1 Introduction

In this notebook we will use the Lorentz force equation,

$$\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

(Lorentz force)

and the Euler’s formula

$$e^{i\theta} = \cos \theta + i \sin \theta.$$

(Euler formula)

The subject of this notebook is covered in the bibliography in the following chapters:

- Chen[1]: chapter Two, section 2.2
- Nicholson[2]: chapter 2, section 2.2
- Bittencourt[3]: chapter 2
- Goldston[4]: chapter 2

The examples are prepared with the help of two scientific software packages, Numpy/Scipy[5] and IPython[6].

2 Movement without \vec{E} field

Let’s keep it simple: $\vec{B}(\vec{r}, t) = B_0 \vec{u}_\parallel$: $\vec{v}_0 = v_{1,0} \vec{u}_\perp + v_{2,0} \vec{u}_\parallel$ and we take $\vec{u}_\parallel \equiv \vec{u}_z$.

- The Lorentz force is $\vec{F} = q\vec{v} \times \vec{B}$ and, as $\vec{F} \perp \vec{v} \Rightarrow$ constant kinetic energy, W.

Writing the Lorentz force in cartesian coordinates, we have

\[F_x = q(v_y B_z - v_z B_y) = q v_y B_0 \] \hspace{1cm} (1)
\[F_y = q(v_z B_x - v_x B_z) = -q v_x B_0 \] \hspace{1cm} (2)
\[F_z = q(v_x B_y - v_y B_x) = 0 \] \hspace{1cm} (3)

or,

\[\dot{v}_x = \frac{q}{m} v_y B_0 \] \hspace{1cm} (4)
\[\dot{v}_y = -\frac{q}{m} v_x B_0 \] \hspace{1cm} (5)
\[\dot{v}_z = 0 \] \hspace{1cm} (6)

Taking the derivative of any of the first two equations we obtain:

\[\ddot{v}_{x,y} + \left(\frac{q B_0}{m} \right)^2 v_{x,y} = 0 \]

This is the homogeneous equation for a harmonic oscillator, with frequency \(\omega_c \equiv \frac{|q| B}{m} \). We call it the cyclotron frequency.

Integrating again we obtain

\[x = x_0 - i(v_\perp/\omega_c) [\exp(i \omega_c t + i \delta) - \exp(i \delta)] \] \hspace{1cm} (7)
\[y = y_0 \pm (v_\perp/\omega_c) [\exp(i \omega_c t + i \delta) - \exp(i \delta)] \] \hspace{1cm} (8)
\[z = z_0 + v_{z,0} t \] \hspace{1cm} (9)

The quantity \(r_L \equiv \frac{v_\perp}{\omega_c} \) is the Larmor radius or gyro-radius.

2.0.1 In conclusion:

- Uniform circular motion in \(\perp \);
- \(v_\parallel \) is constant \(\Rightarrow \) uniform motion in \(\parallel \);
- The frequency of the circular motion depends on the \(q/m \) ratio and the magnetic field intensity, \(B \);
- The radius of the trajectory is the ratio between the module of the velocity in the plane perpendicular to the magnetic field, \(v_\perp \), and the rotation frequency, \(\omega_c \).

2.1 Practice:

Let’s represent the movement of two imaginary particles, with \((q, m) \) values respectively \((-1, 1)\) and \((1, 10)\). For that we convert the Lorentz force equation in a system of first order differential equations,

\[\ddot{\vec{r}}(t) = \vec{v}(t) \] \hspace{1cm} (10)
\[\ddot{\vec{v}}(t) = \frac{q}{m} (\vec{E} + \vec{v}(t) \times \vec{B}) \] \hspace{1cm} (ode)

and we integrate this system to obtain the trajectories.

We start by importing some libraries...
In [1]: import matplotlib
 : import numpy as np

...we define some values common to all simulations,

In [2]: q, me, Mp, Bz = 1, 1, 10*me, np.array([0,0,1])

and write the (ode) system above in a function:

In [3]: def cteEB(Q, t, qbym, E0, B0):
 : """Equations of movement for constant electric and magnetic fields.
 :
 : Positional arguments:
 : Q -- 6-dimension array with values of position and velocity (x,y,z,vx,vy,vz)
 : t -- time value (not used here but passed by odeint)
 : qbym -- q/m
 : E0, B0 -- arrays with electric and magnetic field components
 :
 : Return value:
 : Array with dr/dt and dv/dt values."""
 :
 : v = Q[3:]
 : drdt = v
 : dvdt = qbym*(E0 + np.cross(v,B0))
 : return np.concatenate((v,dvdt))

All we need now is to define initial values, and solve this system in time to obtain
the trajectories. We use the odeint routine for the integration of first-order vector
equations, from the Scipy package. [Technical note: This routine is a call to lsoda
from the FORTRAN library odepack.]

In [4]: def computeTrajectories(func, E0=np.zeros(3), **keywords):
 : """Movement of electron and ion under a constant magnetic field.
 :
 : Positional arguments:
 : func -- the name of the function computing dy/dt at time t0
 : Keyword arguments:
 : E0 -- Constant component of the electric field
 : All other keyword arguments are collected in a 'keywords' dictionary
 : and specific to each func."""
 :
 : from scipy.integrate import odeint
 : global q, me, Mp, B0
 :
 : # Initial conditions
 : r0 = np.zeros(3) # Initial position
 : if "vi" in keywords.keys(): # Initial velocity
 : v0 = keywords["vi"]
 : else:
 : v0 = np.array([0,0,0])
Q0 = np.concatenate((r0,v0)) # Initial values

tf = 350; NPts = 10*tf
t = np.linspace(0,tf,NPts) # Time values

Integration of the equations of movement
Qe = odeint(func, Q0, t, args=(-q/me,E0,B0)) # "electron" trajectory
Qp = odeint(func, Q0, t, args=(q/Mp,E0,B0)) # "ion" trajectory

return Qe, Qp

We also define functions to compute the cyclotron frequency, Larmor radius and to visualize the trajectories, marking the starting and final points, using a 3D plotting package:

In [5]: wc = lambda m: q*B0[2]/m # cyclotron frequency
 rL = lambda m: np.sqrt(v0[0]**2+v0[1]**2)/wc(m) # Larmor radius

def plotTrajectories(re,rp):
 """Plot the trajectories and Larmor radius""
 import matplotlib.pyplot as plt
 from mpl_toolkits.mplot3d import Axes3D

 fig = plt.figure(figsize=(10,8))
 ax = fig.gca(projection='3d')
 # Legibility
 ax.set_title("Trajectories",fontsize=18)
 ax.set_xlabel("X Axis",fontsize=16)
 ax.set_ylabel("Y Axis",fontsize=16)
 ax.set_zlabel("Z Axis",fontsize=16)
 ax.text(17,15,0, "$\uparrow\, \vec{B}$", color="red",fontsize=20)
 ax.scatter(re[0,0],re[0,1],re[0,2],c='red')
 # Starting point
 ax.plot(re[:,0],re[:,1],re[:,2])
 # Electron trajectory
 ax.plot(rp[:,0],rp[:,1],rp[:,2])
 # Ion trajectory
 # Final points
 ax.scatter(re[-1,0],re[-1,1],re[-1,2],c='green', marker='>')
 ax.scatter(rp[-1,0],rp[-1,1],rp[-1,2],c='yellow', marker='<')

And we are ready to test our code:

In [7]: vz = 1 # Initial z-velocity
 v0 = np.array([0,1,vz]) # Initial particle velocity

 # we can already compute the cyclotron frequencies and Larmor radius
print('Cyclotron frequencies Larmor radius
we= {}, wp= {}
 rLe= {}, rLp= {}'.format(wc(me),wc(Mp),rL(me),rL(Mp)))

 # And now the trajectories...
re, rp = computeTrajectories(cteEB, vi=v0)
plotTrajectories(re,rp)

Cyclotron frequencies Larmor radius
we= 1.0, wp= 0.1 rLe= 1.0, rLp= 10.0
3 $\vec{E} \neq \vec{0}$, constant

Let’s take $\vec{E} = E_{\perp} \vec{u}_\perp + E_{\parallel} \vec{u}_z$. From the Lorentz force equation, we obtain

$$\dot{v}_x = \frac{q}{m}(E_x + v_y B_0) \quad (11)$$
$$\dot{v}_y = \frac{q}{m}(E_y - v_x B_0) \quad (12)$$
$$\dot{v}_z = \frac{q}{m}E_z \quad (13)$$

In the direction parallel to \vec{B}, we just have the free-fall in the electric field:

$$v_\parallel = \frac{q}{m}E_{\parallel}t + v_{\parallel,0}.$$

In the plane \perp to \vec{B}, making the substitution $v'_x = v_x - E_y/B_0$, $v'_y = v_y + E_x/B_0$, we obtain for v'_x, v'_y the same equations as in the previous case! Or if we want to proceed in a more formal way, we take again the derivative of any of the first two equations we obtain the inhomogeneous equation for a harmonic oscillator,

$$\ddot{v}_{x,y} + \omega_L^2 v_{x,y} = \frac{q^2 E_{y,x}}{\omega_L^2 B},$$

whose solution is the solution for the homogeneous case plus a particular solution $\Rightarrow \vec{v}_\perp$ has a Larmor movement with a drift: $v_\perp = v_\odot + v_d$.

How to compute v_d?
If we average the Lorentz force over many gyroperiods, the average acceleration is zero and the only velocity component left is v_d:

$$0 = \frac{q}{m}(\vec{E} + \vec{v}_d \times \vec{B}).$$

Taking the cross product with \vec{B} and using the vector formula in the appendix, we finally obtain

$$\vec{v}_d = \frac{\vec{E} \times \vec{B}}{B^2}.$$

3.1 Summary

- The drift is \perp both to \vec{E} and \vec{B};
- On the same direction for electrons and ions \Rightarrow no net current!;
- The drift is independent of m, q and v_\perp.

- Exercise: What is the \vec{E}_\perp field in an inertial frame moving with \vec{v}_d? (Hint: use the Lorentz transformation for an electromagnetic field.)

3.2 Practice:

We can easily extend the previous example to include a constant electric field. To confirm that the guiding center moves along the direction of v_d, we draw a red line along v_d. It is also interesting to see what happens with the kinetic energy and the Larmor radius and we add two more figures for these values.

We include one more library to allow us to interact with the script and we leave the rendering of the figure to an external script.

```python
In [8]: from IPython.html.widgets import interact

import plotEB

modv = lambda v: np.sqrt((v[:,0])**2+(v[:,1])**2) # u-perpendicular
v2 = lambda v: v[:,0]**2+v[:,1]**2+v[:,2]**2

def crossEB(Exy=0, Ez=0, angle=320):
    global q, me, Mp, B0
    E0 = np.array([Exy,Exy,Ez])
    re, rp = computeTrajectories(cteEB, E0) # We use the same routine!
    vd = np.cross(E0,B0)/np.dot(B0,B0) # ud = (EXB)/(B|B)
    t = np.arange(re.shape[0])/10
    rd = np.array([t,vd[0]*t,vd[1]*t]).T # drift trajectory
    # Larmor radius
    rLe = me/q*modv(re[:,3:])|B0[2]; rLp = Mp/q*modv(rp[:,3:])|B0[2]
    We = me/2*v2(re[:,3:]); Wp = Mp/2*v2(rp[:,3:]) # Kinetic energy
    # Plot the trajectories and Larmor radius
    plotEB.plot3d(re, rp, rd, rLe, rLp, We, Wp, angle)

dummy = interact(crossEB, Exy=(0,1), Ez=(0,0.2), angle=(180,360))
```
4 General force, \vec{F}

The result above can be generalized for any constant and uniform force such that $\vec{F} \cdot \vec{B} = 0$:

$$\vec{v}_d = \frac{\vec{F} \times \vec{B}}{qB^2}$$

In particular, for the gravitational field, we have a drift $v_g = \frac{m \vec{g} \times \vec{B}}{qB^2}$. In this case the direction of drift depends on the signal of $q \Rightarrow$ for positive and negative charges, we have a current!

The velocity of any particle can be decomposed in three components:

$$\vec{v} = \vec{v}_\parallel + \vec{v}_d + \vec{v}_L$$

5 Appendix - Useful vector formulae

$$\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{A} \cdot \vec{B})\vec{C}$$

References

