the number of modes is proportional to the volume of 

the box.  

5.4 Spectrum of the thermal energy 

With the equipartion law and the results of the previous section, we are ready to characterize the 

spectrum of the thermal energy inside the box. Specifically, let E d   be the thermal energy 

associated with the radiation with a frequency in the small interval  , d   . The number of 

modes dN  in this interval is 
3 2

2 3

dN L
dN d d

d c



 

 
  . Thereby, from the equipartition law 

the thermal energy in the spectral range  , d    is 
3 2

2 3B B

L
E d k TdN k T d

c 
 


  . The 

energy volume density is by definition 
3

1
W d E d

L   . It is given by: 

 
2

2 3BW d k T d
c

 


 .        (5.8) 

Note that the total energy per unit of volume in some spectral range  1 2,   is 
2

1

W d





 . The 

total energy per unit of volume in the box is 
0

W d 


 1. 

5.5 Thermal energy captured by an antenna 

We are finally ready to apply the developed theory to antenna systems. Consider an antenna 

illuminated by the thermal radiation that propagates inside the “box”. It is assumed that L  , 

so that the noise sources, i.e., the walls of the box are placed very far. We want to find the power 

                                                 
1 This formula incorrectly predicts that the total energy inside the box is infinite. This happens due to a “ultraviolet 
catastrophe”. The problem can be corrected by considering the quantization of the electromagnetic field energy in 

the box (Planck’s theory), which leads to a correction in the formula  Bk T . 
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,rdP   captured by the antenna due to the incoming thermal radiation with frequency in the range 

 , d   . The antenna sees radiation (plane waves) arriving from all possible directions of 

space.  

 

Let us first focus on the radiation that arrives inside some small solid angle d  oriented in the 

direction  ,  . From the theory of the receiving antenna the captured power is: 

  inc
, solid angle ef solid angle

d d

,r i pdP C C A dS  
 

 .        (5.9) 

Here, inc
solid angle
d

dS


 is the intensity of the Poynting vector of the “plane waves” that arrive inside 

the solid angle d . The thermal radiation propagates isotropically. This implies, that the 

thermal energy density associated with the waves that propagate inside the solid angle d  is 

4

d
W d 




, i.e., it corresponds to a fraction 
4

d




 of the total energy density. In free-space the 

Poynting vector is related to the energy density as (prove this result!): 

S Wc .            (5.10) 

From here, one finds: 
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2
inc

solid angle 3 2
d 4 4B

d
dS cW d k T d d

c 
 

 


   .       (5.11) 

We can now substitute this formula into Eq. (5.9). The polarization matching coefficient is taken 

as 1/ 2pC   because all the polarization states are equiprobable (thermal radiation with the 

optimal polarization leads to 1pC   and thermal polarization with the “worst polarization” gives 

0pC  ). It is found that: 

 
2

, solid angle ef 3 2
d

1
,

2 4r i BdP C A k T d d
c

  


   .       (5.12) 

Next, we integrate over all solid angles to take into account the radiation that arrives from all 

directions in the “sky”. This gives: 

 

 

 

2

, ef3 2
all solid angles

22
0

3 2
all solid angles

2
all solid angles

,
8

        = ,
8 4

1
       ,

8

r B i

B i

B i

dP k T C A d d
c

k T C G d d
c

d k T eC g d


   


   
 

  


 
   
 
 

  
 

 
   

 







.       (5.13) 

In the second identity we used the universal relation between the power gain and the effective 

area, and in the second identity we used G e g , which relates the power gain and the directive 

gain through the efficiency. Note that here ,rdP   is the power captured exclusively by the load, 

and does not include the power captured by the antenna body when the antenna is lossy. 

From the definition of the directive gain of a transmitting antenna, one can write 

 
 

all solid angles

4 4
,

,rad

U U
g

P U d

  
 

 


. Thus, the integral of the directive gain over all solid 

angles is 

 
all solid angles

, 4g d    .         (5.14) 
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Substituting this result into Eq. (5.13), we obtain the remarkably simple and universal 

(independent of the antenna) result: 

, 2r B i

d
dP k T C e




   .  (uniform “sky” temperature).      (5.15) 

The power captured by the antenna load due to the incoming thermal radiation in the range 

 , d    only depends on the temperature T of the noise sources, on the antenna efficiency 

and on the impedance matching coefficient. In particular, for a lossless antenna terminated with a 

matched load, the received power is: 

, 2r B

d
dP k T




   (matched load + lossless antenna).     (5.16) 

Note that the power spectral density of thermal noise at the antenna terminals is “white”, i.e., 

,

1
/

2r BdP d k T 


  is independent of frequency. 

5.6 Antenna noise temperature 

In the previous section, it was assumed that the “sky” temperature is uniform. However, in 

practice an antenna captures energy radiated by different noise sources at different equivalent 

temperatures. One can take this into account by introducing a function  ,BT    that gives the 

equivalent temperature of the noise sources in the direction  ,  . This function is known as the 

brightness temperature. The only modification required in the analysis of the previous section is 

to replace  ,BT T    in Eq. (5.12). Then, integrating over all solid angles Eq. (5.13) 

becomes: 

   
2

, ef3 2
all solid angles

, ,
8r B i BdP k C T A d d

c
     


 
   
 

 .      (5.17) 

The antenna noise temperature AT  is defined as a weighted (by the effective area of the antenna) 

average of the brightness temperature: 
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   

 

ef

all solid angles

ef

all solid angles

, ,

,

B

A

T A d

T
A d

   

 









.        (5.18) 

It is straightforward to check that Eq. (5.15) must be modified as 

, 2r B A i

d
dP k T C e




   .         (5.19) 

The antenna noise temperature depends on the environment wherein the antenna is placed. 

Desirably, the antenna should have a small gain along directions of space where the brightness 

temperature is larger, usually in the direction of the ground. Typical values for the brightness 

temperature for the microwave radiation spectrum are 100 150BT K   in the direction of the 

horizon (tangent to the Earth), 5BT K  in the zenith direction (perpendicular to the Earth), and 

300BT K in the direction of the ground (Earth surface). 

 

As curiosity, the characterization of the antenna noise is at the origin of a Physics Nobel prize. In 

1964, Arno Penzias and Robert Wilson were experimenting with a 6 meter horn antenna that had 

been built to measure very faint radiowaves. To increase the sensitivity of their receiver they 

tried to eliminate all the recognizable noise sources and cooled down the receiver to liquid 

helium temperature. To their surprise, they found that a low, steady and mysterious noise 

persisted in their data. The residual background noise of 3.5K was 100 times more intense than 

what the recognizable noise sources could create. The background noise was independent of the 

direction along which the antenna was oriented and was present day and night with the same 
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intensity. They concluded that this noise, now known as “cosmic background radiation”, was 

coming from outside our galaxy. Today, this radiation is regarded as a fingerprint of the “Big 

Bang”, which supposedly released a tremendous blast of radiation that continues to arrive to us. 

In 1978, Penzias and Wilson were awarded the Physics Nobel Prize for their discovery. 

5.7 Equivalent circuit 

As shown in the figure below, one can introduce an equivalent circuit for the receiving antenna 

to model the effect of noise. The equivalent circuit is analogous to that of the receiving antenna, 

except that the generator amplitude is controlled by the noise, rather than by the amplitude of an 

incident plane wave. 

 

A simple circuit analysis shows that the power delivered to the load in the equivalent circuit is 

  2

, ,

, 4

th d

r i
a

v
dP C

R

  





 , with iC  the load impedance mismatch coefficient defined in the usual 

way, a a aZ R jX   is the antenna impedance, and   2

, ,th dv     represents the expectation of 

  2

, ,th dv     with  , ,th dv     the part of the noise signal with spectrum in the range  , d   . 

Note that here thv  is an instantaneous noise voltage; for a time harmonic variation one has 
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22 / 2th thv V . Comparing this result with Eq. (5.19), it is seen that the voltage of the 

equivalent noise generator is determined by: 

  
 

2

, ,

4
/ 2

th d

a B A

v
R k T

d

  

 



 .          (5.20) 

 

It is interesting to note that load impedance ( L L LZ R jX  ) is also subject to the influence of 

thermal noise. From the noise theory of Nyquist-Johnson, the effect of noise in the load can be 

modelled by an equivalent generator with amplitude: 

  
 

2

, ,
load 4

/ 2

th d

L B

v
R k T

d

  

 



 .          (5.21) 

where T  is the physical temperature of the load. The noise in the load impedance gives rise to 

the emission of thermal radiation by the antenna. The emitted power can be found using the 

equivalent circuit for the transmitting antenna. Specifically, the input power at the terminals of 

the antenna is 
 

2
, , load

, 4

th d

in i
L

v
dP C

R

  




 . Thereby, from the Nyquist-Johnson result one finds that 

, 2in i B

d
dP C k T




 . The power radiated ,raddP   (originated exclusively by the load) is related to 

the input power through the efficiency: 

, 2rad B i

d
dP k T C e




   .          (5.22) 
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Comparing this result with Eq. (5.19), one can see that when the load is in thermal equilibrium 

with the environment so that physical temperature of the loadBT T  , one has , ,rad rdP dP   so 

that the amount of received thermal energy is exactly identical to the amount of radiated thermal 

energy, as it should be! 
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6. Balancing devices 

6.1 Balanced lines 

Antennas are fed by transmission lines. The line transports power from the generator to the 

antenna, and, desirably, should not contribute to the radiation pattern of the system. This can be 

enforced by guaranteeing that the two conductors that form the line transport symmetric currents 

( 1 2I I , with the currents oriented as shown below) so that the fields emitted by an individual 

conductor effectively cancel out the fields emitted by the other conductor. This is the normal 

mode of operation of transmission lines. When 1 2I I  the line is said to be balanced. 

       

However, when a line is connected to an antenna the balancing condition 1 2I I  can be 

disrupted. This can lead to undesired effects such as an uncontrolled change of the input 

impedance or a corruption of the antenna radiation pattern. 

To understand how such an effect can arise, let us first consider a configuration that guarantees 

that the line remains balanced. Specifically, suppose that a parallel wire transmission line is used 

to feed a dipole antenna, as illustrated in the figure. One can identify a symmetry plane 

equidistant from the two conductors and from the two arms of the dipole antenna. The mirror 

symmetry ensures that the currents remain identical when the line is connected to the antenna. 
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Indeed, by symmetry, the two-half spaces delimited by the symmetry plane are completely 

equivalent, and thereby if a certain current flows in the top conductor to the right, the same 

current will flow in the bottom conductor but to the left, so that the line is balanced1. 

 

However, the condition 1 2I I  can be easily disrupted. To illustrate this consider the problem of 

feeding the same dipole antenna but with a coaxial cable. In the ideal balanced scenario the 

currents in the two arms of the dipole are identical. This requires that the current provided to the 

left arm of the dipole by the outer conductor of the coaxial cable is identical to the current 

provided to the right arm of the dipole by the inner conductor. However, in this system, there is 

no symmetry that guarantees such a behaviour. In fact, nothing prevents that L RI I , as it is 

perfectly possible to induce a current on the outer side of the coaxial 3I , leading to an excitation 

of the dipole antenna with unbalanced currents 1 2 3R LI I I I I    . In this situation the net 

current flowing in the outer conductor ( 2 3I I ) differs from the current flowing on the inner 

conductor 1I  so that the line is unbalanced. The current 3I  can itself radiate and corrupt the 

radiation pattern of a dipole antenna, leading to asymmetries and undesired sidelobes.  

6.2 Baluns 

A “balun” is a device intended to enforce that a feeding line remains balanced after it is 

connected to an antenna. “Balun” is an acronym for “balanced to unbalanced”. 

                                                 
1 This property is a simple consequence of the image method. 
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To illustrate the principle of operation of such devices, we analyze the so-called folded or quarter 

of wavelength balun represented below. 

 

This balun eliminates the balancing problem that arises when a coaxial cable is connected to the 

dipole antenna. In short, the idea is to enforce some (partial) symmetry that can ensure that 

R LI I . This is done by adding an “additional conductor” to the system, as represented in the 

figure above. The system is approximately symmetric with respect to the mid-plane that 

separates the coaxial from the additional conductor.  

 

Effectively, the additional conductor forms a parallel wire transmission line with the outer side 

of the coaxial cable. Due to the partial symmetry of the system, one has 3 4I I  and 1 2I I . In 

particular, the fields emitted by the current flowing outside the coaxial cable are cancelled out by 

the fields radiated by the current flowing on the additional conductor. Thus, the radiation is 

mainly due to the arms of the dipole. Moreover, the current flowing on the right arm of the 
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dipole is now 1 4RI I I   and is approximately identical to the current flowing on the left arm 

of the dipole 2 3LI I I  , guaranteeing a symmetric excitation of the dipole arms.  

The rationale for the choice of the length of the additional conductor is the following. From the 

point of view of the feeding line, the load is formed by the “parallel” of the “dipole antenna” and 

of the “parallel wire transmission line” formed by the coaxial and by the additional conductor. 

Thus, the feeding line sees the load impedance: 

load in,dip in,
4

Z Z Z   .           (6.1) 

Here, in,dipZ  and in,
4

Z   are the impedances the dipole antenna and of the parallel wire line 

terminated in short-circuit. Ideally, we would like that load in,dipZ Z . This can be enforced by 

choosing the length of the additional conductor to be a quarter of wavelength. Indeed, a quarter 

of wavelength transmission line transforms a short-circuit into an open circuit, so that in,
4

Z     

and load in,dipZ Z , as desired. 
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7. Antenna arrays 

7.1 Introduction 

For the purpose of point to point communications it is desirable to have directional antennas. 

This avoids wasting the emitted power along directions of space that are not part of the 

communication link. Usually, a single radiating element cannot provide the required gain. The 

solution for the problem is to use an “antenna array”.  

Antennas arrays are typically formed by several identical radiating elements. The amplitudes 

and phases of the feeding currents may be tailored to obtain a highly directive beam. In 

particular, it is possible to increase more and more the directivity of a radiating system by adding 

additional elements to the array.  

     

Antenna arrays can also be used for “beam shaping”, i.e., to synthesize a desired radiation 

pattern. For example, in cellular networks it is crucial to avoid the spillover of radiation to 

adjacent cells, and hence the radiation pattern should ideally cover uniformly the cell up to its 

boundary, and then drop off sharply to zero. Antenna arrays are the solution for this type of 

applications as they provide enough flexibility to tailor the beam almost arbitrarily.  
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7.2 Principle of pattern multiplication 

We consider an array formed by N identical antennas. All the antennas have the same 

orientation, so that the antennas differ by one another by a simple translation in space. The n-th 

array element (n=0,1,…N-1) is centered at the point nr  and is fed by the current nI .  

 

We wish to obtain the electromagnetic fields in the far-field zone. The fields in the direction of 

observation r̂  are determined by the general formula derived in Chapter 1, repeated below for 

convenience: 

    
0

0 0far-field
ˆ ˆ ˆ

4

jk re
jk

r






  E r r r f r .       (7.1a) 

    0ˆˆ jkdV e     r rf r j r .        (7.1b) 

The integral in the definition of  ˆf r  is over the entire space. It is convenient to split the integral 

as a sum of parcels associated with the different antennas: 

   

 

0

0 0

1
ˆ

n-th
element0 volume n-th antenna

1
ˆ ˆ

n-th
element0 volume n-th antenna

shifted to the origin

ˆ

      n

N
jk

n

N
jk jk

n

e dV

e e dV


 




    



 

 

 

 

r r

r r r R

f r j r

j R
.     (7.2) 

In the second identity, we introduced n   R r r  so that all the volume integrals are effectively 

shifted to the origin.  
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As discussed in Sect. 4.1, the current distribution  j r  induced on the antennas is a multilinear 

function of the feeding currents (    0 1 1multilinear function , ,..., NI I I  j r ). Nevertheless, it is 

typically a good approximation to neglect the antenna coupling so that n-th
element

j  induced at the n-

th antenna element depends mainly on the feeding current of the same antenna: 

 n-th
element

linear function nIj . Furthermore, the profile of  n-th
element

j  may be assumed to be roughly 

the same as when the antenna stands alone in free-space. Since all the antenna elements are 

identical, this approximation implies that  n-th
element

/ nIj R  is the same for all the antennas. In 

fact,  n-th
element

/ nIj R  can be identified with current induced at a generic array element centered 

at origin (and alone in free-space) normalized to the feeding current    / 0Ij r .  

From the previous discussion, it follows that the function  ˆf r  can be approximated by: 

   
 

0 0

1
ˆ ˆ

0 generic array element
centered at the origin

ˆ
0

n

N
jk jk

n
n

e I e dV
I


    




  r r r rj r

f r .     (7.3) 

Substituting this result into Eq. (7.1) it is found that: 

   
 

0

0

1
ˆ

0 0far-field generic element0
centered at the origin
alone in free-space

ˆ

0 4
n

jk rN
jk e

n
n

e
e I jk

I r





 



          
 r r h r

E r .    (7.4) 

where  ˆeh r  is the effective length of a generic element of the array, defined in the usual way: 

   
 

0ˆ

generic array element
centered at the origin

ˆ ˆ ˆ
0

jk
e e dV

I
 

        
    

 r r
j r

h r r r .    (7.5) 

The field radiated by the array [Eq. (7.4)] can be written in an enlightening way: 

     
 

rad

far-field
array single array element

positioned at the origin

ˆ
0

F
I


E r

E r r .      (7.6) 



 
Antennas 

 

 88 

In the above,      
0

rad
0 0

ˆ/ 0
4

jk r

e

e
I jk

r






E r h r  is the field radiated by a single array element 

positioned at the origin normalized by the respective feeding current. The function  ˆF r  is the 

so-called array spatial factor, and only depends on the feeding currents, on the position of the 

antennas, and on the direction of observation: 

  0

1
ˆ

0

ˆ n

N
jk

n
n

F e I


 



 r rr .         (7.7) 

The formula (7.6) establishes that the fields emitted by the array are determined by the 

multiplication of the field emitted by a single element and the array spatial factor. This result is 

the foundation of array theory and is know as the principle of pattern multiplication. 

Taking the absolute value of both sides of Eq. (7.6), one can write: 

   
 
 far-field

array

rad

single array element
positioned at the origin

ˆ
0

F
I


E r

E r r .      (7.8) 

The radiation intensity of the array is proportional to the square of the absolute value of the 

electric field:   2
~U E r . This means that the (power) radiation pattern of the array is the 

product of the radiation pattern of a single element by   2
ˆF r  (apart from an overall multiplying 

constant). In particular, the array spatial factor determines the radiation pattern of a hypothetical 

array of isotropic emitters:  

 
array of isotropic
emitters

2
ˆ~U F r .         (7.9) 

For future reference, we note that the magnetic field emitted by the array is related to the 

electric field in the usual way:    array array 
far-field far-field0

1
ˆ


 H r r E r . 
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7.3 Linear arrays 

A “linear array” consists of an antenna array in which the elements are placed along some 

line: the array axis. For definiteness, we take the array axis to be the x axis. In this case, the 

coordinates of the array elements are of the form: 

ˆn nx r x .           (7.10) 

                                       

The array spatial factor can be written as: 

0

1
cos

0

n

N
jk x

n
n

F I e 






 ,  (linear array)     (7.11) 

where we introduced the angle   defined by 

ˆ ˆcos cos sin    r x .         (7.12) 

In the second identity, we used ˆ ˆ ˆ ˆcos sin sin sin cos      r x y z . The parameter   has a 

simple geometrical interpretation: it is the angle between the observation direction and the array 

axis (the x-axis). The angle   varies in the range 0 180º  . The array spatial factor depends 

on the direction of observation exclusively through  . Due to this reason the radiation pattern of 

the array F  has symmetry of revolution around the array axis. 
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Let us now consider that all the elements of the linear array are equidistant and spaced by the 

distance d. For simplicity, we take the coordinates of the first element (n=0) of the array to be the 

origin. Then, in this scenario,  

,      0,1,..., -1nx nd n N   .        (7.13) 

 

The array spatial factor can now be written as: 

 0

1
cos

0

N
j k d n

n
n

F I e 






 ,  (array with equidistant elements).   (7.14) 

The expression of F is alike to a truncated Fourier series in the variable 0 cosu k d  . The 

period of the function  F u  is 2 , i.e.,    2F u F u    . In general, F is a complex valued 

function.  
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Evidently, only the interval  0/ cos 1u k d    is relevant for the physical problem, as the 

range cos 1   is not accessible for observation. Thus, the interval 0 0k d u k d    is known as 

the “visible region”: 

0 0k d u k d   ,  (visible region).     (7.15) 

A consequence of the periodicity of  F u  is that the array spatial factor can be “replicated” 

multiple times in the visible region. This is illustrated in cases ii) and iii) of the figure below, for 

which the visible region encompasses 2 and 4 periods of the function F , respectively. Note that 

the period ( 2 ) and profile of F are independent of 0 / d . The diameter of the visible region is 

0 02 4 /k d d   . In the figure, the horizontal axis is 4u   and thus one full period has width 

1 2 . 
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The appearance of “replicas” in the array spatial factor profile may occur when the diameter of 

the visible region ( 04 /d  ) exceeds the period ( 2 ) of the function F, i.e., when the distance 

between the antennas exceeds half-wavelength 0 / 2d  . In these circumstances, the radiation 

pattern of the array spatial factor may be formed by multiple grating lobes with identical 

amplitude (see cases ii) and iii)). This feature is undesired as it will induce a multi-lobe structure 

in the overall radiation pattern of the system. Due to this reason the spacing between the array 

elements is usually chosen such that: 

0 / 2d  ,  (ensures that F  does not have multiple lobes).   (7.16) 

The typical value for the distance between the array elements is 0 / 2d  , as it guarantees that 

the visible region consists of a full period of the array spatial factor. Very small values of d are 

not interesting because they lead to .F const , i.e., only a small portion of the visible region is 

scanned and there is no array effect. Furthermore, very small values of d lead to a strong antenna 

coupling, and this may invalidate the hypothesis that the current distribution on the antennas is 

the same as when each element stands alone in free-space. 

7.4 Progressive phaseshift array 

A progressive phaseshift array is a linear array with equidistant elements such that the phases of 

the feeding currents vary in a linear progression:    1arg argn nI I   . Here,   is the current 

phaseshift for adjacent array elements. The feeding currents satisfy (for simplicity the phase of 

the current of the 1st array element is taken identical to zero): 

,           0,1,...,  -1j n
n nI I e n N  .      (7.17) 

The corresponding array spatial factor is: 

 0

1
cos

0

N
j k d n

n
n

F I e  


 



 .        (7.18) 
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The same result can be written in a more compact way as: 

 
1

0

N
ju n

n
n

F u I e






 , 0 cosu k d    . (progressive phaseshift array)   (7.19) 

 

The array spatial factor can be regarded as a function of u. Furthermore, F is a periodic function 

u  such that: 

   2F u F u   .         (7.20) 

Taking into account that u u    (with u  defined as in the previous subsection) it is evident 

that the “visible region” is now determined by the interval: 

0 0k d u k d      ,  (visible region).     (7.21) 
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If the distance between the array elements is 0 / 2d  , the visible region is a full period of F. 

The condition 0 / 2d   prevents the emergence of grating lobes. These properties follow 

immediately from the analysis of Sect. 7.3. 

For a progressive phaseshift array, the direction of the maximum of F  can be found explicitly. 

In fact, from the “triangle inequality”, a b a b   , one obtains: 

   
1 1 1

0 0 0

0
N N N

ju n ju n
n n n

n n n

F u I e I e I F
  

 

  

      .     (7.22) 

This means that the maximum of F  occurs for 0, 2 , 4 ,...u     , where the periodicity of the 

function is taken into account: 

   max 0F u F , (reached for 0, 2 , 4 ,...u     )    (7.23) 

 

The maximum in the visible region is typically 0u  . The physical direction of observation 

( max ) associated with the maximum of the array spatial factor can be obtained by solving 

0 max0 cosu k d     . This yields the condition: 

max
0

cos
k d

 
 .         (7.24) 

Thus, the direction of the maximum is controlled by the current phaseshift angle  . The 

maximum can be sweeped full range max0 180º  , by varying   in the range 0 0k d k d    
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(here it is implicit that 0k d  , i.e., 0 / 2d  , so that the array spatial factor has a well defined 

maximum and there are no grating lobes).  

When the direction of the array factor maximum is perpendicular to the array axis ( max 90º  ) 

the array is said to be “broadside”. The current phaseshift is zero: 

max 90º 0    ,  (broadside array).    (7.25) 

On the other hand, when the direction of the array factor maximum is along the array axis 

( max 0º  ) the array is said to be “endfire”. The corresponding current phaseshift is given by 

max 00º k d     ,  (ordinary endfire array).    (7.26) 

 

 

7.5 Electronic beam steering 

The progressive phaseshift arrays create the opportunity to control electronically the direction of 

maximum radiation of an antenna system, without moving mechanically the antennas. This is 

particularly useful in RADAR systems where the antennas are supposed to sweep continuously 

the region of space under observation.  
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In practice, the required phaseshifts of the currents can be obtained either through a series or a 

parallel feed arrangement, as illustrated in the figure below. The circuitry of the series feed is 

simpler than the parallel feed, as it requires a single control signal to steer the beam (all the 

phaseshifts are identical). In contrast, the parallel feed requires N-1 control signals. Nevertheless, 

the series arrangement is more sensitive to the insertion loss of the phase-shifters, as the signal 

that feeds the last antenna has to go through all the phase-shifters. In the parallel feed, all the 

signals go through a unique phase-shifter. 

 

7.6 Uniform array 

The uniform array is a particular case of a progressive phaseshift array in which the currents 

have identical amplitudes ( 0nI I ). The complex amplitudes of the currents satisfy  

0 ,           0,1,...,  -1j n
nI I e n N   (uniform array).   (7.27) 
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The array factor of the uniform array is a truncated geometrical series, and thereby can be 

evaluated explicitly: 

0 cos1

0
0

11
2

0 0 0
0

1 sin / 2
   

1 sin / 2

u

j k d nN

n

Nju NN juju n
ju

n

F I e

e Nu
I e I I e

e u

 
 
    
 








 


  









     (7.28) 

In particular, the absolute value of the array spatial factor satisfies  

0

sin / 2

sin / 2

Nu
F I

u
  ,  (uniform array).    (7.29) 

The plot of this function is shown in the figure below for the case N=7. 

 

As expected, due to the progressive phaseshift of the currents, the maxima of F  occur for 

0, 2 , 4 ,...u     : 

max F N , (reached for 0, 2 , 4 ,...u     ).    (7.30) 

The zeros of F  are zeros of sin / 2Nu , i.e., / 2 0, , 2 ,...Nu     , so that 

1 2 1
0, 2 , 2 ,..., 2 , 2 ,...

N
u

N N N
   

         . The crossed elements must be discarded because 

they are also zeros of the denominator of F  (they correspond to the maxima). Hence, the nulls 

of the array spatial factor are:    

1 2 1
nulls 2 , 2 ,..., 2 ,...

N
F

N N N
  

      .     (7.31) 
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The secondary maxima of F  are associated with sidelobes. They occur approximately midway 

between the nulls. The sidelobe with largest amplitude is the one nearest to the maximum of F  

and occurs roughly at 3 /u N . The sidelobe level (SLL) characterizes the amplitude of the 

sidelobes relative to the main beam. It is defined as: 

maximum amplitude of the sidelobes
SLL=

amplitude of the main beam
.     (7.32) 

For a uniform array the sidelobe level is approximately: 

 
 uniform

1array

3 / 1 1 2
SLL

3 3 30 sin
2 2

N

F N

F N N
N N


  

    .    (7.33) 

Importantly, the sidelobe level of the uniform array cannot be made smaller than 
2

0.212
3

  no 

matter how many elements are added to the array (in logarithmic units, 

uniform 20
array

2
SLL 20log 13.5 dB

3
   ).  

 

 

 

In contrast, the directivity of the array can be increased as much as one may wish by increasing 

N. The directional properties of the array can be characterized in a simple way through the “main 

beam width” (MBW). The main beam width gives the angular width of the main beam 

determined by directions of the zeros. 
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For a broadside array ( max 90º 0    ), the MBW can be found noting that the two zeros 

that delimit the main beam are associated with 2 /u N  . Since for a broadside array 

0 cosu k d  , this implies that  02 / cos 90ºN k d    where   is the angle represented 

in the figure below (left). Since    cos 90º sin    , it follows that: 

0

0

2
arcsin arcsin

N k d N d

  
 

.       

Noting that MBW 2   , one concludes that: 

0 0
BS

1

2
MBW 2arcsin

NN d N d

 


 
 

.      (7.34) 

This formula confirms that by increasing the number of array elements, the main beam can be as 

narrow as one may wish. 
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A similar analysis shows for the ordinary endfire array 02arcsin
2N d

 


. Thus, the 

corresponding main beam width is: 

0 0
OE 1

2
MBW 4arcsin 2

2 NN d N d

 


 
 

.     (7.35) 

The MBW of the ordinary endfire array can also be arbitrarily small, but it approaches zero with 

1

N
, which is much slower than the 

1

N
 scaling law of the broadside case. Due to this reason, 

broadside arrays are usually much more directive than endfire arrays with the same number of 

elements. 

7.7 Graphical construction of the array radiation pattern 

For any linear array with equidistant elements, the radiation pattern of F  can be found from the 

plot of  F u  using the geometrical construction sketched in the figure below. 

 

The construction is done as follows: 
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 Represent  F u  as a function of u  and identify the visible region. The visible 

region depends on the phaseshift   and on the distance between the array 

elements. In the example of the figure, 0º   (broadside array). 

 Represent a circumference with diameter identical to the visible region on the 

array axis. 

 The amplitude of F  along a generic direction of observation   (represented in 

purple in the figure) is obtained by finding in the graphic the value of F  

determined by the point 0u . The vertical projection of 0u  intersects the 

circumference along the direction  . 

7.8 The Dolph-Chebyshev array 

From the practical point of view, the beam of a broadside array should be as narrow as possible, 

the gain a maximum, and the sidelobes, if any, should be at a low level. It is often a difficult 

matter to reconcile these demands. For example, the gain can be made a maximum by feeding all 

the antennas with currents with the same amplitude and phase (uniform array). Although it is 

true that this current distribution results in a narrow beam, it also results in high sidelobes which 

are only 13.5 dB down on the main beam.  

Dolph1 in 1946 proposed a solution for this problem based on the properties of Chebyshev 

polynomials. He introduced an optimal current distribution such that for a fixed number of array 

elements (i) if the sidelobe level (SLL) is specified the main beam width (MBW) is as narrow as 

possible. (ii) if the first null is specified, the sidelobe level is minimized. The design of the Dolph 

array is completely determined by either the SLL or, alternatively, by the MBW. In the Dolph 

array all the secondary lobes are at the same level. 

                                                 
1 C. L. Dolph, “A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam 
Width and Side-Lobe Level”, Proceedings of the IRE, 34(6), 335–348, (1946). 
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Chebyshev polynomials 

We start by reviewing some useful properties of Chebyshev polynomials. A Chebyshev 

polynomial of order m can be written as: 

 
 
 

cos arccos ,            1

cosh arcosh ,           1
m

m x x
T x

m x x

  


.      (7.36) 

From the definition, 

 0 1T x  ,   1T x x .       (7.37) 

Denoting arccosw x , one sees that  

      1 cos 1 cos cos sin sinmT m w mw w mw w      

      1 cos 1 cos cos sin sinmT m w mw w mw w      

Using cosx w , one obtains the recursion relation: 

1 1 2m m mT T xT            (7.38) 

which confirms that mT  are really polynomials. For example, from the recursion formula one 

finds that 2 0 12T T xT  , so that 2
2 2 1T x  . Similarly, from 3 1 22T T xT   one gets 

3
3 4 3T x x  , and so on. It is clear from the recursion formula and from (7.36) that the 

Chebyshev polynomials have the following properties: 

 mT  is a polynomial with real-valued coefficients. 

 mT  is an even function when m is even, and mT  is an odd function when m is odd. 

   1mT x   for 1x   and   1mT x   for 1x  . Furthermore,  1 1mT  . 

 All the zeros of mT  are in the interval 1 1x   . 

A sketch of the first few Chebyshev polynomials is shown in the next figure. 
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From   cos arccosm
w

T x m x
   
 
 , the zeros cosi ix w  of the polynomial mT  are such that 

 2 1
2iw w i

m


    with 0, 1, 2,...i    . Thus, the m distinct zeros are: 

 cos 2 1
2ix i

m

   
 

, 1, 2,...,i m , (zeros of mT , 1m  ).   (7.39) 

The extrema (local maxima or local minima) of mT  are coincident with the points inside the 

interval 1x   where   1mT x   . The extreme points  cosi ix w   are thus determined by 

iw i
m


  with i an integer, or equivalently by (the range of i is restricted to ensure that the 

condition 1x   is satisfied): 

cosix i
m

   
 

 , 1, 2,..., 1i m  , (extrema of mT ).   (7.40) 

The Chebyshev polynomials are of particular relevance in engineering (array theory, filter 

theory, and others) and optimization problems due to the theorem enunciated next: 

Theorem: Let 1a   be a fixed positive number, and consider the class of polynomials  P x  

of degree N with the following properties: 

  P x  has real-valued coefficients and  P x  is either an even or an odd function. 
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 All the zeros of  P x  lie in the interval 1x  . 

  1 1P   and  P x a  for 1 1x x   with 1x  the zero of P  with the largest 

amplitude. 

Then, among all the polynomials in this class, the one with the largest 1x  is a Chebyshev-type 

polynomial1. 

 

In simple terms, the theorem establishes that among all the polynomials of order N the one 

that can jump faster from a “zero” to some reference level “1” ensuring that in the rest of the 

domain the response amplitude is below some reference level “a” is a Chebyshev-type 

polynomial. Thus, Chebyshev polynomials are the ones that for a given complexity of a system 

(determined by the order of the polynomial) ensure faster transitions between states for a given 

level of “ripple” (in array theory, a given level of sidelobes). 

 

 

                                                 
1 Specifically, the theorem establishes that the polynomial with the largest 

1x  is    0

1
NQ x T xu

a
  where 

 0NT u a  with 
1 0 1Cx u   and  

1 1max cos
2Cx x

N

    
 

. A proof of the theorem can be found in Dolph’s article. 
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Dolph’s optimal array 

Dolph’s array is a progressive phaseshift array with N elements described an array spatial factor 

 F u  whose amplitude is a Chebyshev polynomial: 

 1~ NF T x ,  with 0 cos
2

u
x x   (Dolph-Chebyshev array).  (7.41) 

The parameter 0 1x   is the only degree of freedom in the array design; it is fixed either by the 

sidelobe level or, alternatively, by the main beam width. The parameter u is defined as in Eq. 

(7.19). 

Before discussing the design of Dolph’s array, let us verify that Eq. (7.41) really determines a 

progressive phaseshift array. To begin with, it is supposed that the array has an odd number of 

elements N. Then, 1m N   is an even number and mT  is of the form 

/2
2 2

0 1 /2
0

...
m

m n
m m n

n

T c c x c x c x


      for some coefficients nc . Noting that 

 /2 /21
cos

2 2
ju juu

e e   it is possible to write: 

 2 1
cos 2

2 4
ju juu

e e     
 

.       (7.42) 

This shows that for 0 cos
2

u
x x  one has 

   
2/2 /2

2 0

0 0

2
4

nm mn nju jun
m n n

n n

c x
T c x e e

 

     .      (7.43) 

Therefore, mT  is clearly a truncated Fourier series in the variable u, i.e., some some function of 

the form: 

j nu
nF a e . 
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Thereby, the Dolph’s relation  1~ NF T x  really determines the array spatial factor of a linear 

array with equidistant elements (see Eq. (7.19)). 

Let us illustrate the ideas with an example. Suppose that N=3 so that  2~F T x . Using 

  2
2 2 1T x x   and 0 cos

2

u
x x  one finds with the help of Eq. (7.42) that, 

  
 

 

2
2 0

2 2
20 0
0

1
2 2 1

4

   1
2 2

ju ju

ju ju

T x e e

x x
e x e





   

   
 

which is evidently a truncated Fourier series in u. From here and from Eq. (7.19), one finds that 

      
2 2

20 0
Dolph 0

3
~ 1

2 2
j u n ju ju

n
N n

x x
F I e e x e 


    .                                   (7.44) 

Note that the coefficients of the Fourier series determine the amplitudes of the feeding currents, 

apart from a scaling factor. They are all positive real numbers, as it should be, because 0 1x  . 

From the general theory of Sect. 7.3, the coefficient jnue  is associated with an antenna 

positioned at nx nd  . If all the antennas are positioned along the positive x-axis only positive 

n’s should be allowed. It is always possible to enforce this, by factoring out exponential factors 

of the form jue . For example, in the current example we could write: 

                  
2 2

2 20 0
Dolph 0

3
~ 1

2 2
j u n ju j u

n
N n

x x
F I e x e e 


     

However, enforcing positive n’s is not strictly required if one allows the array elements to be 

positioned on the negative x-axis, which is of course totally fine. For example, Eq. (7.44) may 

describe a situation where the antennas are placed at  1x d   , 0 0x   and   1x d   , with the 

feeding currents satisfying the proportionality relations: 

 
2 2

20 0
1 0 1 0: : : 1 :

2 2

x x
I I I x    
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An interesting feature of the Dolph’s array is that it is a symmetric array. Specifically, the 

current distribution is symmetric about the center of the array, such that elements equidistant 

from the center are fed with currents with the same amplitude. For instance, for the case N=3 

analyzed previously one has 1 1I I  1. 

Due to monotonic behaviour of the Chebyshev polynomials for 1x  , maximum of the array 

factor 1 0~ cos
2N

u
F T x

 
 
 

 is clearly reached for 0u  , that is: 

      1 0max ~ NF T x ,  ( 0 1x  ).                                    (7.45) 

This property is consistent with the fact that the array is a progressive phaseshift array. 

The results discussed so far can be generalized in a straightforward way to the case wherein 

the number of array elements N is even. In that situation, mT  (with 1m N  ) is an odd function, 

and thereby can be written as  even functionmT x  . Upon the replacement 0 cos
2

u
x x , the 

even function becomes a truncated Fourier series in the variable u. Noting that 

 /2 0 1
2

ju jux
xe e   , it is evident that /2ju

mT e   is also a truncated Fourier series, and hence can 

                                                 
1 One can check that this a general property. For example, for N odd,  

0 cos
2m

u
T x 

 
 

 is an even function, and thereby 

its Fourier series  j nu
na e  has coefficients given by  0

1
cos cos

2 2n m

u
a T x nu



 

   
  . From this formula it is clear 

that 
n na a , i.e., that the array is symmetric. 
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model the array factor of a radiating system. Hence, for N even we take /2~ ju
mF T e . For 

example, for N=4, one has  

 

 

3 2
3

even function

/2 /2
2

0 0

4 3 4 3

1
   4 2 3

2 4

ju ju
ju ju

T x x x x

e e
x x e e




    

          
  


 

From here, 

  

 

    
    

/2 2
Dolph 3 0 0

4

2 2 2 2 20
0 0 0 0

2 2 2 2 2
0 0 0 0

1 1
~ 4 2 3

2 4

                  3 3 3 3
2

                   ~ 3 3 3 3

ju
ju ju ju

N

ju ju j u

ju ju j u

e
F T e x x e e

x
x e x x e x e

x e x x e x e

 







          
  

     

    

 

One can interpret this spatial factor as being associated with elements centered at nx nd   with 

1,0,1,2n    and with the feeding currents satisfying the proportionality relations:  

   2 2 2 2
1 0 1 2 0 0 0 0: : : : 3 3 : 3 3 :I I I I x x x x     

Note that similar to the first example, the feeding currents distribution is symmetric about the 

center of the array. 

Design of a Dolph-Chebyshev broadside array 

As previously discussed, for a Dolph-Chebyshev array the maximum of the array factor is 

 1 0max 0
~ Nu

F F T x
 . For a broadside array ( 0  ) the maximum is evidently in the visible 

zone.  The amplitude of the sidelobes of the Dolph array is determined by the amplitude of the 

extrema of  1NT x , which from the properties of the Chebyshev polynomials is “1”. Thus, the 

sidelobe level is given by (here it is assumed that the visible zone is wide enough to contain that 

a least one sidelobe): 

     
 Dolph

1 0

1
SLL =

NT x

.                                       (7.46) 
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The nulls of F  are determined by the nulls of the Chebyshev polynomial [Eq. (7.39)]. Since 

0 cos
2

u
x x  and since for a broadside array 0 cosu k d  , one can write 

   0 0
0 0cos cos 90º cos sin

2 2

k d k d
x x x          

   
 for directions max      near the 

maximum max 90º  . 

 

The null closest to the main beam is 1 cos
2

x
m

   
 

 with 1m N   [Eq. (7.39)]. Thus, the 

main beam width is determined by MBW 2    with  0
0 cos sin cos

2 2

k d
x

m

       
  

. 

Solving with respect to   one finds that: 

 Dolph
0 0

2 1
MBW =2arcsin arccos cos

2 1k d x N

   
         

.                             (7.47) 

The design of the Dolph array is based on Eqs. (7.46) and (7.47). 

If the SLL is specified, one can find the required 0x  from Eqs. (7.36) and (7.46): 

     1
0

1 1
=cosh arccosh

1 SLL
x

N
 

  
.                                     (7.48) 

Alternatively, if the MBW is specified, one can find the required 0x  from Eq. (7.47): 
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 

0
0

cos
2 1

MBW
cos sin

2 2

N
x

k d

 
  

  
    

.                                      (7.49) 

Design example 

As an illustration, consider the design of a broadside Dolph-Chebyshev array with 5N   

elements,   0 / 2d   and SLL 0.1 . From Eq. (7.48) one finds that: 

1
0

1 1
=cosh arccosh 1.29

5 1 0.1
x     

 

From the expression of 4T  one can show that the array factor is: 

 

     

     

4 4
2 4 2 4 2 4 2 20 0

Dolph 4 0 0 0 0 0 0
5

2 4 2 4 2 4 2 2
0 0 0 0 0 04 4 4

0 0 0

2 3

~ = 2 3 4 1 2
2 2

4 2 4
                 ~ 3 4 1

                 ~ 1 1.61 1.93 1.61

ju ju ju ju

N

ju ju ju ju

ju ju ju

x x
F T e x x e x x x x e e

e x x e x x x x e e
x x x

e e e

 



 

 
        

 
 

        
 

   4 jue

 

We enforced that the first element of the array is centered at the origin. The array of 5 antennas 

must be fed with a current distribution obeying the proportionality relations 

0 1 2 3 4: : : : 1:1.61:1.93:1.61:1I I I I I  . The currents are in phase because the array is 

broadside. 

The main beam width is determined by Eq. (7.47): 

Dolph

2 1
MBW =2arcsin arccos cos 59.1º

1.29 2 4



          

 

The radiation pattern of the array can be constructed graphically through a generalization of 

the procedure of Sect. 7.7. It is a two step procedure based on the plot of the Chebyshev 

polynomial and on the plot of the function 0 cos
2

u
x x . The amplitude of F  along a generic 
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direction   is found starting from the intersection of   with a circle with the same diameter as 

the visible zone ( 02k d , which for 0 / 2d   equals 2 ). The intersection point suffers then a 

horizontal projection and a vertical projection, which yield the vertical line segment marked in 

red (left panel). The radial distance marked along the direction   is identical to the length of the 

vertical line segment. 

 

7.9 Planar arrays 

The radiation pattern of a linear array has revolution symmetry about the array axis: 

 cosF F  . The only direction of space that can be pinpointed by this type of radiation 

pattern is the array axis itself. Indeed, with the exceptions of 0º   and 180º  , which 

correspond to the positive and negative x-axis, respectively, all the other angles .const   

determine a conical surface. 

In some applications, such as in beam steering, it is relevant to pinpoint an arbitrary direction of 

space. To break the revolution symmetry of F  and have additional control over the array 

spatial factor one needs to use a planar array. 
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In a planar array, the array elements are positioned on a plane. The array plane is taken as the xoz 

plane. We focus on case wherein the array elements are equidistant along the two main (x and z) 

directions. The antennas are positioned at the points: 

      ,
ˆ ˆ

x zn x x z zn n d n d n   r r x z ,    0,... 1x xn N  ,   0,... 1z zn N  .                          (7.50) 

Here, ,x zd d  are the spacings along the x and z directions. The array is formed by x zN N  

identical elements. Each array element is labelled by a pair of integers  ,x zn n n . A generic 

direction of observation is specified uniquely by the angles ,   determined by the observation 

point and the two array axes (x and z axes): ˆ ˆcos   r x  and ˆ ˆcos  r z . 

                                 

The array spatial factor of the planar array can be found from the general formula (7.7): 
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   
 

 
   

 

0 00 cos cosˆ

, ,
, ,

, x x z zn

x z x z

x z x z

jn k d jn k djk
n n n n

n n n n n n

F e I I e e     

 

  r r .   (7.51) 

In the second identity, we used ˆ cos cosn x x z zn d n d   r r . Clearly, the planar array spatial 

factor is a function of two angles:  ,F F   .  

A current distribution is separable if it is of the form: 

 
 

, ,,
0,0

1
x zx z x n z nn nI I I

I
  .        (7.52) 

Here,  , ,0x xx n nI I  determines the profile of the currents in the x-axis,  , 0,z zz n nI I  determines 

the profile of the currents in the z-axis, and  0,0I  is the feeding current of the element centered 

at the origin. Thus, a separable current distribution is completely determined by the feeding 

currents of the array elements placed along the x and z axis (there are 1x zN N   independent 

currents). When the current distribution is separable, the array spatial factor can be written as a 

product of two array spatial factors: 

 
   

0 0

1 1
cos cos

, ,
0 00,0

1 x z

x x z z

x z

x z

zx

N N
jn k d jn k d

x n z n
n n

FF

F I e I e
I

 



 
 

 

   
    

  
 


.     (7.53) 

This property can be regarded as consequence of the principle of multiplication of the pattern 

diagrams because a planar array with a separable current distribution may be regarded as an 

array of linear arrays! In particular,  xF    (  zF  ) is nothing but the array spatial factor of the 

linear array with equidistant elements formed by the antennas placed along the x (z) axis.  

Let us now suppose that  , ,0
x x

x x

j n
x n nI I e   and  , ,0

z z

z z

j n
z n nI I e   so that the phases of the 

currents satisfy an arithmetic progression. Then, the array spatial factor becomes: 

 
   

1 1

, ,
0 00,0

1 x z

x x z z

x z

x z

z zx x

N N
jn u jn u

x n z n
n n

F uF u

F I e I e
I

 
 

 

   
    

  
 


,      (7.54) 
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with 0 cosx x xu k d     and 0 cosz z zu k d    . Thus, it is product of the array spatial factors 

of two progressive phaseshift linear arrays. The two spatial factors ,x zF F  are totally 

independent, and are controlled by the angles ,  , respectively. 

For progressive phaseshift arrays the maximum occurs for the directions that satisfy 0u  . 

Thus, the maximum of xF  occurs along the cone of directions that satisfies 0xu   ( max  ), 

and the maximum of zF  occurs along the cone of directions that satisfies 0zu   ( max  ). 

These conditions yield (compare with Eq. (7.24)): 

max
0

cos x

xk d

 
 ,   max

0

cos z

zk d

 
 .    (7.55) 

Provided the two cones determined by max   and max   have a non-trivial intersection1, 

the maximum of      0,0/x x z zF F u F u I  is reached when the two conditions are 

simultaneously satisfied, 

max maxmax       and  F       .     (7.56) 

This discussion shows that for any given direction of observation r̂  it is possible to tailor the 

current phaseshifts x  and z  so that the array spatial factor pinpoints that direction.  

It should be mentioned that even though the values of max  and max  are uniquely determined 

by r̂ , the intersection of the cones max max  and        may not be unique. Indeed, two 

intersecting cones typically touch at two different semi-lines. Due to this reason, the spatial 

factor of a progressive phaseshift planar array typically has two maxima. The exceptions are the 

directions in the array plane, which can be pinpointed uniquely. The described limitation can 

only be overcome using space arrays. 

                                                 
1Even though any observation direction r̂  is associated with well defined values of ,  , not all the combinations of 

,   lead to valid observation directions. Indeed, in order that ˆ ˆcos   r x  and ˆ ˆcos  r z  it is necessary that 
2 2cos cos 1   .  
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To illustrate the ideas, let us consider a planar uniform array with a constant current amplitude 

distribution: 

 , 0,0
x x z z

x z

j n j n
n nI I e e  ,  (uniform planar array).   (7.57) 

The corresponding array spatial factor is the product of the array spatial factors of two uniform 

arrays: 

 

 
 

 
 

0,0

sin / 2 sin / 2

sin / 2 sin / 2
x x z z

x z

F N u N u

u uI
 .      (7.58) 

The figure above shows the array radiation pattern when the direction of maximal radiation is 

picked in the yoz plane and makes an angle of 45º with the z-axis. The number of antennas is 

10 10  and the distance between antennas is 0 / 2 . As seen, the direction of maximal radiation 

is not unique, as the array factor is formed by two main lobes. Nevertheless, this a considerable 

improvement as compared to a linear array, which has always a radiation pattern with revolution 

of symmetry about the array axis. 

7.10 Power gain and gain in field intensity 

The power gain of a generic antenna array is determined by 

array
array

in,array

4
U

G
P

 ,         (7.59) 
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with arrayU  the radiation intensity of the array and in,arrayP  the input power of the system. It can be 

related to the power gain of a generic array element ( singleG ) noting that: 

single array in,single
array

in,single single in,array

array in,single
single

single in,array

2

array in,single
single 2

in,arraysingle

4

       

       

U U P
G

P U P

U P
G

U P

P
G

P






E

E

       (7.60) 

We introduce the “gain in field intensity” ( fG ) as the parameter that gives the field radiated by 

the array divided by the field radiated by a single array element fed with the same input power as 

the array: 

array

single
element fed
with same power 

gain in field intensity=f

E

E
 .      (7.61) 

From this definition, it is clear that: 

2
array single-element fG G           (7.62) 

Let us derive an explicit formula for f  in terms of the array spatial factor F . To begin with, 

we note that the power delivered to a single array element is   2

in,single

1
0

2 aP R I . Here,  aR  is 

the input resistance of a single array element alone in free-space and  0I  is the feeding current. 

The condition in,single in,arrayP P  requires that  0I  satisfies: 

  in,array2
0

a

P
I

R
 .         (7.63) 

Then, from the principle of multiplication of pattern diagrams [Eq. (7.6)], it follows that the gain 

in field intensity can be written as: 
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  in,array20
a

f

F R
F

PI
  .       (7.64) 

which is the same as 

2

0

0in,array2
a

f

I FR

P I
 .        (7.65) 

In the above 0I  is the feeding current of the first (n=0) array element. Note that 

2

0 0in,array / , /P I F I  depend only on the profile of the current distribution. 

The input power of the array can be written in terms of the impedance matrix Z  determined by 

the self and mutual impedances. For a reciprocal system, one has *
in,array

1

2
P   I R I  with 

 ReR Z  the resistance matrix and  0 1 1...
T

NI I I I  a column vector with the current 

distribution (see Sect. 4.5). Thus, the gain in field intensity can be found using: 

2

0

*
0

f a

I F
R

I


 I R I
 .        (7.66) 

Let us consider some particular cases. To begin, suppose that the coupling between the array 

elements is negligible. In such a case, the resistance matrix is approximately diagonal: aRR 1 . 

This leads to the simplified formula: 

2

0

*
0

f

I F

I


I I
 ,  (negligible coupling).     (7.67) 

Consider now a uniform array. Since current amplitudes are constants, 
2*

0N I I I , and 

thereby: 

uniform
array 0

sin
1 1 2

sin
2

f

u
N

F

uIN N

 
 
  
 
 
 

 , (negligible coupling).   (7.68) 
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The maximum of the gain in field intensity occurs for 0u   and is equal to ,maxf N . Thus, 

if the maximum of the array factor is aligned with the maximum of the radiation pattern of a 

generic element, it is possible to write the maximum power gain of the uniform array as: 

uniformm,array m,generic-element
array

G G N          (negligible coupling + aligned maxima).         (7.69) 

This proves that when the antenna coupling is negligible, the power gain is proportional to the 

number of array elements. 
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8. Wire-type antennas 

8.1 Introduction 

In this Chapter, we analyze several antennas of widespread use in communication systems, 

and that have in common the fact that they are formed by pieces of metallic wires (wire-type 

antennas). We will discuss the main principles of operation of the corner reflector, Yagi-Uda 

antenna, turnstile antenna, loop antenna and helical antenna.  

8.2 Corner reflector 

A simple way to increase the directivity of an antenna is to place it near a reflector that 

redirects the radiation to some desired angular region. This is the working principle of the corner 

reflector. It consists of two flat metal sheets intersecting at an angle  . The system is excited by 

a dipole antenna with height L placed at a distance S from the vertex of the reflector. The dipole 

is placed in the bisector plane of the reflector with the dipole axis aligned with the reflector edge. 

 

For analysis purposes, the metal sheets that form the reflector are assumed to be perfect 

conductors of infinite extent. This is usually a good approximation if 1.2l L  and 2w S . It is 
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also possible to consider designs where the metal sheets are replaced by a dense grid of metallic 

wires. 

 

It is difficult to determine the corner reflector radiation pattern for a generic  . Interestingly, 

when 180º /N   with 1N   one can obtain an analytical solution with the help of the image 

method. The idea is illustrated in the figure below for the case 3N   ( 60º  ). 

 

The fields radiated by the dipole in the vicinity of the corner reflector are identical to the 

fields radiated by a set of 2N  dipoles uniformly distributed in a circle of radius S along the 

azimuthal direction ( n n  , 0,1,..., 2 1n N  ), and fed with currents with alternating ( ) sign. 

In fact, due to the image method, such a current distribution ensures that perfect electric 

conductor (PEC) planes can be placed along the directions PEC / 2m m    , 0,1,...m  , 
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without affecting the radiated fields. Note that the currents flowing in the dipoles are 

“horizontal” with respect to the virtual PEC planes. 

The fields radiated by the dipole and its 2 1N   images in the far-zone can be found using 

array theory: 

  dipole + images

array spatial factor generic element
0

F
I

 
E

E .      (8.1) 

The array spatial factor is computed using 0 ˆ njk
nF e I   r r . The antennas are centered at 

 ˆ ˆcos sinn n nS    r x y  with n n  . Taking into account, that the current phases change by 

  from element to element one obtains    0

2 1
ˆ ˆ ˆcos sin

0
0

1
N

n jk S n n

n

F I e  


  



  r x y . This formula can 

also be written as: 

   0

2 1
cos sin

corner 0
reflector 0

1
N

n jk S n

n

F I e   


 



  .       (8.2) 

Hence, the field radiated by the dipole in the vicinity of the corner reflector is: 

 
dipole

cornerdipole +corner reflector
reflector 0

F
I

 
E

E .       (8.3) 

The radiated field has the same polarization as a single dipole ( ˆEE θ ) because the array 

spatial factor cannot change the antenna polarization (because it is a scalar). When the dipole is 

has length 0 / 2L  , using the sinusoidal current approximation, one can write 
dipole /2

E E  

with 

 dipole /2

cos cos
60 2

0
sin

I
r

 



 
 
  E E .      (8.4) 
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Let us now focus our attention on the square corner reflector 90º   (N=2). For 90º   the 

array spatial factor reduces to 

 

 

 

0 0
00

0 0 0 0

3
cos sin cos sin

cos sincos sin 2 2
square corner 0
reflector

cos sin sin sin cos sin sin sin
0                

jk S jk S
jk Sjk S

jk S jk S jk S jk S

F I e e e e

I e e e e

       

       

              

   

 
     

 

   

, 

which is the same as 

    0 0
square corner0
reflector

2 cos cos sin cos sin sin
F

k S k S
I

     .   (8.5) 

The figure below depicts the radiation pattern of the array spatial factor of the corner reflector 

for different values of the distance S. For 0 / 2S  , the maximum is 0
max

/ 4F I  , because the 

driven dipole radiation is redirected by the reflecting walls to a single quadrant of space. 

 

The power gain of the corner reflector can be found from the gain in field intensity (see Sect. 

7.10). For the square corner-reflector, the “gain in field intensity” is given by: 

    

2 cornercorner 
reflectorreflector 0

single dipole
0in,corner-reflectorfed with the same power

as the corner reflector

0 0
in,corner

2

    2 cos cos sin cos sin sin

a
f

a

F
IR

P I

R
k S k S

R
   

 

 

E

E


    (8.6) 
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Here, /2 73.1aR R    is the input resistance of the dipole antenna alone in free-space, and 

2

0in,corner-reflector in,corner

1

2
P R I  is the input power of the driven element of the corner-reflector. The 

input resistance in,cornerR  is not identical to /2R  because of the near-field coupling with the metal 

walls, or equivalently because of the coupling with the image antennas. 

                             

In fact, the voltage at the input of the driven element can be written in terms of the self-

impedance and mutual impedances as (for notational convenience here the antennas are labelled 

as in the figure above, so that the driven element is associated with the element m=1): 

1 11 1 12 2 13 3 14 4V Z I Z I Z I Z I    .      (8.7) 

Taking into account that 1 2 3 4I I I I      and that by symmetry 12 14Z Z  (see the figure), 

one finds that: 

 
in,corner

1 11 12 13 12

Z

V Z Z Z I  


.       (8.8) 

Thus, the input impedance of the driven element ( in,cornerZ ) is determined by the impedance 

matrix of the dipole and associated images. In particular, the input resistance is 

in,corner 11 12 13 12 132 73.1 2R R R R R R      , where the self-impedance was approximated by the 
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impedance of the antenna alone in free-space. This shows that the gain in field intensity is given 

by: 

    0 0
12 13

73.1
2 cos cos sin cos sin sin

73.1 2f k S k S
R R

    
 

 .   (8.9) 

For 0 / 2S  , the maximum of the gain in field intensity is ( 0º , 90º   ): 

,max
12 13

73.1
4

73.1 2f R R
 

 
 .      (8.10) 

The values of the mutual resistances can be found with the perturbation method discussed in 

Chapter 4. The value of ,maxf  is on the order of 10dB for 0 / 2S  . Thus, the power gain of the 

corner reflector corner-reflectorG  is roughly 10dB larger than the power gain of a single dipole 

antenna /2 1.64G  1.  

8.3 Yagi-Uda 

The Yagi-Uda array is a classical antenna that is widely used as a home TV receiver and FM 

radio in the HF (3-30MHz), VHF (30-300MHz) and UHF (300MHz-3GHz) ranges. The antenna 

was originally invented by Shintaro Uda in 1926, and was further developed in a series of papers 

by his colleague Hidetsugu Yagi.  Yagi’s work popularized the antenna outside Japan. 

The Yagi-Uda consists of a driven half-wavelength dipole coupled to an array of parasitic 

elements, which are not energized. The Yagi array is designed to operate as an endfire array. 

This is achieved by ensuring that the parasitic elements in the rear act as reflectors, whereas the 

parasitic elements in the front act as directors. Yagi referred to the row of directors as the “wave 

canal”. The typical number of elements of the Yagi array is in the range of 3 to 7. The height of 

the array elements is on the order of 00.5 . To achieve the endfire operation, the directors must 

                                                 
1 Recall that the power gain is related to the gain in field intensity as 2

array single-element fG G  . In the present problem, 

this formula implies that 2
corner-reflector /2 fG G  . 
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be slightly shorter than the energized element, and the reflectors slightly longer. The typical 

spacing between the directors is on the order of 0 00.15 0.25  . 

 

For simplicity, we will restrict our analysis to a Yagi antenna formed by a single director and 

single reflector, so that the number of array elements is 3. Since the elements of the array have 

roughly (but not exactly) the same size ( 1 2 3L L L  ), one can use array theory to write: 

 
dipole

Yagi YagiYagi

cos cos
60 2

sin0
F F

rI

 



 
 
   

E
E .     (8.11) 

In the second identity, we used the sinusoidal current approximation for a 00.5  dipole [Eq. 

(8.4)]. The array spatial factor for the 3-element Yagi is given by: 

0 1 0 2cos cos
1 2 3Yagi

jk d jk dF I I e I e    .     (8.12) 

Here, 1 2,d d  are the distances between the driven element (centered at the origin, fed with the 

current 1I ), and the director and reflector, respectively. The currents at the center of the director 

( 2I ) and reflector ( 3I ) are nontrivial due to the mutual coupling between the array elements. 

The angle   is determined, as usual, by the array axis (x-axis) and the direction of observation. 
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The currents induced on the reflector and director can be found using the impedance matrix of 

the system, noting that the director and reflector are short circuited ( 2 3 0V V  ): 

1 2 31 11 12 13

1 2 312 22 23

1 2 313 23 33

  0

  0

V Z I Z I Z I

Z I Z I Z I

Z I Z I Z I

  

  

  

.       (8.13) 

Using the last two equations, one can find the currents in the director and reflector as a function 

of the current in the driven element: 

13 23 12 33 12 23 13 22
2 1 3 12 2

22 33 23 22 33 23

,                
Z Z Z Z Z Z Z Z

I I I I
Z Z Z Z Z Z

 
 

 
.    (8.14) 

To a first approximation, one can neglect the coupling between the elements of the array that are 

not neighbours (that are more distant), i.e. neglect the coupling between the director and the 

reflector: 23 0Z  . This approximation leads to: 

1312
2 1 3 1

22 33

,                
ZZ

I I I I
Z Z


  .      (8.15) 

Thus, the array spatial factor of the Yagi antenna can be written as: 
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0 1 0 2cos cos1312
1Yagi

22 33

1 jk d jk dZZ
F I e e

Z Z
  

   
 

.     (8.16) 

Furthermore, substituting Eq. (8.15) into Eq. (8.13), one sees that the input impedance of the 

Yagi antenna is: 

22
1312

in,Yagi 11
22 33

ZZ
Z Z

Z Z
   .       (8.17) 

A simple design criterion is to enforce that  (i) the contributions the director and reflector to 

the direction 0º   interfere constructively with that of the driven element. This ensures that 

the maximum of YagiF  occurs for 0º  . (i) the contributions the director and reflector to the 

direction 180º   interfere destructively with that of the driven element. This ensures that the 

minimum of YagiF  occurs for 180º  . 

The condition (i) requires that 0 1 cos0º12

22

arg jk dZ
e

Z


 
 

 
 and 0 2 cos0º13

33

arg jk dZ
e

Z
 

 
 

, or 

equivalently: 

   
   

12 22 0 1

13 33 0 2

arg arg

arg arg

Z Z k d

Z Z k d





   

  
   (contructive interference 0º  ).   (8.18) 

The condition (ii) requires that 0 1 cos180º12

22

arg 0jk dZ
e

Z

 
 

 
 and 0 2 cos180º13

33

arg 0jk dZ
e

Z
 

 
 

, or 

equivalently: 

   
   

12 22 0 1

13 33 0 2

arg arg

arg arg

Z Z k d

Z Z k d

 

  
   (destructive interference 180º  ).   (8.19) 

In order that the two conditions are compatible it is necessary that 0 0i ik d k d    , i.e., the 

distances between elements should be on the order of 0 0/ 4 0.25   (in optimized designs they 

are in the range of 0 00.15 0.25  , as previously mentioned). Note that when 1 2d d  the Yagi 

array is formed by equidistant elements. A progressive phaseshift endfire array (with radiation 
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maximum along 0º  ) requires that the phases of the currents vary in steps of 0k d . Such a 

condition is equivalent to Eq. (8.18). 

It can be verified that the phase of the mutual impedance (e.g., 12Z ) is little sensitive to 

variations in the dipole height, whereas the self-impedance (e.g., 22Z ) varies appreciably with 

the dipole height. This means that: 

 
   

,dip

12 1 13 2

,        1, 2,3

,         .       

ii a i

m m

Z Z L i

Z Z d Z Z d

 

 
      (8.20) 

In the above, ,dipaZ  is the impedance of a dipole antenna alone in free-space (which depends only 

on the antenna height) and m m mZ R jX   is the mutual impedance of two side-by-side half-

wavelength dipoles spaced by some distance d. The mutual impedance can be graphically 

obtained (see the figure below), or, alternatively, numerically calculated. 

 

With these approximations, Eq. (8.19) can be replaced by: 

     
     

1 ,dip 2 0 1

2 ,dip 3 0 2

arg arg

arg arg

m a

m a

Z d Z L k d

Z d Z L k d

 

  
      (8.21) 
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These equations must be solved with respect to to the heights of the director and reflector 

( 2 3,L L ), which typically are few percent shorter and longer than the driver, respectively. 

The gain in field intensity for the Yagi array is computed using the same procedure as for 

the corner reflector (see Eq. (8.6)): 

YagiYagi

driver alone in free-space
1Yagifed with the same power

as the Yagi

a
f

FR

R I
 

E

E
 .      (8.22) 

It can be written explicitly as: 

 
 

 
 

0 1 0 2cos cos1 2

Yagi ,dip 2 ,dip 3

73.1
1 jk d jk dm m

f
a a

Z d Z d
e e

R Z L Z L
    .    (8.23) 

The input resistance of the Yagi antenna is 

    
 

 
 

22
1 21312

Yagi 11 ,dip 1
22 33 ,dip 2 ,dip 3

Re Re m m
a

a a

Z d Z dZZ
R Z Z L

Z Z Z L Z L

            
    

. 

The typical value of f  for a Yagi array with 3 elements is on the order of 7.5 dB, which 

corresponds to a power gain of 9.65dB. Larger gains can be obtained with arrays with a larger 

number of directors. The Yagi antenna is relatively narrowband and bandwidths on the order of 

2% are common.  
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8.4 The turnstile antenna 

The turnstile antenna or “cross-dipole” consists of two perpendicular oriented dipole antennas 

fed with currents in quadrature. In general, the polarization radiated by the cross-dipole is 

elliptical. For the direction perpendicular to the dipoles the polarization is circular which is 

useful, for example, for satellite communication through the ionosphere. Furthermore, when the 

turnstile antenna is oriented parallel to the ground its radiation pattern is omnidirectional with a 

horizontal polarization. The noise near the surface of the Earth is mainly vertically polarized, and 

thus horizontal polarizations are less sensitive to noise effects. Due to this reason the turnstile 

antenna is commonly used for TV broadcasting. 

 

Turnstile formed by Hertz dipoles 

To begin with, it is supposed that the two dipoles have infinitesimal length (Hertz dipoles). The 

dipoles are oriented along the x and z axis. The currents that feed the dipoles are in quadrature: 

0zI I ,  0xI j I .       (8.24) 

The fields radiated by a cross-dipole formed by Hertzian dipoles can be found analytically using 

the superposition principle. We are mostly interested in the far-field region. From the general 

theory of Chapter 1, the far-field on any antenna system is determined by the (vectorial) effective 

length: 
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     
0

0 0far-field
0 ,

4

jk r

e

e
jk I

r
  





E r h .      (8.25) 

 The effective length is such that 

      0ˆˆ ˆ ˆ0 jk
eI dV e        r rh r j r r r .     (8.26) 

For an antenna formed by Hertz dipoles the current distribution is given by: 

     
Hertz

contribution dipole along contribution dipole along 

ˆ ˆx z

x z

I dl I dl  j r r x r z  .     (8.27) 

For simplicity the lengths of both dipoles are assumed equal ( dl ). From here, it follows that the 

effective length of the Hertz turnstile antenna is such that: 

       ˆ ˆ ˆ ˆ ˆˆ ˆ0 x zeI I dl I dl     h r x r r z r r .     (8.28) 

Thereby, the far-field of the turnstile antenna is given by: 

      
0

(Hertz) 0 0
turnstile

ˆ ˆ ˆ ˆˆ ˆ
4

jk r

x z

e
jk I dl I dl

r






     E r x r r z r r .    (8.29) 

Straightforward calculations show that   ˆˆ ˆˆ sin  z r r θ  and   ˆˆ ˆ ˆˆ sin cos cos     x r r φ θ . 

Using these formulas and Eq. (8.24), one can write: 

   
0

(Hertz) 00 0
turnstile

ˆ ˆsin cos cos sin
4

jk re
jk I dl j j

r
    





    E r θ φ .   (8.30) 

This shows that the field radiated by the antenna is proportional to 

  ˆ ˆ~ sin cos cos sinj j    E θ φ . Since the phase of the θ̂  and φ̂  components is different, 

in general the antenna polarization is elliptical. 

It is instructive to analyze two particular cases. In the first case, it is supposed that the 

direction of observation is in the plane of the dipoles (xoz plane; the direction of observation is 

horizontal with respect to the cross-dipole).  This corresponds to 0º   or 180º  . Clearly, in 

the xoz plane the radiated field is of the form   ˆ~ sin cosj E θ  which corresponds to a 

linear polarization (because 0E  ). 
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In the second case, it is supposed that the direction of observation is in a vertical plane with 

respect to the plane of the dipoles, for example in the xoy plane. In the xoy plane 90º   and the 

electric field is proportional to ˆ ˆ~ sinj E θ φ . Since the θ̂  and φ̂  components of the field are 

in quadrature, the polarization is elliptical. There are two exceptions (i) 0º ,180º  , i.e., the x-

axis, which as already seen in the first case corresponds to a linear polarization, and (ii) 

90º , 270º  , i.e., the y-axis, for which the amplitude of the θ̂  and φ̂  components of the field is 

identical. This means that the antenna polarization along the y axis (perpendicular to the dipoles) 

is circular. It is simple to check that the radiated wave is polarized to the left (right) along the 

positive (negative) y-axis. 

 

In summary, the turnstile antenna emits an elliptically polarized wave in all directions of 

space, with the exception of the xoy plane wherein the polarization is linear, and the y-axis for 

which the polarization is circular. 

The radiation intensity of the the antenna can be found in the usual way through (see also 

Eq. 1.24 in Chapter 1): 

 
2

2 22 2 20
02far-field

0
far-field

0
2 32 eU S r r k I


 

    
E

h .     (8.31) 
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There is now an interesting point. From Eq. (8.28), the real-part of the effective length of the 

antenna is determined by the dipole oriented along z, whereas the imaginary part of the effective 

length is determined by the dipole oriented along x. Specifically, one can write: 

       
,dip z ,dip x

0 real-vector= real-vector=

1
ˆ ˆ ˆ ˆ ˆˆ ˆ0

e e

eI dl j dl
I

     
h h

h r z r r x r r  .     (8.32) 

In the above, ,dip z ,dip x,e eh h  are the standard effective lengths of Hertz dipoles oriented along z 

and x, respectively. Taking into account that for any complex vector A  one has 

2 2 2

R I A A A  with  ReR A A  and  ImI A A , it follows that: 

     2 22 2

0 ,dip z ,dip x
ˆ0 e e eI I h r h h .      (8.33) 

Substituting this result into Eq. (8.34), it is found that: 

 2 2220
00 ,dip z ,dip x dip,z dip,x232 e eU k I U U




   h h ,    (8.34) 

where dip,z dip,x,U U  are the radiation intensities for the individual dipoles alone in the free-space. 

In particular, integrating over all solid angles ( radP Ud  ) one finds that the radiated power 

is: 

rad rad radcrossed-dipole dip-z dip-x
P P P  ,       (8.35) 

This means that the energies radiated by two dipoles fed by currents in quadrature combine 

additively. This result is rather general and can be extended to any two antennas fed by currents 

in quadrature, provided the effective length of the antennas is a real-valued function. In such 

conditions, the fields radiated by the antennas do not interfere (there are no minima or maxima 

due to destructive or constructive interference!).  

The radiation intensity for a Hertz dipole oriented along z and fed by a current 0I  was 

studied in Chapter 1. It is given by  
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      2 22 2 220 0
0 0dip-z 0 02 2

ˆ ˆsin 1
32 32

U k dl I k dl I
 
 

   r z .  

The rightmost identity can be immediately generalized to a dipole with an arbitrary orientation. 

For example, if the dipole is oriented along x the radiation intensity becomes: 

    2 2 20
0dip-x 02

ˆ ˆ1
32

U k dl I



  r x .  

  The previous formulas show that the radiation intensity of the turnstile antenna can be written 

as: 

     

   

2 2 2 20
002

2 2 2 20
002

ˆ ˆˆ ˆ2
32

  sin sin
32

U k dl I

k dl I




  


      

 

r x r z
.      (8.36) 

As usual, the angle   is the angle between the x-axis and the observation point ( ˆ ˆcos   r x ). 

Alternatively, from ˆ ˆ sin cos  r x  one can also write: 

   2 2 2 20
002

1 sin sin
32

U k dl I
  


  .       (8.37) 

Clearly the direction of maximum radiation is for 0, 0,180º   , which corresponds to the y 

axis. As could be expected, the radiation pattern has rotation symmetry around this axis and is 

shaped like a “potato”. It has no nulls. 
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From the definition, the directive gain of the antenna is rad4 /g U P . The directivity is the 

maximum of the directive gain: 

 dip-z dip-x dip-z
dip-z

rad rad rad raddip-z dip-x dip-z

4 4 2 max4
max max

2

U U UU
D D

P P P P

   
   

 
.   (8.38) 

In the third identity, we used the fact that dip-z dip-x,U U  are identical along the y-axis (direction of 

maximum gain) and that rad raddip-z dip-x
P P . Therefore, the directivity of the cross-dipole is 

exactly the same as the directivity of a simple Hertz dipole: 

(Hertz)
turnstile

1.5D  .          (8.39) 

From the expression of rad dip-z
P  for a simple Hertz dipole (  2 20

0rad 0dip-z 12
P k dl I




 ), the 

directive gain of the turnstile antenna can be explicitly evaluated: 

 2 2
(Hertz)
turnstile

3
1 sin sin

4
g    .        (8.40) 

Turnstile formed by half-wavelength dipoles 

In practice, the turnstile antenna is made of two half-wavelength dipoles. As in the case of 

infinitesimal dipoles, the effective length of the antenna is the vector sum of the effective lengths 

of the two elements:  

    x-dip z-dipˆ0 x zeI I I h r h h .       (8.41) 

The effective length of a dipole antenna oriented along z can be written as (sinusoidal current 

approximation) 

     

 
 

,
z-dip ,

2
0

ˆ ˆ ˆˆ
sin

ˆ ˆcos
2 2 ˆ ˆˆ        

ˆ ˆ1

e z
e z

h
h

k







   

  
   
 

h θ z r r

r z
z r r

r z

       (8.42) 
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with  ,
0

cos cos
2 2

sine zh
k

 




 
 
  . In the second and third identities, we used ˆ ˆcos  r z  and 

  ˆˆ ˆˆ sin  z r r θ . The previous formula can be readily generalized to a dipole oriented along 

an arbitrary direction l̂ , simply by replacing ˆˆ z l . In particular, the effective length of a dipole 

oriented along x is: 

 
   x-dip 2 2

0 0

ˆ ˆcos cos cos
2 22 2ˆ ˆ ˆ ˆˆ ˆ

sinˆ ˆ1k k

  



      
        
 

r x
h x r r x r r

r x
,    (8.43) 

where ˆ ˆcos sin cos    r x . Combining Eqs. (8.41)-(8.43) and substituting the result in Eq. 

(8.25) with 0zI I  and 0xI jI  it is found that the far-field of the antenna is given by: 

 
       

0
, ,

00 0far-field
ˆ ˆ ˆ ˆˆ ˆ

4 sin sin

jk r
e z e xh he

j k I j
r

 


  

  
      

 
E z r r x r r ,    (8.44) 

where  ,
0

cos cos
2 2

sine xh
k

 




 
 
  . The fields radiated by the two dipoles are in quadrature. Thus, 

similar to the case of the infinitesimal dipoles discussed previously, the radiated powers combine 

additively. In fact, one can check that: 

   
2

2 22

00 0 , ,

1

4 e z e xk I h h
r

  


         
E .      (8.45) 

This implies that, analogous to the case of infinitesimal dipoles (see Eq. (8.34)) one can write 

dip,z dip,xU U U  , with dip,zU  and dip,xU  the radiation intensities of the dipoles alone in free-

space. Furthermore, since the powers radiated by the dipoles are identical, the directive gain of 

the turnstile antenna is given by: 

    turnstile

1

2 z xg g g   ,        (8.46) 

where  zg   (  xg  ) is the directive gain for a dipole oriented along z (x): 



 
Antennas 

 

 137 

 

2

cos cos
2

1.64
sinzg

 




 
 
  ,   

2

cos cos
2

1.64
sinxg

 




 
 
  .   (8.47) 

The maximum of the directive gain occurs along the y-axis ( 90º   ). The directivity of the 

turnstile is the same as the directivity of a half-wavelength dipole: 

turnstile
1.64D  .          (8.48) 

The radiation pattern of the turnstile is sketched in the figure below and has features analogous 

to the turnstile formed by infinitesimal dipoles. For half-wavelength dipoles the radiation pattern 

in the horizontal plane is not a circle, and so the radiation pattern is only approximately 

omnidirectional. The antenna polarization is also analogous to the case of infinitesimal dipoles. 

 

In practice, the cross-dipoles are fed with a single transmission line, using the configuration 

shown below. The signal that feeds the dipole oriented along x travels through a / 4  loop 

before feeding the dipole oriented along z. This ensures that the two currents are in quadrature. 
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8.5 Loop antenna 

Antennas with the shape of a wire loop are widely used, particularly as receivers of AM radio. 

The loop can take many forms. For simplicity here we consider a square loop in the xoy plane. 

Furthermore, we restrict our analysis to small loops with a diameter much less than the 

wavelength.     

 

A small loop antenna can be regarded as a set of 4 segments of constant current, i.e., as a set four 

Hertz dipoles. Recalling that the current distribution associated with a Hertz dipole centered at 

the point  0 0 0 0, ,x y zr , with length dl , and oriented along the direction û  is of the form 

     Hertz 0 0 0 ˆI dl x x y y z z     j u , one sees that the current that describes the square 

loop can be taken equal to: 
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       

       

loop 0 0

arm 1 arm 2

0 0

arm 3 arm 

ˆ ˆ
2 2

ˆ ˆ        
2 2

dl dl
I dl x y z I dl x y z

dl dl
I dl x y z I dl x y z

     

     

          
   

         
   

j x y

x y

 


4



   (8.49) 

The different arms of the square loop are numbered as indicated in the figure. Since the length of 

the arms of the dipoles is small, we can expand the delta functions in a Taylor series. For 

example, one can write    
2 2

dl dl
x x x       

 
. This procedure yields: 

               2 2

loop 0 0

arms 2 4arms 1 3

ˆ ˆI dl x y z I dl x y z     


  j x y .    (8.50) 

The previous formula can be written in a compact form as: 

      
  

loop ˆ

      

m x y z  



 

 

j z

m r
        (8.51) 

where ˆmm z  is the magnetic dipole moment of the loop with 0m I A  and  2
A dl  the area 

of the loop. In fact, it can be shown that the result   loop  j m r  with 0 ˆI Am z  is rather 

general, and independent of the shape of the loop. 

The fields radiated by the small loop ( , E H ) can be found by solving the Maxwell’s equations: 

  
0

0ˆ    

j

m j



 

   

    

E H

H z r E
       (8.52) 

It is convenient to introduce     H H m r and E E , which are coincident with the 

radiated (primed) fields everywhere in space, except at the position of the loop. The unprimed 

fields satisfy: 

 0 0

0

ˆ

    

j m j

j

  


   

  

E z r H

H E
   (small loop).    (8.53) 
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Remarkably, the structure of the above equations is rather similar to the structure of the 

equations satisfied by an electric Hertz dipole: 

 dip 0 dip

dip 0 dip

ˆ

    

ej p j

j

  



  

  

H z r E

E H
  (electric Hertz dipole).   (8.54) 

In the above, ep  is the electric dipole moment of the Hertz dipole (  0ej p I dl  ). The 

interesting thing is that by interchanging the roles of the electric and magnetic fields in equations 

(8.53) and (8.54), they transform into one another. Specifically, one can identify the following 

duality mapping of the fields, sources, and physical constants:  

 

dip

dip

0

0 0

0 0

Solution Solution
Eq. 8.53 Eq. 8.54

em p
 
 

 





E H

H E

        (8.55) 

The duality link between the fields radiated by the electric and magnetic dipoles implies that the 

solution of equation (8.53) can be formally obtained from the fields of the electric Hertz dipole 

(which were derived in the beginning of the course) using the duality transformation.  

For simplicity, we will illustrate the concept for the far-field zone. The far-field of a 

conventional electric Hertz dipole is: 

dip ,dip
ˆEE θ ,  dip ,dip

ˆ  HH φ       (8.56a) 

 
0

,dip 0 ,dip 0 0 sin
4

jk r

e

e
E H jk j p

r    




        (8.56b) 

From here, using the duality transformation 
0

0 0

dip
1/

ep m
 




H E  and 
0

0 0

dip
1/

ep m
 




 E H , one finds that 

the far-field of the loop antenna (magnetic dipole) is given by: 

ˆEE φ ,   ˆHH θ .      (8.57a) 
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 
0

0 0
0 0

1
sin

4

jk rE e
H jk j m

r


  
  


  .      (8.57b) 

Using 0m I A , the same result can be written as: 

0
2

0 0 0 0 sin
4

jk re
E H k I A

r   




     (far-field loop antenna).   (8.58) 

 

Because of the duality link, the field lines of the loop antenna are identical to the field lines of 

the Hertz dipole, with the electric and magnetic fields interchanged. The shape of the radiation 

pattern of the two radiators is also identical. In particular, similar to the Hertz dipole, the 

directive gain of the loop antenna is: 

2
loop
antenna

3
sin

2
g            (8.59) 

The directivity of a small loop is max 1.5D g  . 

Comparing the far-field formula of the small loop [Eq. (8.58)] with the generic expression 

     
0

0 0far-field
0 ,

4

jk r

e

e
jk I

r
  





E r h  

one sees that the effective length of the loop antenna is given by:  

0loop
ˆsine j k A  h φ .         (8.60) 

The radiation resistance of the small loop can be found in a standard way and satisfies: 
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 220
rad 0loop 6

R k A



 .         (8.61) 

So far, it was assumed that the antenna is formed by a single loop of current, which is a rather 

inefficient antenna with a small radiation resistance. The magnetic dipole moment of the antenna 

can be enhanced using additional (N) loops current. It can also be increased by winding the wire 

around a ferromagnetic core. In this case, the magnetic dipole moment is enhanced by a factor 

( ef 0/  ) proportional to the permeability of the core  . The permeability enhancement factor 

is: 

ef

0 0

0

1

1 1D

 
  




 

  
 

         (8.62) 

where D is a demagnetization factor that depends on the ratio between the length and the 

diameter of the ferromagnetic rod. The demagnetization factor approaches zero when the length 

of the ferromagnetic rod is much larger than its diameter, so that the leakage of magnetic field 

lines is negligible. 

The effective length of a loop antenna with N loop turns wound around a ferromagnetic rod is 

enhanced by the same factor  ef 0/N    as the magnetic dipole moment: 

ef
loop 0

turns
0

ˆsine
N

jN k A
 


 h φ .       (8.63) 

On the other hand, the radiation resistance is boosted by a factor of  2

ef 0/N   : 

2

20 ef
looprad 0

turns
06N

R k A N
 
 
 

   
 

.       (8.64)                  

8.6 The helical antenna 

The helical antenna consists of a conductor wound in the shape of a screw thread (helix) and a 

flat metal sheet serving as the ground plane. The antenna is typically fed using a coaxial line, 
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with the inner conductor connected to the helix and the outer conductor connected to the metal 

plate. The ground plane should be at least half-wavelength in diameter. The helical antenna 

supports two modes of operation: (i) the normal mode and (ii) the axial mode. In the normal 

mode the maximum of radiation occurs for directions perpendicular to the helix axis (xoy plane). 

The dimensions of the antenna are electrically small, which results in a low efficiency and small 

bandwidth. In the axial mode the maximum of radiation is along the helix axis (z-direction) and 

the antenna polarization is approximately circular. In most designs the helical antenna is used in 

the “axial mode”, which is characterized by a high gain and large bandwidth (about 50%). Due 

to the circular polarization, the helix antenna is widely used for space communications 

applications. For example, helical antennas were placed on the Moon by the astronauts of the 

Apollo mission to transmit telemetry data back to Earth. 

 

The geometry of the helical antenna is depicted in the figure above (right). The diameter of each 

loop is 2D a  with a the loop radius. The helix pitch is the distance between successive loops 
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and is denoted by p  (in the literature the helix pitch is often denoted by S). The helix antenna is 

formed by N loops (i.e., N wire turns). A generic helix with axis along z can be parameterized as: 

 
0 0 0

2 2
ˆ ˆ ˆcos sin

s
s a s a s p

L L L

    
     

   
r x y z ,     (8.65) 

where we introduce the parameter 0L  given by: 

   2 22 2
0 2L a p D p     .      (8.66) 

This sign   in the Eq. (8.65) depends if the helix is right-handed (+) or left-handed (-) with 

respect to the +z-axis. The parameter s identifies a generic point on the helix. The distance 

between two nearby points  sr  and  s dsr  is      dl s ds s s ds   r r r , or 

equivalently the infinitesimal arc length is: 

2 2

0 0

2 a p
dl ds ds

L L

   
     

   
       (8.67)                  

This means that the parameter s measures the arc length along the helix.  

 

Noting that    0 ˆs L s p  r r z , we see that the points corresponding to s  and 0s L  are 

separated by a full loop. The length of one helix turn can thus be found by integrating the 

infinitesimal arc length from s  to 0s L : 
0

0

one turn

s L

s

dl ds L


   . This means that 0L  defined as in 

Eq. (8.66) gives the length of one turn of the helix. 
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Theory of the normal mode 

The helix is operated in the “normal mode” when its total length 0N L  is much smaller than the 

wavelength. In particular, the pitch and the helix diameter satisfy 0 0,  p D   . Due to this 

reason a single helix turn can be regarded as the superposition of an electric dipole and a 

magnetic dipole. 

 

The equivalent electric dipole is an Hertz dipole oriented along z, has length dl p , and is fed 

by the current 0I . The effective length of the electric Hertz dipole is: 

dip
ˆ ˆsin sine dl p  h θ θ  The equivalent magnetic dipole is also oriented along z because the 

equivalent current loop is parallel to the xoy plane. The corresponding magnetic dipole moment 

is 2
0 0m I A I a    . Note that the leading sign of the magnetic dipole moment depends on 

the orientation of the helix. The effective length of the loop is [see Eq. (8.60)] 

  2
0 0loop

0

ˆ ˆsin sine

m
j k j k a

I
      h φ φ .  

The effective length of a single turn of the helix is the vector sum of the effective lengths of the 

equivalent electric and magnetic dipoles (in this analysis we neglect the effect of the ground 

plane, as its diameter is typically small as compared to the wavelength): 
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  2
single 0
turn helix

ˆ ˆsine p j k a   h θ φ .       (8.68)                  

The effective length of the entire helix is obtained from single
turn helix

eh  by multiplication of the 

number of turns (this possible because total length of the helix is much smaller than the 

wavelength, and hence, effectively, all the equivalent dipoles are centered on the same point): 

  2
0helix

ˆ ˆsine N p j k a   h θ φ .       (8.69)                  

The electric far-field of the helix is given by (see Eq. (8.25)): 

  
0

2
0 0 0 0helix

ˆ ˆsin
4

jk re
jk I N p j k a

r
  





  E θ φ .     (8.70) 

It is useful to note that the electric and magnetic dipoles radiate fields in quadrature and 

perpendicular polarizations. Due to this reason, the powers radiated by the electric and magnetic 

dipoles combine additively, analogous to the turnstile antenna. In particular, it is evident the 

radiation pattern of the helix antenna operated in normal mode is the same as for an electric 

Hertz dipole with the directive gain given by: 

2
helix
normal mode

3
sin

2
g  .        (8.71) 

 

The power radiated by the helix can be found by integrating the radiation intensity 

2
20

0 2
08
eU I





h

 over all solid angles: 
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  
  

22 2 2 2 20
0rad 02

0

22 2 2 20
0 02

0

1
sin

8

1 4
     2

8 3

P d I N p k a

I N p k a

  


  


  

   


     (8.72) 

From this result, one sees that the radiation resistance of the helix is: 

  22 2 20
rad 02helix

0

2 1

3
R N p k a

 


  .       (8.73) 

From Eq. (8.70), it follows that the polarization of the helix is typically elliptical with the 

main axes of the polarization ellipse along the directions ˆ ˆ,θ φ . The axial ratio (AR) of the 

polarization ellipse is independent of the observation direction. The polarization of the antenna 

can be made circular by enforcing that: 

2
0p k a          (condition for circular polarization).     (8.74) 

The sense of rotation of the emitted field is determined by the orientation of the helix. For the + 

sign (right-handed helix) the antenna polarization is RCP, and for the “” sign (left-handed 

helix) the antenna polarization is LCP. In practice, the bandwidth of the circular polarization 

regime is very narrow in normal mode, and hence this regime is rarely exploited in practice. 

Theory of the axial mode 

For the axial mode, the perimeter of each helix loop ( 2C a ) is on the order of the 

wavelength: 

0 0

3 4

4 3
C             (axial mode operation).     (8.75) 

The fields radiated by the helix can be determined based on the semi-empirical observation that 

for a helix with 1N   turns, the current along the helix is approximately a travelling wave: 

  0
hjk sI s I e .         (8.76) 

The propagation constant of the current along the wire is hk . Evidently, near the end of the helix 

the travelling wave hypothesis is inaccurate because the current must vanish. We will neglect 
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such an effect. The travelling wave hypothesis implies that all the turns of the helix are fed with 

currents of identical amplitude with the currents phase following an arithmetic progression. The 

feeding currents are 

 0 0
jn

nI I s nL I e    ,   with 0hk L   , 0,1,... 1n N    (8.77) 

 

Thus, the helical antenna can be regarded as a uniform (progressive phaseshift) array formed by 

N identical elements. Each element of the array is a helix turn. The phaseshift between adjacent 

elements is 0hk L    (note that one loop turn corresponds to the shift 0s s L  ). 

From the principle of the multiplication of pattern diagrams: 



single turn 
of the helix

helix
0array spatial factor

F
I

 
E

E .       (8.78) 

The array spatial factor is the same as for a uniform array: 

0helix

sin
2

sin
2

Nu

F I
u

 
 
 
 
 
 

,  0 cosu k p    .     (8.79) 
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Note that the angle between the observation point and the array axis is   because the array 

elements are placed along the z-axis. The distance between the array elements is d p .  

The value of the phaseshift 0hk L    depends on the (unknown) propagation constant hk  of the 

travelling wave of current. The value of hk  can be estimated taking into account the 

experimental fact that the maximum of radiation is near 0º   (endfire array). This indicates 

that 0º 2u m    for some m integer, or equivalently that 0 0 2hk p k L m  . Since for typical 

helices the length of one turn is much larger than the pitch, 0L p , the natural choice for m is 

1m   . This yields the estimate: 

0
0 0

2
h

p
k k

L L


     (ordinary endfire array approx.).   (8.80) 

An alternative formula is obtained by supposing that the helix behaves as an “endfire with 

increased directivity”, rather than as an ordinary endfire array. The endfire array with increased 

directivity was introduced by Hansen and Woodyard and corresponds to a standard uniform 

array with the array maximum determined by the condition 
max

2u m
N 
     . This second 

theory yields a different estimate for the helix propagation constant (picking again 1m   ): 

0
0 0

2 1
1

2h

p
k k

L L N

     
 

  (Hansen-Woodyard array approx.).   (8.81) 

This approximation is found to agree better with the experimental results. The above formula can 

also be written as: 

0

0 0

0

1
1

2
h

L

k
pk

N






   
 

  (for    0 00.75 1.1C   ).   (8.82) 

Within the vality of this formula, the array spatial factor of the helix is given by: 
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 0 0helix

sin
2

,               cos 1 2
sin

2

Nu

F I u k p
u N

 

 
 
     
 
 
 

.    (8.83) 

The factor of 2  in the definition of u  does not affect the shape of the array spatial factor. 

Now that we characterized the equivalent array spatial factor for the helix, we turn our attention 

to the field radiated by a single helix turn. This field is completely determined by the effective 

length [Eq. (8.26)]. For a wire antenna it can be written as: 

       0 ˆ

0 single helix
   turn

1 ˆˆ ˆ ˆjk s
e dl s I s e

I
 

  
      
    

 r rh r t r r .     (8.84) 

In the above,  sr  determines a generic point along the helix and is given by Eq. (8.65). The 

vector  ˆ st  is a unit vector tangent to the helix and gives the direction of the current flow. Since 

the parameter s can be identified with the length along the curve, one has    ˆ s st r , or 

equivalently:  

 
0 0 0

2 2 2ˆ ˆ ˆ ˆsin cos
2

p
s a s a s

L L L

  


    
            

t x y z .    (8.85) 

Using   0
hjk sI s I e , one finds that: 

        
0

0 0ˆ ˆ

0 0 0 0single helix 0
   turn

2 2 2ˆ ˆ ˆ ˆsin cos
2

h

L
jk s jk sjk sI s p

dl s e dse e a s a s
I L L L

  


        
            

 r r r rt x y z . (8.86) 

The exact analytical evaluation of the integral is cumbersome, and will not be discussed here. To 

simplify the problem and gain some physical insight, it is enough to use the rough assumption 

 0ˆ 1jk se  r r . The phase of the exponent is   2 2
0 0max k s k a p   r  (the parameter s varies 

along a single helix turn). An helix operated in the axial mode has typical electrical length such 
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that 0 2hk L  , which is a few times larger than 2 2
0k a p  when 0p L 1. Thus,   is 

typically a few times smaller than 2 , which justifies the considered approximation. 

Using  0 ˆ 1jk se  r r  the integration in Eq. (8.86) can be carried out analytically. To further 

simplify the problem we restrict our attention to the resonant case 0 2hk L  . In this situation, 

we have: 

     

  

0

0 0

2
ˆ

0 0 0 0single helix 0
   turn

2 2 2ˆ ˆ ˆ ˆsin cos
2

ˆ ˆ        

L j s
jk s LI s p

dl s e ds e a s a s
I L L L

j a j

   





      

            

  

 r rt x y z

x y

    (8.87) 

Therefore, the effective length of the single helix turn is: 

   single
helix turn

ˆ ˆˆ ˆe j a j       h x y r r ,  (at resonance 0 2hk L  ).  (8.88) 

Comparing this result with Eq. (8.28), one sees that a single helix loop behaves as turnstile 

antenna formed by Hertz dipoles oriented along the x and y directions! The physical justification 

is that when 0p L  an helix turn is roughly a loop with perimeter 0L . When 0 2hk L    the 

current gains a 90º phase delay when the azimuthal angle varies by 90º. Thus, the currents in the 

horizontal parts of the loop are in quadrature with the respect to the currents in the vertical parts 

of the loop, analogous to a turnstile antenna. 

                                                 
1 The value of 2 2

0k a p  is roughly 2 2
0 1.0k a p   when 

0 2hk L   and 
0p L . 
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Evidently, within the considered assumptions, the radiation pattern of a single helix loop is the 

same as for a turnstile antenna. The antenna polarization along the +z-axis (maximum of 

radiation) is circular. The sense of rotation is RCP (LCP) when the helix is right (left) handed 

with respect to the +z axis. Below, we show the radiation pattern for a resonant helix formed by 

10 turns. The radiation pattern was evaluated using Eqs. (8.83) and (8.88) with 0 / 2k p  . 

 

 To conclude this section, we quote some useful empirical formulas that are useful to design 

helix antennas operating in the axial mode: 

 
0

140
 in

C
Z


  ,            (input impedance, 2C a ).     (8.89a) 
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2

3
0

,      15G G

N p C
G K K


 

  ,           (antenna gain).     (8.89b) 

3
0HPBW  [deg],      52B

B

K
K

C N p


 


,           (half-power beamwidth). (8.89c) 

2 1

2

N
AR

N


 ,           (axial ratio).       (8.89d) 
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9. Frequency independent antennas 

9.1 Transformation of scale 

The bandwidth of an antenna is typically limited by some “resonant condition”. For example, for 

the dipole antenna the metal rod is resonant when its length equals half-wavelength. When the 

frequency is detuned away from the resonance, the emitted power drops sharply due to the 

change in the input impedance of the antenna. Typical bandwidths for a dipole antenna are on 

the order of 10%. As discussed in the previous chapter, larger bandwidths (more than 50%) can 

be achieved with a helical antenna operated in the axial mode. This due to the fact that the axial 

mode is associated with a travelling wave that propagates along the helix. The travelling wave is 

less sensitive to a frequency detuning than the standing wave existing on a dipole antenna. 

Is it possible to design a radiating system whose radiating properties are frequency independent? 

To analyze this problem, let us study how the response of an electromagnetic system changes 

when its elements are scaled up or scaled down. For example, the figure below illustrates a loop-

type antenna with arbitrary shape that is magnified (scaled up) by some factor  . 
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The fields radiated by the original system are described by the Maxwell’s equations: 

 
0

0e

j

j


 

  

  

E H

H j r E
        (9.1) 

Here, ej  describes the currents impressed by the external excitation, for example by a current 

generator. For simplicity the materials are assumed non-magnetic. The material structures that 

form the antenna are described by the space-dependent permittivity   r . 

Let us consider a scale transformation of the system such that: 

     , , , , , ,x y z x y z x y z         r r      (9.2) 

The parameter 0   determines the change of scale. When 1   all the dimensions of the 

system are scaled up (magnified) by a factor of  , and when 1   all the dimensions are scaled 

down (demagnified) by  . Let us introduce the primed fields, 

       ,                  E r E r H r H r .      (9.3) 

Using    /  E r E r , it is clear that 
1

x x
 


 
E E

, etc. This implies that  1


    E E  

and  1


    H H , with the right-hand sides of the equations evaluated at the point 

/r r . Using this result in Eq.(9.1) one sees that: 

   
0

0e

j

j

 
  

     

     

E H

H j r r E
 

which is equivalent to 

0

0e

j

j

 
  

      
        

E H

H j E
 

where we defined: 
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   

   

/

1
e e

  
 



 
  

  

r r

j r j r

          (9.4) 

The transformed (primed) fields satisfy the Maxwell’s equations in the system described by the 

permittivity       r r  with /r r  subject to the transformed external excitation ej . In 

other words, the transformed fields satisfy the Maxwell’s equations in the “ -scaled system”. 

The scaled system is identical to the original system except that the dimensions of all the 

materials bodies are multiplied by the scaling factor  . If the external excitation is a lumped 

current generator (Hertz dipole current distribution) then the transformed current is also a 

lumped current generator with a scaled amplitude.  

Importantly, the operating frequency is transformed as  /     . Hence, when a system is 

scaled up (magnified) by a factor   the corresponding operating frequency is scaled down by 

the same factor. This means that if the dimensions of any antenna are scaled up then all the 

resonance frequencies are scaled down in the same proportion. For example, if the length of a 

dipole antenna is increased, the corresponding resonance frequency decreases. In particular, we 

conclude that the resonance frequencies of a radiating system depends on the scale, i.e., depends 

on the size of the material structures that form the antenna. 

The previous result may suggest that it is impossible to design a radiating system whose 

response is frequency independent. In abstract, there is however a “way out” of the problem: the 

radiating systems that are invariant under a change of scale.  

A system that is invariant under a change of scale is a system that remains invariant upon an 

arbitrary magnification or demagnification. Formally, the material structures that comprise the 

system are subject to the constraint    /  r r  with   arbitrary. Thus, the permittivity 

cannot depend on the distance to the origin, it can only depend on the direction r̂ . This implies 
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that a frequency independent antenna is defined by angles rather than by lengths. We will see an 

example in the next subsection. 

For systems invariant under a change of scale the unprimed ( E ) and primed ( E ) fields are 

defined over the same material structure. Since  E E  and /     the response of such 

systems does not depend on frequency because the field distribution for the frequency   is the 

same as the frequency response for any other frequency  1. Thus, the bandwidth of such 

idealized systems is infinitely large! 

9.2 Biconical antenna 

To illustrate the ideas and give an example of a frequency independent antenna we consider the 

biconical antenna. The antenna is formed by two identical metallic cones (ideally perfect electric 

conductors) that are fed by a point (infinitesimal) generator placed at the origin. The antenna is 

clearly invariant under a change of scale. Note that the antenna can be regarded as a dipole 

antenna with infinite length and with a tapered “wire” diameter (increasing with the distance to 

the feeding point). 
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To find the fields radiated by the antenna we look for a solution of the type: 

ˆEE θ  ,    ˆHH φ .       (9.5) 

We adopt a spherical coordinate system. Since the antenna has symmetry of revolution around 

the z-axis, the fields must be independent of the azimuth angle  . Taking this into account, one 

finds that: 

 2 2

ˆ ˆˆ ˆ ˆ ˆsin sin
1 1 1

ˆ0
sin sin

sin 0 0
r r r

r

r r r r

rE
r r r

E rE r E rE
   

  

 

 


         
r θ φ r θ φ

E φ , 

   2

ˆˆ ˆsin
1 1 ˆˆ... 0 sin sin
sin sin

0 0 sin
r r

r r

H r H
r r

r H
   




 

 


          

r θ φ

H r θ    

Substituting these formulas into the Maxwell’s equations one finds that in the air region: 

 

   

0

0

1
ˆ ˆ                         

1 ˆ ˆˆsin sin
sin

r

r

rE j H
r

H r H j E
r

 

   



  


  

     

φ φ

r θ θ

 .     (9.6) 

This is equivalent to: 

   

   

0

0

rE j rH
r

rH j rE
r

 

 






 




 


 ,  and    sin 0H   .   (9.7) 

The equation system on the left is formally equivalent to “telegrapher” equations with rE V  ,  

rH I  , 0 L   and 0 C  : 

V
j LI

x
I

j CV
x






 




 


.         (9.8) 

                                                                                                                                                             
1 This result holds true only if the permittivity is frequency independent. Dispersive systems remain frequency 
dependent, even if the radiating structure is defined only by angles. 
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The solution of the telegrapher equations is of the form 0 0
j x j xV V e V e       and 

0 0j x j x

c c

V V
I e e

Z Z
 

 
   . For a radiating system the emitted fields must be outgoing waves and 

thereby one can exclude the terms associated with the propagation factor j xe  . Hence, by 

analogy, we see that the fields emitted by the biconical antenna are of the form: 

0
0

jk rrE e    ,  00

0

jk rrH e




 .      (9.9) 

It was taken into account that the propagating constant and impedance of the equivalent line are 

0 0 0LC k        and 0 0 0/ /cZ L C      . The parameter 0
  is independent of 

the radial distance but can depend on the elevation angle:  0 0    . To find this dependence, 

we use   sin 0H   . This equation implies that the magnetic field is of the form 

 
sin

f r
H 

  where f is some function of the radial distance. This shows that   0
0 sin

V
 


   with 

0V  some constant independent of the system coordinates. In summary, the fields emitted by the 

biconical antenna are: 

00

sin
jk rV

E e
r 

  ,  00

0 sin
jk rV

H e
r  

 .      (9.10) 

We do not need to worry with the boundary conditions on the metal cones because the electric 

field is already perpendicular to the conical surfaces. The derived result is exact.  
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Let us now find the input impedance of the antenna. To do this, we need to find the voltage and 

the current near the point generator. The input voltage is given by: 

 
/2

0
/2

B

in AB r
A

V V E rd
 









    E dl .      (9.11) 

The integration can be carried out explicitly noting that 

/2/2

0 0

/2 /2

1
ln tan

sin 2inV V d V
  

 




     
  . This yields after a little simplication: 

02 ln cot
4inV V


 .         (9.12) 

On the other hand, the input current  0I  can be found from the radial surface current flowing 

on the conical surface. For a perfect electric conductor the surface current density is ˆs  K n H  

with n̂  the outward unit vector normal to the metal surface. In the present problem, ˆˆ n θ  for the 

top metallic conical surface. Thus, the surface current density is ˆ ˆ ˆ
s H H   K θ φ r , which as 

expected, is a radial vector field. The input current is given by the flux of sK  through a cross-

section of the cone (a circumference in “orange” in the figure) near the generator:  

 
circle with circle with 

2 2

ˆ ˆ0 sins s

dl

I dl r d
  

 
 

    K r K r  .     (9.13) 
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Using ˆ
s H K r  one gets: 

    0

0
0

2
0 2 sin

r

V
I H r


 


  .      (9.14) 

Thus, the input impedance of the antenna is: 

 
0

biconical
ln cot

0 4
in

in

V
Z

I

 


  .        (9.15) 

Remarkably, the input impedance is purely resistive and independent of frequency. This is a 

consequence of the antenna being invariant under a change of scale! 

Next, we obtain the radiation pattern of the antenna. From the definition, the radiation intensity 

can be written as: 

22
02 2

2far-field
0 02 2 sinr

V
U S r r

  
  

E
.       (9.16) 

The radiated power can be found by direct integration radP Ud   or, more simply, using  

  21
Re 0

2rad inP Z I  (because the system is lossless). This gives: 

 
220

0
0

2
ln cot 0 ln cot

2 4 4radP I V
   
 

  .      (9.17) 

Thus, the directive gain of the antenna is: 

2biconical

4 1 1

sin ln cot
4

rad

U
g

P




  .       (9.18) 

Note that the directive gain and the radiation pattern are independent of frequency. The 

maximum of the directive gain occurs for / 2  , i.e. for the directions that define the conical 

surfaces. The directivity of the antenna is: 

biconical
2

1 1

sin ln cot
2 4

D   .       (9.19) 
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The directivity diverges ( D  ) when 0   (conical surface is “needle”-like) or when 

   (the two conical surfaces almost touch).  

             

Evidently, a practical version of a biconical antenna has finite dimensions, and thereby a 

finite bandwidth. The bandwidth ( L Uf f f  ) of a realistic biconical antenna can be as large as 

/ 8U Lf f  . However, because a solid biconical antenna is so massive it is impractical to use at 

most frequencies. A planar version of the antenna is the bi-triangular metal sheet. For an 

unbounded structure, this antenna is also frequency independent provided the thickness of the 

metal sheet is negligible.  

The “bow-tie” antenna is a truncated version of the bi-triangular metal sheet. The bow-tie 

antenna has a linear polarization with two broad main beams in the plane perpendicular to the 

bow-tie. Unfortunately, as compared to the biconical antenna, the bow-tie is relatively 

narrowband due to the truncation effects. The truncation can affect significantly the performance 

of the system when the current at the truncating points is significant. 
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9.3 Log-periodic antennas 

As discussed in the end of previous subsection, truncating a frequency-independent antenna can 

have disastrous consequences on its performance. This can be avoided with a design that 

enforces that the current decays with distance to the input terminals, so that the antenna, even 

though finite sized, behaves as “effectively infinite”. One way of making the currents decay 

rapidly away from the feed is to introduce “discontinuities”, for example, for the bowtie antenna, 

introducing “teeth” in the fins. However, the corrugations deteriorate the “self-scaling” 

properties of the antenna. 
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Interestingly, it is possible to design radiating systems that are not defined by “angles” and 

nonetheless still have some “frequency independent” features. These systems are known are 

“log-periodic antennas”. The concept is as follows. 

It was demonstrated in Sect. 9.1, that if a system is invariant under a scale transformation 

   , , , ,x y z x y z     then the solution of Maxwell’s equations at frequency /     is 

fully determined by the solution of Maxwell’s equations at frequency  . If one wishes to have a 

frequency independent response, the system needs to be invariant under any scale transformation 

(invariant for any  ), and in that case, as discussed in Sect. 9.1, the structure can only be defined 

by “angles”. However, one can impose a less severe constraint on the system, and just enforce 

that it is invariant under some fixed scale transformation, i.e., the radiating system is scale 

invariant for some fixed  . In such a case, the antenna response certainly varies with frequency, 

but, from the previous discussion, its response is necessarily repeated for frequencies related by 

the scaling factor  : 

2 1 2
0 0 0 0 0....,  ,  ,  ,  ,  ,  ....          

For example, the input impedance or the radiation pattern of a  -scale invariant radiating system 

are repeated for the sequence of frequencies 2 1 2
0 0 0 0 0....,  ,  ,  ,  ,  ,  ....         . Thus, the 

system response is a periodic function of the logarithm of the frequency 

       0 0 0 0 0....,  2log log ,  log log ,  log ,  log log ,  +2log log ,  ....               

Accordingly, this class of self-scalable antennas is known as “log-periodic”. Due to the fact that 

the radiation properties are repeated with a logarithmic-periodicity the log-periodic antennas are 

typically broadband when the magnification factor   is near 1. 
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A log-periodic radiating system has material parameters constrained by    /  r r  for a 

fixed  . Geometrically, the constraint means that the system does not change under a 

magnification or demagnification by the fixed scale factor  . The geometry of the system is 

completely determined by any annular region of the form R r R  . 
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The log periodic toothed antenna (see the figure in page 164) is a modified bi-triangular metal 

sheet where the corrugations are used to make the antenna “effectively infinite”, as previously 

discussed. The dimensions of the antenna are chosen to satisfy the log-periodic constraint. For 

example, the radial distances of two consecutive “teeth” must satisfy  1 /n nR R  . If the 

structure is ideally extended to infinity (in the outward direction) and to zero (in the inward 

direction) its response will be repeated for frequencies of the form 0
n   with 0, 1, 2,...n    . It 

is found that the current extends up to the region where the length of the antenna is roughly one 

quarter of wavelength. The truncation does not affect the antenna response provided the current 

profile of the infinite structure (about one quarter of wavelength) fits into the truncated structure. 

Thus, the frequency limits of operation are set by the frequencies for which the largest and 

smallest teeth are about one quarter of wavelength. The radiation pattern is bi-directional with 

maxima in the directions perpendicular to the plane of the antenna. 

The log-periodic dipole array is another example of a log-periodic antenna of widespread use 

in terrestrial TV reception. It is formed by an array of dipole antennas whose lengths and 

positions are scaled “log-periodically”. 
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It is supposed that the antennas lie in the y=0 plane and that the dipole axes are along z. The 

coordinates of the top edge of the n-th dipole are denoted by  ,0,n nx z   ( 0, 1, 2,...n    ).  The 

coordinates of different elements must be related as    1 1, ,n n n nx z x z   . This implies that (see 

the figure) 

1 1n n

n n

R L

R L
   .         (9.20) 

The radial distances and the lengths are related to the aperture angle   as 

tan
2 2

n

n

L

R


 .         (9.21) 

Typically the array is fed by a single transmission line. The number of elements of the array 

controls the bandwidth (not the gain). All the antenna elements are directly fed by the 

transmission line. The active region of the antenna is determined by the few dipoles near the one 

with half-wavelength. Due to this reason the antenna behaves as “effectively infinite”. The 

operating band is determined by the length of the shorter (maximum operating frequency) and 

longer (smallest operating frequency) dipoles. The maximum of radiation is in the direction of 

the apex similar to the Yagi-Uda antenna. The longer dipoles behave as reflectors and the shorter 

dipoles as directors. 

9.4 Spiral antennas 

There are other radiating structures which are not frequency independent but that which 

behave in a similar way. An example is the spiral antenna. 

Consider a curve in the xoy plane defined by  

 0

0
ar r e   ,         (9.22) 
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with 0 0, ,r a   some constants. The curve is known as an equiangular spiral. The name of the 

curve comes from the fact that the angle between the tangent vector ( t̂ ) and the radial vector ( r̂ ) 

is the same for all points of the curve. 

 

The equiangular spiral has a truly remarkable property: it stays invariant under any 

magnification (or demagnification) apart from a rotation about the z-axis. The proof is simple. 

Consider an arbitrary scaling factor e   (here ln  ) . Under a scale transformation the 

spiral is transformed as  r r , or equivalently  0

0
ar r e r e     . Thus, the transformed 

curve is described by 

 0
0

0 0

a
aar r e r e

   
        , with 0 0 0

ln

a a

        .   (9.23) 

This shows that the transformed spiral is obtained from the original one through a rotation by the 

angle 
ln

a


  around the z-axis. If the rotation angle is multiple of 2  the spiral transforms into 

itself. Thereby, the spiral is log-periodic for the scaling factor  that satisfies 
ln

2
a

   .  
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Consider now a planar antenna (e.g., a printed metallic antenna with the metal sheet having 

negligible thickness) whose shape is defined by equiangular spirals. Specifically, the equiangular 

spiral antenna is formed by two metallic arms connected by a point generator at the origin, with 

each arm defined by two spirals. The entire antenna is generated by 4 spirals with the same 0 ,r a  

but with 0

1st arm 2nd arm

0, / 2, ,3 / 2      . 

       

The antenna is rigourously self-scaling apart from a rotation about the z-axis. This implies that 

the fields radiated by the antenna are also independent of frequency, apart, possibly, from a 

rotation about the z-axis (and apart from some irrelevant phase or amplitude factors). For 

example, changing the frequency can only rotate the radiation pattern of the antenna, but not 

change its shape or its directionality! In particular, the directivity of the antenna is rigorously 

independent of frequency. The input impedance is also frequency independent. 

Evidently, in a realistic design the antenna needs to be truncated both in the outward ( maxr R ) 

and inward directions ( minr R ). The radiation from the spiral comes mainly from the region 

with radius 0 / 2r  .  Consequently, if the structure is truncated at 0r  , the truncated 

structure, although finite, is effectively infinite. The bandwidth of the structure is roughly 
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determined by min 0 maxR R  .  Thus, the upper and lower frequency limits satisfy 

max min/ /U Lf f R R . 

The spiral antenna has a bi-directional radiation pattern with the maximum in the broadside 

direction (z) relative to the plane of the spiral. The radiated fields follow approximately a cos  

law ( ~ cosE ), and thereby the half-power beamwidth is 90º. The antenna polarization is 

circular.  
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10.  Aperture antennas 

10.1 Introduction 

For all the antennas studied so far in this course, the current distribution was assumed to be 

known with some degree of accuracy. For example, for the dipole antenna, the Yagi-Uda, the 

corner-reflector, the cross-dipole or the loop antenna the current distributions are approximately 

sinusoidal standing waves; for the helical antenna the current is a travelling wave. The radiation 

fields are determined by the antenna effective length and hence by the integration of the current 

distribution. This family of antennas is known as “wire-type antennas”. 

There is another class of antennas for which the current is difficult to “guess” or calculate but for 

which the fields are known with reasonable accuracy on some surface enclosing the antenna. For 

such antennas, it is simpler to find the antenna far-field from the electromagnetic fields defined 

on the aforementioned surface, rather than from the current distribution. These antennas are 

referred to as aperture antennas. The most prominent of these are the horn antenna, the slot 

antenna and the parabolic reflector. 

10.2 The equivalence principle 

The equivalence principle (formulated by A. Love in 1901) is an important result of 

electromagnetic theory that establishes that the fields radiated by an arbitrary source distribution 

fully contained inside some volume V are univocally determined by the (tangential) 

electromagnetic fields on the surface   that encloses V. 
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Futhermore, the theorem establishes that the field in the outside region is radiated by 

equivalent surface currents eK  and mK  defined on  , with no currents inside V. The equivalent 

currents are determined by the electromagnetic fields on the surface   

ˆe 
 K n H ,  ˆm 

  K n E .    (10.1) 

Here, n̂  is the surface unit normal vector oriented in the outward direction. Note that the 

equivalent currents only depend on the components of the electromagnetic fields tangential to 

the surface.  

Demonstrating the equivalence principle is equivalent to solving the following “puzzle”: 

Given some arbitrary (volumetric) source distribution contained in some volume V what are the 

equivalent surface currents defined on the boundary surface   that will create the same field as 

the original source distribution in the outside region and create vanishing fields inside V? 

Even though the problem may look rather nontrivial, its solution requires little more than 

basic electromagnetic theory. 
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To solve the “puzzle” let us consider the frequency domain Maxwell’s equations in free-space 

with electric and magnetic current sources: 

0

0

m

e

j

j




   

  

E j H

H j E
        (10.2) 

Here, mj  is a magnetic current density that describes the transport of hypothetical magnetic 

charges (magnetic monopoles). Even though there is no evidence in nature that magnetic 

monopoles do exist, for theoretical developments it is useful to admit that the current mj  may be 

nonzero. In fact, the equivalence principle is formulated in terms of equivalent electric and 

magnetic currents! 

We want to find the surface electric and magnetic currents ,e mK K  that guarantee that the 

radiated fields outside the volume V are unperturbed, whereas the fields inside the volume V 

vanish. These equivalent currents can be obtained with the same approach that is used to derive 

boundary conditions at material interfaces in basic electromagnetic courses. Specifically, 

consider the situation depicted in the next figure. The point “P” is a generic point on the surface 
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 . The vector t̂  is some arbitrary vector tangent to  .  Consider the contour C contained in the 

plane generated by t̂  and n̂ . 

 

Applying Ampere’s law to the contour, one finds that: 

 0ˆ ˆ ˆe e e

C

ds j ds dl          H dl ν j E ν j ν K      (10.3) 

The surface integral is over the area enclosed by C and ˆˆ ˆ ν t n  is the vector perpendicular to 

the plane of the figure. In the second identity it is implicit that the contour C has infinitesimal 

length. In this case, the displacement current 0j E  is negligible as compared to ej , because the 

electric field does not have singularities on the surface  . In the third identity, we used the fact 

that the current distribution is localized (and singular) on the surface and hence can be modelled 

by a surface current density ( eK ). Supposing now that the width dw  of the contour is much 

smaller than the length dl , one finds that: 

 1 2
ˆ ˆ edl dl    H H t ν K .      (10.4) 

The electric field in the interior of volume V (region 2) must vanish: 2 0H . Noting that 

   ˆ ˆˆ ˆ ˆe e e      ν K t n K t n K , it follows that  1
ˆ ˆ 0e   t n K H . But since t̂  is an arbitrary 

vector tangent to the surface, this means that 1,tan
ˆ 0e  n K H  where 1,tanH  is the tangential 
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component of the magnetic field. Applying the ˆ n  to both sides of the equation and using 

 ˆ ˆ e e   n n K K , one finally finds that 1,tan
ˆ ˆe 

   K n H n H .  

By manipulating the other Maxwell equation (Faraday’s law) in the exact same manner one 

finds that ˆm 
  K n E .  

In summary, it was proved that the equivalent electric surface current is necessarily 

ˆe 
 K n H  and that the equivalent magnetic surface current is necessarily of the form 

ˆm 
  K n E  [Eq. (10.1)]. This demonstrates the equivalence principle1. 

10.3 Fields radiated by the equivalent currents 

Let us now consider the problem of finding the fields radiated by the equivalent currents. For 

simplicity, we restrict our analysis to the far-field region, but all the ideas can be extended to the 

near-field region as well. 

Because of the superposition principle, the fields radiated by eK  and mK  can be calculated 

separately. The fields radiated by the electric current eK  can be easily found using the general 

formalism studied in Chapter 1. 

     
0

0 0far-field
0 ,

4

jk r

e

e
jk I

r
  





E r h  

with the effective length defined as       0ˆˆ ˆ ˆ0 jk
eI dV e        r rh r j r r r . Evidently, for a 

surface current distribution the volume integral in  ˆeh r  becomes a surface integral. Thereby, 

the far-field radiated by the surface electric current eK  is: 

   
0

0 ˆ
0 0 ˆ ˆ

4e

jk r
jk

e

e
jk ds e

r





 



  
     

   
 r r

K
E r K r r r .    (10.5a) 

                                                 
1 Strictly speaking, it was only proved that if the problem has a solution then it is necessarily as in Eq. (10.1). A 
more sophisticated analysis shows that these equivalent currents really ensure that the fields vanish inside the 
volume V and do radiate the same fields as the original field distribution.  
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The corresponding magnetic field is given by 
0

1
ˆ


 H r E , which is the same as: 

   
0

0 ˆ
0 ˆ

4e

jk r
jk

e

e
jk ds e

r


 



 
   

 
 r r

K
H r K r r .     (10.5b) 

To find the fields radiated by the surface magnetic current mK , we use the duality symmetry 

of the Maxwell’s equations already discussed in Chapter 8.5. Specifically, from any given 

solution of Eq. (10.2) (primed fields), one can construct another solution (unprimed fields) using 

the duality transformation: 

0 0

0 0

e m

m e

 
 

 

 






E H

H E

j j

j j
        (10.6) 

The duality transformation interchanges the electric and magnetic fields and the electric and 

magnetic currents. This implies that the duality mapping transforms the fields radiated by an 

electric current, into the fields radiated by a magnetic current, and vice-versa. Thus, one can find 

the fields emitted by mK  from the general formula [Eq. (10.5)] that gives the fields radiated by 

the electric current eK . The relevant duality transformation is    
0 0

0 0

e m

m  
 

 



  K K
K

E r H r . It leads 

to: 

   
0

0ˆ
0 ˆ

4m

jk r
jk

m

e
jk ds e

r


 



 
    

 
 r r

K
E r K r r .     (10.7) 

Combining this result with Eq. (10.5a), one sees that the far-field due to the combined equivalent 

currents is given by: 

      
0

0 ˆ
0 0 ˆ ˆ

4

jk r
jk

m e

e
jk ds e

r





 



 
       

 
 r rE r K r K r r r .    (10.8) 

Using Eq. (10.1), the electric far-field can finally be written in terms of the aperture fields: 
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    
0

0 ˆ
0 0ˆ ˆ ˆ ˆ

4

jk r
jke

jk ds e
r





 

 


 
      

 
 r rE r n E n H r r .   (10.9) 

The fields , E H  are evaluated on the surface  . 

10.4 Uniform rectangular aperture 

To illustrate the developed formalism, next we calculate the fields radiated by a rectangular 

aperture in an opaque screen. The opaque screen lies in the z=0 plane. One can imagine that the 

fields on the aperture are created by an incident plane wave propagating along the +z direction, 

as illustrated in the figure.  

 

If the reflections on the screen are ignored, the fields on the rectangular aperture are (the aperture 

is denoted by S): 

0
0

0

ˆ ˆ,           S S

E
E


  E y H x ,  ( / 2,      / 2x a y b  ).  (10.10) 

The fields on the 0z   side of the opaque screen are assumed negligible. The fields radiated by 

the aperture can be found by substituting ,S SE H  in Eq. (10.9) with S in the place of  . Using 

ˆ ˆ n z , a little analysis shows that the electric field is: 
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   
0

0 ˆ
0 0 ˆ ˆˆ ˆ

4

jk r
jk

S

e
jk E dx dy e

r


  

       
 
 r rE r x y r r .    (10.11) 

Writing 0
ˆ

x yk x k y k    r r  with 0 0ˆ ˆ cosxk k k   r x  and 0 0
ˆ ˆ cosyk k k   r y , the integral 

can be evaluated explicitly: 

 0

/2 /2
ˆ

/2 /2

                       sinc sinc
2 2

x y

a b
j x k y kjk

S a b

yx

dx dy e dx dy e

k bk a
a b

   

 

   

       
   

  r r

     (10.12) 

In the above,  sinc sin /u u u  and ,   are the angles between the direction of observation r̂  

and the x and y directions, respectively. 

 

The field radiated by the aperture satisfies: 

 
0

0 0 0 0far-field

1 1
ˆ ˆ ˆˆ ˆsinc cos sinc cos

2 2 4

jk re
jk E a b k a k b

r
 



                    
E x r y r r . (10.13) 

The emitted field can be written in spherical coordinates by projecting the unit vectors ˆ ˆ,x y  in 

the spherical coordinate system: 1 2 3
ˆˆ ˆˆ     x r θ φ  and 1 2 3

ˆˆ ˆˆ     y r θ φ . The coefficients of 

the expansions are 1 ˆˆ sin cos    x r , etc. From here: 

     
  

3 2 2 3
ˆˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ                          = 1 cos sin cos

   

  

       

  

x r y r r θ φ

θ φ
.    (10.14) 
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Since the θ̂  and φ̂  components of the field are in phase, the radiated field is linearly polarized in 

every direction of space. The amplitude of the emitted field is: 

 0 0 0 0

1 1 1
sinc cos sinc cos 1 cos

2 2 4
k E a b k a k b

r
  


          
   

E .  (10.15) 

 

The radiated field is maximum along the z-axis: 0º  , 90º   . The maximum is:  

max 0 0
( 0º)

1

2
k E a b

r 
  E .       (10.16) 

The electric field emitted to the z direction is directed along y. The half-power beamwidths in the 

H-plane (xoz plane) and in the E-plane (yoz plane) are approximately determined by the “ sinc ” 

functions. Using  sinc 1.39 1/ 2  one can show that: 

   0 01.39
HPBW 2 arcsin 0.886     rad

yoz b b

 


   .    (10.17a) 

   0 01.39
HPBW 2 arcsin 0.886     rad

xoz a a

 


   .    (10.17b) 

The rightmost identities assume that the aperture dimensions are large as compared to the 

wavelength. Clearly, the larger is the aperture the more directive is the system. 

The directivity of the radiating system can be found from: 
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max4

rad

U
D

P


 .         (10.18) 

Here,  2 2
0/ 2U r  E  is the radiation intensity, whose maximum value is given by 

2
22

max 0 0
0

1

2 2

ab
U k E

 
   
 

. The simplest way to determine the radiated power is by integrating 

the Poynting vector flux through the aperture: 

2

0

0aperture

ˆ
2rad

E
P ds a b


     S n .       (10.19) 

Combining the previous formulas, one finds an explicit formula for the directivity: 

2
0 2

0

4
ab ab

D k 
 

  .        (10.20) 

Neglecting the antenna loss ( 1e  ), the maximum effective area (
2 2
0 0

4 4efA G e g
 
 

   ) can be 

expressed through the directivity as  

2
0

,max ap4efA D a b A



    .       (10.21) 

As seen, the effective area of the radiating system is exactly coincident with the physical area of 

the aperture ( apA ).  

For a generic aperture antenna, one defines the aperture efficiency as: 

,max
ap

ap

efA

A
 .       (10.22) 

Typical values for the aperture efficiency range from 30% to 90% (e.g., for a horn antenna the 

aperture efficiency is on the order of 50%). 

10.5 Open-ended rectangular waveguide 

One can readily generalize the analysis of the previous section to the case of an open-ended 

metallic waveguide with rectangular cross-section. 
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For this system, the fields inside the guide can be assumed a superposition of two counter-

propagating TE10 modes. Thus, the electric field in the guide (region 0z  ) can be taken equal 

to: 

0 0

incident wave reflected wave

ˆcos j z j zx
E e E e

a
     

          
E y   ,  

2 2

c a

         
   

.   (10.23) 

Note that the electric field profile is determined by a “cosine” rather than by a “sine” because the 

origin of the coordinate system is centered with respect to the guide cross-section. The 

propagation constant   is the calculated for the fundamental guide mode (TE10). It is assumed 

that the guide is filled with air. 

The fields in the aperture ( 0z  ) are given by (compare with Eq. (10.10)): 

0 0
1

1
ˆ ˆcos ,           cosS S

x x
E E

a Z a

         
   

E y H x , ( / 2,      / 2x a y b  )    (10.24) 

In the above, 0 0 0E E E    is the total electric field on the aperture and 0 0 1/H E Z  is the total 

magnetic field. Here, 1Z  is the impedance calculated at the output plane, which depends on the 
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wave impedance of the TE10 mode TE10 0 /    and on the reflection coefficient 0 0/E E    

in the usual way 1 TE10

1

1
Z  




. 

The field radiated by the open-ended guide can be found by substituting the aperture fields in Eq. 

(10.9). The calculations are rather similar to ones in the previous section. Now, we find that 

(compare with Eq. (10.11)): 

0

0 ˆ0
0 0

1

ˆ ˆˆ ˆ cos
4

jk r
jk

S

e x
jk E dx dy e

r Z a

 



                  

     
 r rE x y r r .   (10.25) 

Using the integration formula 

/2

/2

1
cos sinc sinc

2 2 2

1 1 1
                                  cos

2 2
2 2 2 2

2
                                 

x

a
jk x

x x

a

x

x x

x a a
dx e a k k

a a a

k a
a

k a k a

  

 





                      
         

 
     

    
 





2

1
cos

2
1

x

x

k aa

k a


 
 
     

 

   (10.26) 

and 0 0 0
ˆ cos cosx yk x k y k x k y k         r r , one can show that the radiated field is: 

0

0

0 0
0 0 2

1 0

2
cos cos

2ˆ ˆˆ ˆ sinc cos
2 4cos

1

jk r

k
a

k b e
jk E a b

Z rk a


  






  
                         

  

E x y r r .     (10.27) 

The radiation diagram of the open-ended guide is qualitatively analogous to that of uniform 

rectangular aperture. For example, the half-power beamwidth in the E-plane is exactly the same 

for the two geometries. The directivity of the radiating system can be found as in the previous 

section. A detailed analysis shows that: 

2

01
2

0 0 1

8
1

Z a b
D

Z


  

 
  

 
.             (10.28) 
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When the guide is matched to free-space ( 1 0Z  ), the directivity satisfies 
2
0

32 a b
D

 


  and is 

slightly lower (by a factor of 
2

2
2 0.81


   
 

) than the directivity of a uniform rectangular 

aperture. Thus, in theory it is possible to have a very directional emission. However, this 

radiating system has a number of problems: i) the abrupt transition from the rectangular 

waveguide to the free-space region typically leads to strong reflections and to a poorly matched 

system. ii) to obtain a large directivity one needs an electrically large aperture (one of the 

waveguide dimensions must be much larger than the wavelength). A large aperture implies the 

excitation of higher order modes in the waveguide. In other words, it is impossible to ensure the 

single mode operation of the rectangular guide. In the next section, we will see how to overcome 

these difficulties using a horn antenna. 

10.6 Horn antenna 

The matching of the open-ended guide with the free-space region can be much improved by 

flaring (tapering) the walls of the guide, so that they gradually become wider. This allows for a 

gradual transition from the guided wave to the free-space wave, with the result that the 

reflections are minimized. Furthermore, for a gradual transition the higher order modes 

generated at the “throat” of the structure cannot reach the waveguide region, as these modes are 

in cut-off in the waveguide region. The flaring of the walls results in a larger aperture, and 

thereby in a higher directivity and narrower beam as compared to an open-ended guide. A 

rectangular guide with flared (tapered) walls is known as a “horn antenna”. 

There are different types of horn antennas. When only the E-plane or the H-plane walls are flared 

the antenna is known as an E-sectoral or H-sectoral horn, respectively. When both walls are 

flared the antenna is a pyramidal horn antenna. 
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Horn antennas are directive radiators primarily used in the microwave range (~ 1GHz). They 

have a relatively high gain (10-100) and wide bandwidth ( : ~ 10 :1U Lf f ) and are simple to 

construct. The beamwidth in the E and H planes is controlled by the dimensions B and A, 

respectively. For sectoral horns, the beamwidth can be controlled in a single plane; the 

beamwidth in the other plane it is the same as for an open-ended guide. Thus, sectoral horns are 

characterized by fan-shaped beams. For pyramidal horns, the beamwidth can be controlled 

independently in the two principal planes. For simplicity, in the following we restrict our 

analysis to E-plane sectoral horns. 

The fields on the aperture of the E-sectoral horn can be found under the approximation that 

the wave in the throat of the horn is a cylindrical wave. The center of curvature of the wave is at 

a distance E  from the aperture, as illustrated in the figure below. The curvature center depends 

on the tapering angle E  of the E-plane walls.  
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One can obtain the following geometrical relations from the figure: 

  / 2 / 2
tan

2
E

E E

B b B

L 


  .          (10.29) 

The fields at the aperture can be obtained from the fields in the waveguide, introducing a 

phase correction due to the cylindrical wavefront (there is also an amplitude correction due to the 

divergence of the cylindrical wave, but it is irrelevant for the characterization of the directional 

properties of the antenna). Supposing that the antenna is well-matched to free-space (there is no 

reflected wave in the antenna throat) one can write (compare with Eq. (10.24)): 

0 0
0

1
ˆ ˆcos ,           cosj j

S S

x x
E e E e

a a
  


         

   
E y H x , ( / 2,      / 2x a y B  )  (10.30) 

The impedance is taken equal to 0  (rather than the wave impedance of the guide) because the 

antenna is matched to free-space. Here, 0k d   is the phase acquired by the wave when it 

travels a distance d from the curvature center to the aperture. The phase   is not a constant 

because  d d y  (see the figure). One can write 
2

2 2 1

2E E
E

y
d y 




     when 

/ 2 EB  . With such an approximation the propagation phase becomes 
2

0 0

1

2 E

y
k 




   with 
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0 0 Ek   and irrelevant phase term that will be dropped. Thus, the curvature of the cylindrical 

wavefront introduces a quadratic phase distortion (
2

0

1

2 E

y
k




 ) on the aperture fields: 

2 2

0 0
1 1

2 2
0 0

0

1
ˆ ˆcos ,           cosE E

y y
jk jk

S S

x x
E e E e

a a
  



 
         

   
E y H x     (10.31) 

By substituting these formulas into Eq. (10.9), one can find the fields radiated by the horn 

antenna. It is simple to check that one obtains the same result as in Eq. (10.24) with the 

replacements: 1 0Z  , b B , and 0sinc cos
2 D

k b
I  

 
, so that:  

 
0

0

0 0 2

0

2
cos cos

2ˆ ˆˆ ˆ
4cos

1

jk r

D

k
a

e
jk E a B I

rk a









  
  

              
  

E x y r r .      (10.32) 

where DI  is the diffraction integral: 

2

0
1/2
2

/2

1
yE

yB jk
jk y

D

B

I dy e e
B









  ,  0 cosyk k  .        (10.33) 

The diffraction integral can be expressed in terms of special functions known as the “Fresnel 

integrals”. 

A larger B implies a larger aperture, which in general favours a more directional beam. 

However, a larger B also implies a larger quadratic phase error  . The phase error describes the 

departure from the uniform phase (plane wave) aperture. Large quadratic phase errors cause the 

divergence of the radiated wave. Due to this reason there is an optimal value for B. A detailed 

analysis shows that the optimal B that maximizes the directivity is such that: 

opt 02 EB   .             (10.34) 
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It can be shown that the directivity of the E-plane sectoral horn is given by: 

ap2
0

4 E
ED a B




    .            (10.35) 

where ap
E  is the aperture efficiency. It can be estimated using the formula: 

2
ap ph ph2

8
,       1.0033 0.119 2.752 ,              0< 0.262E E E s s s


       ,       (10.36) 

where the parameter s is defined by: 

2

08 E

B
s

 
 .             (10.37)  

For a optimal E-sectoral horn antenna, opt 1/ 4s s   and ap,opt =0.649 E .  

The half-power beamwidth of the antenna in the E-plane can be found using the formula: 

0
E-planeHPBW 54º

B


  .            (10.38)  

 

 

 

 

 

 

 




