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Getting targets when modeling sequences 

• When applying machine learning to sequences, we often want to turn 
an input sequence into an output sequence that lives in a different 
domain. 
• E. g. turn a sequence of sound pressures into a sequence of word identities. 

• When there is no separate target sequence, we can get a teaching 
signal by trying to predict the next term in the input sequence. 
• The target output sequence is the input sequence with an advance of 

1 step. 
• For temporal sequences there is a natural order for the predictions. 



Recurrent Networks 

• Recurrent neural networks or RNNs are a family of neural networks 
for processing sequential data 
• Recurrent neural network is a neural network that is specialised for 

processing a sequence of values x(1),··· ,x(τ)

• Recurrent networks can scale to much longer sequences than would 
be practical for networks without sequence-based specialisation.
• Most recurrent networks can also process sequences of variable 

length.



• A traditional fully connected feedforward network would have 
separate parameters for each input feature
• It would need to learn for example all of the rules of the language separately 

at each position in the sentence.

• By comparison, a recurrent neural network shares the same weights 
across several time steps. 
• Each member of the output is a function of the previous members of 

the output. 
• Each member of the output is produced using the same update rule 

applied to the previous outputs. 



Classical Dynamical System

• Unfolding a recursive or recurrent computation into a computational 
graph that has a repetitive structure, typically corresponding to a 
chain of events. 
• Unfolding this graph results in the sharing of parameters across a 

deep network structure. 



Unfolding Computational Graphs



Statistical Language Modeling

• For example, if the RNN is used in statistical language modeling, 
typically to predict the next word given previous words, it may not be 
necessary to store all of the information in the input sequence up to 
time t,

• .. but rather only enough information to predict the rest of the 
sentence. 



• We can represent the unfolded recurrence after t steps with a 
function gt

h(t) = g(t)(x(t), x(t−1), x(t−2), · · · , x(2), x(1)) = f(h(t−1), x(t); w) 

• Regardless of the sequence length, the learned model always has the 
same input size, because it is specified in terms of transition from one 
state to another state, rather than specified in terms of a variable-
length history of states. 



• It is possible to use the same transition function f with the same 
parameters at every time step

• These two factors make it possible to learn a single model f that 
operates on all time steps and all sequence lengths, rather than 
needing to learn a separate model g(t) for all possible time steps. 



(a) Elman Network, (b) Jordan Network



Recurrent Neural Networks 

• Recurrent networks that produce an output at each time step and 
have recurrent connections between hidden units, Vanilla RNN or 
Elman RNN 



Recurrent Hidden Units 



Recurrent Hidden Units 

V weight matrix hidden to output layer

W weight matrix hidden to hidden layer (new). Input is 
the preceding state. 

U weight matrix input to hidden layer



Computational Power

• The recurrent neural network is universal in the sense that any 
function computable by a Turing machine can be computed by such a 
recurrent network of a finite size. 



• Siegelmann and Sontag, 1991 

Theorem:

• All Turing machines may be simulated by fully connected recurrent 
networks built on neurons with sigmoidal activation functions. 

Hava Siegelmann is a professor of computer science, 
and a world leader in the fields of Lifelong Learning, 
Artificial Intelligence, Machine Learning, Neural 
Networks, and Computational Neuroscience.

Eduardo Daniel Sontag is an American mathematician, and 
Distinguished University Professor at Northeastern University,



Recurrence through only the Output 

• Recurrent networks that produce an output at each time step and 
have recurrent connections only from the output at one time step to 
the hidden units at the next time step



Recurrence through only the Output 

• Less powerful because it lacks hidden-to-hidden recurrent 
connections. 
• For example, it cannot simulate a universal Turing machine. 



Recurrence through only the Output 

• It requires that the output units capture all of the information about 
the past that the network will use to predict the future. 



Sequence Input, Single Output 

Recurrent networks with recurrent connections between hidden units, 
that read an entire sequence and then produce a single output 



Backpropagation Trough Time 

• The back-propagation algorithm applied to the unrolled graph with 
O(τ) cost is called back-propagation through time 
• The training data for a recurrent neural network is an ordered 

sequence of τ input-output pairs
• Same idea as training over training set D, now the training set is D · τ 

with an additional input is the preceding state.



Backpropagation Trough Time 

• The runtime is O(τ) and cannot be reduced by parallelization because 
the forward propagation graph is inherently sequential; each time 
step may only be computed after the previous one.
• BPTT begins by unfolding a recurrent neural network in time. The 

unfolded network contains τ inputs and outputs, but every copy of 
the network shares the same parameters. 
• Then the backpropagation algorithm is used to find the gradient of 

the cost with respect to all the network parameters 



Backpropagation Trough Time is THE usual 
Backpropagation!

• The back-propagation algorithm applied to the unrolled graph with O(τ)
cost is called back-propagation through time 



The Challenge 

• BPTT has difficulty with local optima. 
• With recurrent neural networks, local optima are a much more 

significant problem than with feed-forward neural networks 
• The recurrent feedback in such networks tends to create chaotic 

responses in the error surface which cause local optima to occur 
frequently, and in poor locations on the error surface. 
• The basic problem is that gradients propagated over many stages 

tend to either vanish (most of the time) or explode (rarely, but with 
much damage to the optimization). 



The Challenge 

• Even if we assume that the parameters are such that the recurrent 
network is stable (can store memories, with gradients not exploding), 
the difficulty with long-term dependencies arises from the 
exponentially smaller weights given to long-term interactions 

• Clip the norm ∥g∥ of the gradient g with v is the norm threshold. The 
gradient is normalised and multiplied with the scalar v



Gradient Clipping



Teacher Forcing and Networks with Output 
Recurrence 
• Teacher Forcing is applicable to RNNs that have connections from 

their out-put to their hidden states at the next time step 



Deep Recurrent Networks 

• The computation in most RNNs can be decomposed into three blocks 
of parameters and associated transformations: 
• from the input to the hidden state, 
• from the previous hidden state to the next hidden state, 
• from the hidden state to the output. 

• Would it be advantageous to introduce depth in each of these 
operations? 
• The experimental evidence is in agreement with the idea that we need enough 

depth in order to perform the required mappings. 



Deep RNNs 

A recurrent neural network can be made deep in 
many ways 
• The hidden recurrent state can be broken 

down into groups organized hierarchically. 
• Deeper computation (e.g., an MLP) can be 

introduced in the input-to-hidden, hidden-to-
hidden and hidden-to-output parts 
• This may lengthen the shortest path linking 

different time steps
The path-lengthening effect can be mitigated 
by introducing skip connec- tions. 



Recursive Network

• A recursive network has a 
computational graph that 
generalizes that of the 
recurrent network from a chain 
to a tree 



The equivalence between feedforward nets 
and recurrent nets



Providing input to recurrent networks 

• We can specify inputs in several 
ways: 
• Specify the initial states of all the 

units. 
• Specify the initial states of a subset 

of the units. 
• Specify the states of the same 

subset of the units at every time 
step. 

• This is the natural way to model 
most sequential data. 



Teaching signals for recurrent networks 

• We can specify targets in several ways: 
• Specify desired final activities of all the units 
• Specify desired activities of all units for the 

last few steps 
• Good for learning attractors 
• It is easy to add in extra error derivatives as we 

backpropagate. 
• Specify the desired activity of a subset of 

the units. 

• The other units are input or hidden 
units. 



Recurrent Neural Networks: Process Sequences

Vanilla 
Neural 
Networks

e.g. Sentiment 
Classification 
sequence of 
words -> 
sentiment

e.g. Image 
Captioning 
image -> 
sequence of 
words

e.g. Machine 
Translation 
seq of words 
-> seq of 
words

e.g. Video 
classification 
on frame 
level











Deep Speech: Accurate Speech Recognition

Bryan Catanzaro , 2015 





Neural embedding



Sequence to Sequence

• For learning to generate an 
output sequence (y(1),...,y(ny))
given an input sequence 
(x(1),x(2),...,x(nx))

• It is composed of an encoder RNN 
that reads the input sequence  
decoder RNN that generates the 
output sequence

• The final hidden state of the 
encoder RNN is used to compute 
a generally fixed-size context 
variable C which represents a 
semantic summary of the input 
sequence and is given as input to 
the decoder RNN.


