7 Optimization in MATLAB

MATLAB (MAtrix LABboratory) is a numerical computing environment and fourth-generation programming language developed by MathWorks® [1].

MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, and Fortran.

MATLAB has five toolboxes relevant to this course, containing two of them optimization algorithms discussed in this class:

- Optimization Toolbox™
- Global Optimization Toolbox™
- Curve Fitting Toolbox™
- Neural Network Toolbox™
- Statistics Toolbox™
7.1 Optimization Toolbox™

Optimization Algorithms

- Unconstrained Nonlinear Optimization
- Constrained Nonlinear Optimization
- Linear Programming
- Quadratic Programming
- Binary Integer Programming
- Least Squares (Model Fitting)
- Multiobjective Optimization
Unconstrained Nonlinear Optimization

Unconstrained problems expressed in the following nonlinear programming (NP) form:

\[
\begin{align*}
\text{minimize} \quad & f(\mathbf{x}) \\
\text{w.r.t} \quad & \mathbf{x} \in \mathbb{R}^n
\end{align*}
\] (7.1)

Example (Rosenbrock function)

\[
\begin{align*}
\text{minimize} \quad & f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \\
\text{w.r.t} \quad & \mathbf{x} \in \mathbb{R}^2
\end{align*}
\]

For some animated versions of these class of algorithms, enter bandem at the MATLAB command line.
OPTIONS = optimset(OPTIONS,'HessUpdate','steepdesc', ...
 'gradobj','on','MaxFunEvals',niter_max);
[x,fval,exitflag,output] = fminunc({@objfun,@objgrad},x0,OPTIONS);

Figure 7.1: Steepest Descent method.
fminunc function - Unconstrained quasi-Newton minimization

```matlab
OPTIONS = optimset(OPTIONS,'HessUpdate','dfp', ...
    'gradobj','on','MaxFunEvals',niter_max,'InitialHessType','identity');
[x,fval,exitflag,output] = fminunc({@objfun,@objgrad},x0,OPTIONS);
```

Figure 7.2: Davidon-Fletcher-Powell (DFP) method.
fminunc function - Unconstrained quasi-Newton minimization

```matlab
OPTIONS = optimset(OPTIONS, ...
    'gradobj','on','MaxFunEvals',niter_max,'InitialHessType','scaled-identity');
[x,fval,exitflag,output] = fminunc({@objfun,@objgrad},x0,OPTIONS);
```

Figure 7.3: Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.
fminsearch function - Nelder-Mead simplex algorithm

OPTIONS = optimset(OPTIONS,'MaxFunEvals',niter_max);

[x,fval,exitflag,output] = fminsearch(@objfun,x0,OPTIONS);

Figure 7.4: Nelder-Mead (nonlinear Simplex) method.
Constrained Nonlinear Optimization

Constraint problems may be expressed in the following *nonlinear programming* (NP) form:

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{w.r.t} & \quad x \in \mathbb{R}^n \\
\text{subject to} & \quad c(x) \leq 0 \\
& \quad ceq(x) = 0 \\
& \quad Ax \leq b \\
& \quad Aeqx = beq \\
& \quad l \leq x \leq u
\end{align*}
\]

\[[x,fval,exitflag,output] = \text{fmincon}(\text{fun},x0,A,b,Aeq,beq,lb,ub,\text{nonlcon},\text{options});\]

Example

\[
\begin{align*}
\text{minimize} & \quad f(x) = -x_1x_2 - 25 \\
\text{w.r.t} & \quad x \in \mathbb{R}^2 \\
\text{subject to} & \quad -4 \leq x_1 \leq \infty, -1 \leq x_2 \leq \infty
\end{align*}
\]
fmincon function - Trust region algorithm

```matlab
OPTIONS = optimset(OPTIONS,'Algorithm','trust-region-reflective', ...
    'GradObj','on');
[x,fval,exitflag,output] = fmincon({@objfun,@objgrad},x0,[],[],...
    [],[],[x_min y_min],[+Inf +Inf],[],OPTIONS);
```

Figure 7.5: Trust region algorithm.
fmincon function - Active set algorithm

OPTIONS = optimset(OPTIONS,'Algorithm','active-set');

[x,fval,exitflag,output] = fmincon(@objfun,x0,[],[],...
 [],[],[x_min y_min],[+Inf +Inf],[],OPTIONS);

Figure 7.6: Active set algorithm.
fmincon function - Interior point algorithm

```matlab
OPTIONS = optimset(OPTIONS,'Algorithm','interior-point');

[x,fval,exitflag,output] = fmincon(objfun,x0,[],[],
    [],[],[x_min y_min],[+Inf +Inf],[],OPTIONS);
```

Figure 7.7: Interior point algorithm.
Linear Programming

linprog function - active set strategy (a.k.a. projection method)

linprog function - Simplex method
Quadratic Programming

quadprog function - Trust region algorithm

quadprog function - Active set algorithm

quadprog function - Interior point algorithm
Binary Integer Programming

\texttt{bintprog} function - Linear programming (LP)-based branch-and-bound algorithm
Least Squares (Model Fitting)

Least squares, in general, is the problem of finding a vector \(\mathbf{x} \) that is a local minimizer to a function that is a sum of squares, possibly subject to some constraints:

\[
\begin{align*}
\text{minimize} & \quad \| F(\mathbf{x}) \|_2^2 = \sum_i F_i^2(\mathbf{x}) \\
\text{w.r.t} & \quad \mathbf{x} \in \mathbb{R}^n \\
\text{subject to} & \quad \mathbf{A} \mathbf{x} \leq \mathbf{b} \\
& \quad \mathbf{A}_{eq} \mathbf{x} = \mathbf{b}_{eq} \\
& \quad \mathbf{x}_l \leq \mathbf{x} \leq \mathbf{x}_u
\end{align*}
\]

(7.3)

There are several Optimization Toolbox solvers available for various types of \(F(\mathbf{x}) \) and various types of constraints:

<table>
<thead>
<tr>
<th>Solver</th>
<th>(F(\mathbf{x}))</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\setminus)</td>
<td>(C\mathbf{x} - \mathbf{d})</td>
<td>none</td>
</tr>
<tr>
<td>lsqnonneg</td>
<td>(C\mathbf{x} - \mathbf{d})</td>
<td>(x \geq 0)</td>
</tr>
<tr>
<td>lsqlin</td>
<td>(C\mathbf{x} - \mathbf{d})</td>
<td>Bound, linear</td>
</tr>
<tr>
<td>lsqnonlin</td>
<td>General (F(\mathbf{x}))</td>
<td>Bound</td>
</tr>
<tr>
<td>lsqcurvefit</td>
<td>(F(\mathbf{x}, \mathbf{x}{data}) - \mathbf{y}{data})</td>
<td>Bound</td>
</tr>
</tbody>
</table>
lsqnonneg function - Solve nonnegative least-squares constraint problem

\[
\text{OPTIONS} = \text{optimset}(\text{OPTIONS, ...}
\quad \text{'Display'},\text{'notify'},\text{'TolX'},\text{tol,});
\]
\[
[x,\text{resnorm},\text{residual},\text{exitflag}] = \text{lsqnonneg}(C,d,\text{OPTIONS});
\]
lsqlin function - Solve constrained linear least-squares problems

OPTIONS = optimset(OPTIONS, ...
'Display','final','MaxIter',200,);
[x,resnorm,residual,exitflag] = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,OPTIONS);
lsqnonlin function - Solve nonlinear least-squares (nonlinear data-fitting) problems

```matlab
OPTIONS = optimset(OPTIONS, ...
    'Algorithm','levenberg-marquardt',
    'Display','final',
    'MaxIter',200,);
[x,resnorm,residual,exitflag] = lsqnonlin(fun,x0,lb,ub,OPTIONS);
```
lsqcurvefit function - Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense

```matlab
OPTIONS = optimset(OPTIONS, ...)
    'Algorithm','levenberg-marquardt', 'Display','final', 'MaxIter',200,);
[x,resnorm,residual,exitflag] = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,OPTIONS);
```
Multiobjective Optimization

minimize \[\gamma \]
\[\text{w.r.t} \quad \gamma \in \mathbb{R}, \ x \in \Omega \] (7.5)

subject to \[F_i(x) - \omega_i \gamma \leq F_i^*, \quad i = 1, \ldots, m \] (7.6)
fgoalattain function - Solve multiobjective goal attainment problems

\[
\begin{align*}
\text{minimize} \quad & \max \left(\frac{F_i(x) - F_i^*}{\omega_i} \right), \quad i = 1, \ldots, m \\
& x \in \mathbb{R} \\
\end{align*}
\]

\[\begin{array}{c}
[x,fval,attainfactor,exitflag] = \text{fgoalattain}(\text{fun},x0,\text{goal},\text{weight},...
\text{A,b,Aeq,beq,lb,ub,nonlcon,options});
\end{array}\]
fminimax function - Minimizing the maximum of a set of nonlinear functions

\[
\begin{align*}
\text{minimize} & \quad \max F_i(\mathbf{x}), \quad i = 1, \ldots, m \\
\mathbf{x} & \in \mathbb{R}^i \quad i
\end{align*}
\]

\[
[x, fval, maxfval, exitflag] = \text{fminimax}(fun, x0, \ldots, A, b, Aeq, beq, lb, ub, nonlcon, options);
\]
Optimization Tool

The Optimization Tool is a GUI for solving optimization problems. If you are familiar with the optimization problem you want to solve, the Optimization Tool lets you select a solver, specify the optimization options, and run your problem.

![Optimization Tool](optimtool)

Figure 7.8: Optimization Tool - optimtool

More information about the Optimization Toolbox™ can be found in reference [5].
7.2 Global Optimization Toolbox™

Previously known as the Genetic Algorithm and Direct Search Toolbox.

Global Optimization Algorithms

- Global Search
- Multistart
- Pattern Search
- Genetic Algorithm
- Simulated Annealing
GlobalSearch class - Find global minimum

Example: Solve a problem using a default GlobalSearch object

```matlab
opts = optimset('Algorithm','interior-point');
problem = createOptimProblem('fmincon','objective', @(x) x.^2 + 4*sin(5*x),...
    'x0',3,'lb',-5,'ub',5,'options',opts);

gs = GlobalSearch;
[x,f] = run(gs,problem)
```
MultiStart class - Find multiple local minima

Example: Run MultiStart on 20 instances of a problem using the fmincon sqp algorithm:

```matlab
opts = optimset('Algorithm','sqp');
problem = createOptimProblem('fmincon','objective',@(x) x.^2 + 4*sin(5*x),... 
                               'x0',3,'lb',-5,'ub',5,'options',opts);
ms = MultiStart;
[x,f] = run(ms,problem,20)
```
ga function - Find minimum of function using genetic algorithm

[x,fval,exitflag,output] = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options);
gamultiobj function - Find minima of multiple functions using genetic algorithm

[x,fval,exitflag,output] = gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,options);
patternsearch function - Find minimum of function using pattern search

\[x, fval, exitflag, output \] = \text{patternsearch}(\text{@fun}, x0, A, b, Aeq, beq, LB, UB, nonlcon, options) \]
simulannealbnd function - Find unconstrained or bound-constrained minimum of function of several variables using simulated annealing algorithm

[x,fval,exitflag,output] = simulannealbnd(fun,x0,lb,ub,options);

More information about the Global Optimization Toolbox™ can be found in reference [3].
7.3 Curve Fitting Toolbox™

- **Interactive Fitting** Interactive curve and surface fitting
- **Linear and Nonlinear Regression** Parametric fitting to data with linear and nonlinear library models and custom models
- **Interpolation** Nonparametric curve and surface fitting, create curves or surfaces through your data with interpolants, estimate values between known data points
- **Smoothing** Nonparametric curve and surface fitting, data smoothing, create smooth curves or surfaces through your data with smoothing splines
- **Fit Postprocessing** Plot, integrate, or differentiate fits, exclude outliers, calculate confidence and prediction intervals, generate code and export to workspace
- **Splines**

Information about the Curve Fitting Toolbox™ can be found in reference [2].
7.4 Neural Network Toolbox™

- Data Function
- Distance Function
- Graphical Interface Functions
- Layer Initialization Functions
- Learning Functions
- Line Search Functions
- Net Input Functions
- Network Initialization Functions
- Network Use Functions
- New Networks Functions

- Performance Functions
- Plotting Functions
- Processing Functions
- Simulink Support Functions
- Topology Functions
- Training Functions
- Transfer Functions
- Weight and Bias Initialization Functions
- Weight Functions
- Transfer Function Graphs

Information about the Neural Network Toolbox™ can be found in reference [4].
7.5 Statistics Toolbox™

- **Descriptive Statistics**: Data summaries
- **Statistical Visualization**: Data patterns and trends
- **Probability Distributions**: Modeling data frequency
- **Hypothesis Tests**: Inferences from data
- **Analysis of Variance**: Modeling data variance
- **Parametric Regression Analysis**: Continuous data models
- **Multivariate Methods**: Visualization and reduction
- **Cluster Analysis**: Identifying data categories
- **Model Assessment**: Identifying data categories
- **Parametric Classification**: Categorical data models
- **Nonparametric Supervised Learning**: Classification and regression via trees, bagging, boosting, and more
- **Hidden Markov Models**: Stochastic data models
- **Design of Experiments**: Systematic data collection
- **Statistical Process Control**: Production monitoring
- **GUIs**: Interactive tools

Information about the Statistics Toolbox™ can be found in reference [6].
References

Part III

MDO Architectures
8 Introduction to MDO Architectures

8.1 Strategies for MDO of Complex Engineering Systems

Aircraft design is probably one of the most complex engineering systems.

While aircraft design can start with very rough sketches, as did the Wright Brothers with their 1903 Flyer [6], the first powered aircraft.

However, modern aircraft design is strongly dependent on computational simulation: computation-based design [1].
8.1.1 Modeling Integration

Today’s engineers face the significant challenge of integrating high-fidelity modeling from multiple disciplines.

This has led to several generations of MDO approaches, distinguished by differences in:

- Integration of individual disciplines
- Management/optimization control level
First Generation MDO

- Integrated multidisciplinary analysis and optimization
- Ideal for simple problems
- Focus on optimization efficiency
Second Generation MDO

- Analysis management, distributed analysis, and optimization
- Modular analysis
- Focus on interdisciplinary communication
Third Generation MDO

- Distributed Design
- Usually achieved with informal architectures: sequential, iterative
- Current focus on more formal approaches: CO, CSSO, BLISS, ...
8.1.2 Problem Decomposition

Several types of decompositions are possible when tackling an MDO problem:

- Monolithic (no decomposition)
- Decomposed analysis (OBD)
- Decomposed optimization:
 - Hierarchical optimization (rare)
 - Concurrent subspace optimization (one of first non-hierarchical)
 - Collaborative optimization

This led to different architectures, as detailed in Sections 9 and 10.
8.2 Formal Approach to MDO

In the early 90’s, a formal approach to MDO started with the pioneer work of Sobieski [12].

Multidisciplinary design optimization (MDO) is a field of growing recognition in both academic and industrial circles. Multidisciplinary design by itself is by no means a recent insight: the Wright brothers realized that they needed to simultaneously consider multiple disciplines in order to successfully design a powered airplane. Aircraft are prime examples of multidisciplinary systems where the interaction between the different disciplines is extremely important.

In the last few decades have numerical techniques that predict the performance of engineering systems have been developed and are now mostly mature areas of research. Numerical optimization made use of these techniques to further automate the design process by automatically searching the space of possible designs and by providing a mathematical definition of what constitutes an optimum design.
While single-discipline optimization is in some cases quite mature, the design and optimization of systems that involve more than one discipline is still in its infancy. Although there have been hundreds of research papers written on the subject, MDO has still not lived up to its full potential.

In the opinion of some MDO researchers, industry won’t adopt MDO because they don’t realize their utility. Some engineers in industry think that researchers are making a big deal out of a concept that they have always used in their work.

There is some truth to each of these perspectives. Real-world aerospace design problem may involve thousands of variables and hundreds of analyses and engineers. This kind of problem has so far been of a much larger scale than what has been studied by researchers.
An overview of the structure of an aircraft company shows that its organization involves a number of different levels — a hierarchy — as well as complex coupling between the divisions [9].

Figure 8.1: Organization of an aircraft company [9].
Figure 8.2: Flow chart for an aircraft design procedure [9].
Traditionally, designers have resorted to a series of parametric studies to make design decisions. This involves plotting a figure of merit or constraint versus one or three design parameters. This studies are limited because of the inherent difficulty of visualizing data that has more than three dimensions. In addition, the computational cost of such studies is proportional to p^n where p is the number of points evaluated in each direction and n is the number of design variables.

MDO is concerned with the development of strategies that utilize current numerical analyses and optimization techniques to enable the automation of the design process of a multidisciplinary system. One of the big challenges is to make sure that such a strategy is scalable and that it will work in realistic problems.

An MDO architecture is a particular strategy for organizing the analysis software, optimization software, and optimization subproblem statements to achieve an optimal design.
Why MDO?

- Parametric trade studies are subject to the “curse of dimensionality"
- Iterated procedures for which convergence is not guaranteed
- Sequential optimization that does not lead to the true optimum of the system

Objectives of MDO:

- Avoid difficulties associated with sequential design or partial optimization
- Provide more efficient and robust convergence than by simple iteration
- Aid in the management of the design process

Difficulties of MDO:

- Communication and translation
- Time
- Scheduling and planning
8.3 Nomenclature

In addition to the usual nomenclature we have used thus far, such as \(f \) for the objective function and \(x \) for the design variables, and \(c \) for the vector of constraints, we will use another set of variables and appropriate subscripts and superscripts to distinguish between subsets.

We make the distinction between \textit{local} design variables, which directly affect only one discipline, and \textit{global} or \textit{shared} design variables, which directly affect more than one discipline. We will use \(x_i \) to denote the design variables local to discipline \(i \) and \(z \) to denote shared design variables.

The set of constraints must also be split into those which are shared between disciplines and those which are discipline-specific, i.e. those which require only local variable information. We will use \(c_i \) to denote local constraints and \(c_0 \) to denote global constraints.

The heart of the MDO problem lies in the fact that at least some disciplinary analyses require information from the output of other disciplinary analyses to complete their calculations. We will denote the analysis outputs, or \textit{state variables} by \(y^r \) (the superscript \(r \) comes from the fact that these are \textit{response} variables). State variables that are used by other disciplines are referred to as \textit{coupling variables}, because they couple the disciplines together.
In many cases, we would like to evaluate the disciplinary analyses independent of each other. To accomplish this, we introduce a copy of the state variables into the problem, and denote it \(y^t \) (the superscript \(t \) stands for ‘target’). We can now write the disciplinary analyses in residual form as

\[
R_i \left(z, x_i, y^r_i, y^t_j \right) = 0 \quad (8.1)
\]

where \(j = 1, \ldots, i - 1, i + 1, \ldots, N \), i.e. all nonlocal disciplines. Another way of looking at each discipline is to describe each state response as a function of the input variables,

\[
y^r_i = y^r_i \left(z, x_i, y^t_j \right), \quad (8.2)
\]

This is more common when the analysis is self-contained as a “black box” and we only have access to inputs and outputs. Note that we must also introduce consistency constraints of the form \(y^t - y^r = 0 \) into the problem so that each discipline works with the correct information at the optimal solution.

Nomenclature

- f Objective function
- x_i Local design variables (of discipline i)
- z Shared design variables
- c_i Local constraints (of discipline i)
- c_0 Global constraints
- y_i^r Response or state variables (can be coupling variables)
- y_i^t Target variables (copy of response variables)
8.4 Multidisciplinary Analysis (MDA)

If we want to know how the system behaves for a given set of design variables without optimization, we need to repeat each disciplinary analysis until each $y^t_i = y^r_i$. This is called a multidisciplinary analysis (MDA). There are many possible techniques for converging the MDA but for now we will assume that the MDA is converged by a sequential (Gauss-Seidel) approach.

![Diagram of Multidisciplinary Analysis](image)

Figure 8.3: Example of Multidisciplinary Analysis.
Figure 8.4: Example of the analyses for the design of a supersonic business jet.
Figure 8.5: Coupling matrix of the original multidisciplinary analysis.

Figure 8.6: Coupling matrix after decomposition and re-ordering.
8.5 Pitfalls of Sequential Approach

Suppose we want to design the wing of a business jet using low-fidelity analysis tools. We could, for example, model the aerodynamics using a simple panel method and represent the structure as a single beam composed of finite elements as shown below.

Figure 8.7: Low-fidelity aero-structural analysis of a business jet wing.
The panel method takes an angle-of-attack (α) a twist distribution (γ_i) and computes the lift (L) and inviscid, incompressible drag (D). The structural analysis takes the thicknesses of the beam (t_i) and computes the structural weight, which is added to a fixed weight to obtain the total weight (W). The maximum stresses in each finite-element (σ_i) are also calculated.

How do we perform design using optimization?
Sequential optimization approach:

Optimize the aerodynamics by minimizing cruise drag:

\[
\text{minimize} \quad D (\alpha, \gamma_i) \\
\text{w.r.t.} \quad \alpha, \gamma_i \\
\text{s.t.} \quad L (\alpha, \gamma_i) = W
\]

Then optimize the structure by minimizing weight subject to stress constraints at maneuver condition:

\[
\text{minimize} \quad W (t_i) \\
\text{w.r.t.} \quad t_i \\
\text{s.t.} \quad \sigma_j (t_i) \leq \sigma_{\text{yield}}
\]

And repeat until this sequence has converged.

The final result will always be a wing with elliptic lift distribution...
Integrated optimization approach:

A better approach would be to consider an objective function that uses information from both disciplines so that a trade-off is made.

The Breguet range equation, for example, accounts for both drag and weight and is a better representation of the performance of an aircraft,

\[
\text{Range} = \frac{V}{c} \frac{L}{D} \ln \left(\frac{W_i}{W_f} \right).
\]

However, maximizing range in each discipline sequentially gives us the same result. (Why?) An even better approach, then, is to optimize with respect to all design variables simultaneously. (We will discuss how to handle the state variables momentarily.)

We can then solve the following optimization problem:

\[
\begin{aligned}
\text{maximize} & \quad \text{Range} (\alpha, \gamma_i, t_i) \\
\text{w.r.t.} & \quad \alpha, \gamma_i, t_i \\
\text{s.t.} & \quad \sigma_{\text{yield}} - \sigma_j (t_i) \geq 0 \\
& \quad L (\alpha, \gamma_i) - W = 0
\end{aligned}
\]
Multidisciplinary Design Optimization of Aircrafts
Aero-structural analysis:

\[A\Gamma = v(u, \alpha) \]
\[Ku = f(\Gamma) \]
\[L(\Gamma) - W = 0 \]

The state is given by

\[y = \begin{bmatrix} \Gamma \\ \alpha \\ u \end{bmatrix}, \]

i.e. the circulation distribution, angle of attack and displacements.

The design variables could be:

\[z = \Lambda \]
\[x = \begin{bmatrix} t \\ \gamma \end{bmatrix}, \]

i.e. the wing sweep (\(\Lambda \)), structural thicknesses (\(t \)) and twist distribution (\(\gamma \)). The sweep is a global variable while the other two are local to the structures and aerodynamics, respectively.
8.6 Classification of Architectures

All MDO architectures can be classified into two major groups. Those that use a single optimization problem are referred to as *monolithic* architectures. Those that decompose the optimization problem into a set of smaller problems are referred to as *distributed* architectures.

The principle advantage of the monolithic architectures is that they are quite easy to understand, and work well for small problems. Conversely, distributed architectures require complicated strategies, and potentially higher cost, to solve even basic optimization problems.

Among the formal methods of MDO and its several variants [8], the following are dealt in detail in Sections 9 and 10:

- **Monolithic**
 - All-at-Once (AAO)
 - Simultaneous Analysis and Design (SAND)
 - Individual Discipline Feasible (IDF)
 - Multiple Discipline Feasible (MDF)

- **Distributed**
 - Concurrent Sub-Space Optimization (CSSO)
 - Bi-Level System Synthesis (BLISS)
 - Collaborative Optimization (CO)
 - Analytical Target Cascading (ATC)
MDO techniques apply various decomposition and coordination methods to facilitate communication between several disciplines while utilizing common optimization solvers to find a solution.

Sub-optimization functions can be contained within the subsystems with appropriate coupling variables linking all the systems and subsystems together to ensure a global objective is maintained.

The classification shown previously is the most commonly accepted and is based on the different decomposition and coordination strategies adopted. An alternative classifications of MDO problems based on the type of variables being considered and the objective functions being optimized can be found in reference [5].
References

