Resonator optics

Fabry-Perot resonator
 • no losses / with losses
 • resonator modes
 • spectral width and finesse
 • resonator lifetime and quality factor

Spherical mirror resonators
 • ray confinement
 • Gaussian modes

Fundamentals of Photonics, Ch. 10
An optical resonator confines and stores light

... but not any kind of light. The configuration of the resonator determines its resonance frequencies.
Applications of optical resonators

Can be used as a frequency analyzers or optical filters.
One of the main uses is in laser resonators.

Fabry-Perot interferometer

HeNe laser cavity
The simplest type of resonator is the Fabry-Perot

It is composed of two parallel, highly reflective, flat mirrors separated by a distance d.

First we are going to study the case where there are no losses.

Charles Fabry (1867-1945)

Alfred Perot (1863-1925)
A resonator only allows certain modes

Consider a monochromatic wave $U(r)$ that satisfies the Helmholtz eq.:

$$u(r,t) = \text{Re}\{U(r) \exp(i2\pi \nu t)\}$$

The resonator modes (allowed $U(r)$) are the solutions under the boundary conditions defined by the geometry of the resonator.

Lossless mirrors $\Rightarrow U(r)=0$ at the mirrors

$$U(r) = A \sin(kz), \quad kd = q\pi \quad (q = 1, 2, \ldots)$$

$$k_q = q \frac{\pi}{d}$$

$$U_q(r) = A_q \sin(k_q z)$$

The modes are standing waves and $q=1,2,\ldots$ is the mode number.
Resonance frequencies and frequency spacing

Just as the wavenumber k is restricted to discrete values k_q, so is the frequency:

$$\nu = \frac{c}{\lambda} = \frac{k_c}{2\pi}$$

$$k_q = q \frac{\pi}{d}$$

$$\Rightarrow \nu \equiv \nu_q = q \frac{c}{2d}$$

$c = c_0/n$

speed of light in the medium!

resonance frequencies

frequency spacing = free spectral range (FSR)
Resonance: examples

Consider a 30 cm long resonator filled with air \((n=1)\):

\[
d = 30 \text{ cm} \quad \nu_F = \frac{c}{2d} = 500 \text{ MHz}
\]

\[
\lambda_q = \frac{2d}{q} = 60 \text{ cm}, 30 \text{ cm}, 20 \text{ cm}, 15 \text{ cm} \ldots
\]

For a much smaller resonator (30 µm long) we have

\[
d = 3 \text{ µm}, \quad \nu_F = \frac{c}{2d} = 50 \text{ THz}
\]

\[
\lambda_q = \frac{2d}{q} = 6 \text{ µm}, 3 \text{ µm}, 2 \text{ µm}, 1.5 \text{ µm} \ldots
\]
Resonator modes must repeat themselves at the same place

If a given wave is a mode, it must repeat itself after a roundtrip.

In terms of wave optics:

\[\varphi = 2dk \quad (= q2\pi) \]

\[\Rightarrow k = k_q = q \frac{\pi}{d} \]

This can be understood as a feedback mechanism: only similar waves will add up and build power (i.e. resonate) in the resonator.
Real resonator have losses

1. Imperfect reflection at the end mirrors
 • reflection <100% (e.g. partially reflecting mirror)
 • finite size of the mirror aperture
2. Absorption and scattering in the medium in-between

One case when we want to introduce losses is the laser:
Calculating the effect of losses: amplitude

Losses may affect the amplitude and the phase: they are accounted for by a complex roundtrip attenuation factor:

\[h = r e^{-i\phi} \]

We have for the consecutive amplitudes \(U_1, U_2 \ldots \)

\[U_n = hU_{n-1} = h^n U_0 \]

\[U = U_0 + U_1 + U_2 + \cdots \]

\[= U_0 (1 + h + h^2 + \cdots) = U_0 / (1 - h) \]

The phase shift \(\phi \) corresponding to a full roundtrip is:

\[\phi = k(2d) = (2\pi\nu / c)(2d) = 4\pi\nu d / c \]
Resonator with losses: intensity and finesse

Let’s now calculate the corresponding intensity:

\[I = |U|^2 = \frac{|U_0|^2}{1 - |r e^{-i\phi}|^2} = \frac{I_0}{1 + |r|^2 - 2|r| \cos \phi} \]

We can write this result in a more interesting way:

\[I = \frac{I_{\text{max}}}{1 + (2F/\pi)^2 \sin^2(\phi/2)} \]

\[I_{\text{max}} = \frac{I_0}{(1 - |r|)^2} \]

\[F = \frac{\pi \sqrt{|r|}}{1 - |r|} \]

\[\sin^2(\phi/2) = \frac{1}{2} (1 - \cos \phi) \]

This is the definition of the finesse. We will see that this parameter is fundamental in defining the characteristics of a resonator.
Intensity vs. phase / Finesse

\[I_{\text{min}} = \frac{I_{\text{max}}}{1 + \left(2F / \pi \right)^2} \]
Inteensity vs. frequency of a monochromatic wave

\[I(\nu) = \frac{I_{\text{max}}}{1 + \left(\frac{2F}{\pi}\right)^2 \sin^2\left(\frac{\pi \nu}{\nu_F}\right)} \]

\[\nu_F = \frac{c}{2d} \]

\[\phi = \frac{2\pi \nu d}{c} = \frac{\pi \nu}{\nu_F} \]

\[\delta \nu \approx \frac{\nu_F}{F} \]
Finding a simpler expression for the finesse

We can write the **losses in the medium** as a distributed loss proportional to \(d \)

The **losses in the mirrors** are considered located losses at the mirrors 1 and 2

The **total losses** are then:

\[
|r|^2 = R_1 R_2 \exp(-2\alpha_s d)
\]

\[
= \exp(-2\alpha_r d)
\]

\[
\rightarrow \alpha_r = \alpha_s + \frac{1}{2d} \ln \left(\frac{1}{R_1 R_2} \right)
\]

\(\alpha_r = \text{loss coefficient} \)

If we replace \(|r|^2 \) in the expression for the finesse we obtain (approx. valid for \(\alpha_r d \ll 1 \)):

\[
\mathcal{F} = \frac{\pi \exp(-\alpha_r d / 2)}{1 - \exp(-\alpha_r d)} \approx \frac{\pi}{\alpha_r d}
\]
Finesse vs. r

\[
|r|^2 = \exp(-2\alpha_r d)
\]

![Graph showing relationship between Finesse \(F\) and Loss factor \(\alpha_r d\).]
Exercise - Resonator Modes and Spectral Width

Calculate:

- frequency spacing ν_F
- spectral width $\delta \nu$

of the modes of a Fabry-Perot resonator whose mirrors have reflectances $R_1=0.98$ and $R_1=0.99$ and are separated by a distance $d = 100$ cm.

Assume that the medium has refractive index $n = 1$ and negligible losses.

Is the derived approximation appropriate in this case?
Why do resonator losses cause spectral line broadening?

Consider the expression for the spectral width:

\[\delta \nu \approx \frac{\nu_F}{\mathcal{F}} \approx \frac{c}{2d} \left(\frac{\pi}{\alpha_r d} \right) = \frac{c \alpha_r}{2\pi} \]

Note that \(c \alpha_r \) has dimensions of (time)\(^{-1}\). We define the characteristic decay time as:

\[\tau_p = \frac{1}{c \alpha_r} \]

The relation between time width and spectral width has the form of an uncertainty product:

\[\delta \nu \cdot \tau_p = \frac{1}{2\pi} \]

\[\propto \exp\left(-\frac{t}{2\tau_p} \right) \]

\[\propto \frac{1}{1 + (4\pi \nu \tau_p)^2} \]
The quality summarizes the resonator characteristics

$$Q = 2\pi \frac{\text{stored energy}}{\text{energy lost per cycle}}$$

The energy decays exponentially with \(\tau_p\) (check expression for E-field, prev. slide):

$$E(t) \propto E_0 \exp\left(-\frac{t}{\tau_p}\right)$$

The energy lost in a cycle (=period \(T\)) is:

$$\Delta E = (dE / dt) \cdot T$$

So we obtain:

$$Q = \frac{2\pi}{(1/\tau_p) \cdot T} = 2\pi \tau_p \nu_0 = \nu_0 / \delta\nu$$

Finally, using the previous relations, we can arrive to an expression relating

- quality factor
- frequency spacing
- finesse

$$Q = \frac{\nu_0}{\delta\nu} = \frac{\nu_0}{\nu_F} \mathcal{F}$$
Fabry-Perot resonators: summary

<table>
<thead>
<tr>
<th>Lossless resonator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>only selected frequencies are allowed</td>
<td>$v_q = q \frac{c}{2d}$</td>
</tr>
<tr>
<td>Spacing between modes (FSR)</td>
<td>$v_F = \frac{c}{2d}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lossy resonator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>the resonance line is broadened – the spectral width is</td>
<td>$\delta v \approx \frac{v_F}{F}$</td>
</tr>
<tr>
<td>The losses may be described by two parameters</td>
<td>$\alpha_r , (\text{cm}^{-1})$</td>
</tr>
<tr>
<td>Resonator quality is characterized by two dimensionless parameters</td>
<td>$\tau_p = \frac{1}{c \alpha_r} , (s)$</td>
</tr>
<tr>
<td></td>
<td>$F = \frac{\pi}{\alpha_r d}$</td>
</tr>
<tr>
<td></td>
<td>$Q = \left(\frac{v_0}{v_F}\right)F$</td>
</tr>
</tbody>
</table>
Extra: Fabry-Perot interferometer

In this case a plane wave comes from outside and is transmitted through a mirror with amplitude transmittance t and amplitude reflectance r:

\[
U_0 t^2 r^4 e^{-i5\varphi} \\
U_0 t^2 r^2 e^{-i3\varphi} \\
U_0 t^2 e^{-i\varphi}
\]
By making calculations similar to the FP resonator, we obtain a similar expression for the transmitted intensity

\[I_t = \frac{I_0}{1 + \left(\frac{2F}{\pi}\right)^2 \sin^2(\varphi / 2)} \]

This depends on the separation \(d \) between the mirrors
In particular, this means that the reflectance coefficient of the mirrors is not absolute!
Spherical mirror resonators

Pay attention!
In this case we have: $R_1 < 0, R_2 < 0$
Conditions for ray confinement

In ray matrix theory we studied the conditions for a bounded solution in a periodic system.

For a spherical mirror we have the confinement condition

$$0 \leq g_1 g_2 \leq 1, \quad g_{1,2} = \left(1 + \frac{d}{R_{1,2}} \right)$$

The stability depends on the product of the g-parameters.

- $0 \leq g_1 g_2 \leq 1$
 - stable resonator
- $g_1 g_2 < 0$
 - unstable resonator
- $g_1 g_2 = 0$
 - conditionally stable resonator
- $g_1 g_2 = 1$
 - Fabry-Perot: lossless
- $g_1 g_2 > 1$
 - Fabry-Perot: lossy
Diagram of resonator stability

The dotted red line marks the position of **symmetric resonators** for which $g_1 = g_2$.

The equations for the stability factor $g_{1,2}$ are:

$$g_{1,2} = \left(1 + \frac{d}{R_{1,2}}\right)$$

<table>
<thead>
<tr>
<th>R</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>1</td>
</tr>
<tr>
<td>$-d$</td>
<td>0</td>
</tr>
<tr>
<td>$-d/2$</td>
<td>-1</td>
</tr>
</tbody>
</table>

The diagram shows different types of resonators:
- Hemispherical $(0, 1)$
- Plane-parallel $(1, 1)$
- Concentric $(-1, -1)$
- Confocal $(0, 0)$
- Concave-convex $(2, 1/3)$

Fabry-Perot: lossless
Fabry-Perot: lossy
Spherical mirror
Symmetric resonators: confinement condition

In this case $R_1 = R_2 = R$ and $g_1 = g_2 = g$:

$$0 \leq g^2 \leq 1 \iff 0 \leq \frac{d}{(-R)} \leq 2$$

A stable symmetric resonator must use mirrors with a radius of curvature greater than (length/2).

Example: symmetric confocal ($R = -d$)

(a) Planar ($R_1 = R_2 = \infty$)
(b) Symmetric confocal ($R_1 = R_2 = -d$)
(c) Symmetric concentric ($R_1 = R_2 = -d/2$)

Fabry-Perot: lossless Fabry-Perot: lossy Spherical mirror
Gaussian beams: quick reminder

\[I(\rho, z) = I_0 \frac{W_0}{W(z)} \exp \left[-\frac{\rho^2}{W^2(z)} \right] \]
\[\times \exp \left[-i(kz - \zeta(z)) \right] \]
\[\times \exp \left[-ik \frac{\rho^2}{2R(z)} \right] \]

\[z_0 = \frac{\pi W_0^2}{\lambda} \]
\[W(z) = W_0 \sqrt{1 + \left(\frac{z}{z_0} \right)^2} \]
\[R(z) = z \left[1 + \left(\frac{z_0}{z} \right)^2 \right] \]
\[\zeta(z) = \tan^{-1} \frac{z}{z_0} \]
\[W_0 = \sqrt{\frac{\lambda z_0}{\pi}} \]
The Gaussian beam is a mode of the spherical mirror resonator

A Gaussian beam will be reflected at a spherical mirror and retrace its way back exactly if:

$$R_{\text{wavefront}} = R_{\text{mirror}}$$
Conditions for Gaussian beam confinement

We have the following three conditions linking the positions \(z \) and radius \(R_1, R_2 \) of the concave mirrors, and the \(R(z) \) of the beam:

\[
\begin{align*}
 z_2 &= z_1 + d \\
 R_1 &= z_1 + \frac{z_0^2}{z_1} \\
 (-R_2) &= z_2 + \frac{z_0^2}{z_2}
\end{align*}
\]

This gives us the position of the beam center and Rayleigh length:

\[
\begin{align*}
 z_1 &= \frac{-d(R_2+d)}{R_2+R_1+2d} \\
 z_0^2 &= \frac{-d(R_1+d)(R_2+d)(R_1+R_2+d)}{(R_2+R_1+2d)^2}
\end{align*}
\]

Parameters of the Gaussian beam that obeys the boundary conditions:

\[
\begin{align*}
 W_0 &= \sqrt{\frac{\lambda z_0}{\pi}} \\
 W_i &= W_0 \sqrt{1 + \left(\frac{z_i}{z_0} \right)^2}, \quad i = 1, 2
\end{align*}
\]
Exercise – plano-concave resonator

When mirror 1 is planar ($R_1 = \infty$), determine as a function of $d / |R_2|$:

- the confinement condition
- the depth of focus ($= 2z_0$)
- beam width at the waist and at each of the mirrors