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Thesis to obtain the Master of Science Degree in

Engineering Physics

Supervisor: Prof. Dr. Ilı́dio Pereira Lopes

Examination Committee

Chairperson: Prof. Dr. José Pizarro de Sande e Lemos
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Resumo
Modelos computacionais e analı́ticos prevêem vários mecanismos de transporte de momento angu-

lar(AM) e de mistura de elementos-quı́micos capazes de descrever a fı́sica dos interiores estelares. No

entanto, medições recentes da rotação do núcleo de gigantes vermelhas(RGB) disponibilizas pela missão

Kepler, apontam um possı́vel mecanismo de transferência AM em falta na actual teoria.

Na primeira parte, utilizamos o código de evolução estelar MESA para calcular modelos de uma estrela

de baixa-massa com rotação(KIC8579095) desde idade-zero-da-sequência-principal(ZAMS) até ao RGB.

Incluimos o transporte de AM e a mistura-quı́mica devido a campos magnéticos em zonas radiativas, us-

ando o Tayler-Spruit dı́namo e a recente revisão,Fuller-Formalism, que mostrou resultados promissores.

Fazemos também uso do código de pulsações,GYRE, para continuar a estudar estes mecanismos usando

asteroseismologia. Verificamos que apenas os modelos que incluem o Fuller-formalism para o transporte

AM foram capazes de prever as taxas de rotação do núcleo observadas na RGB.A eficiência do transporte

de AM aumenta com a inclusão da mistura-quı́mica, apesar da mistura induzida pelo Fuller-formalism ser

extremamente pequena, como esperado.

Na segunda parte, testámos a eficiência do transporte AM com o Fuller-formalism para diferentes

parâmetros iniciais.Encontrámos modelos particularmente sensı́veis a variações no parâmetro-α e na massa

inicial, mas menos à metalicidade e ao overshooting. Por último, utilizando uma amostra de 1093 estre-

las sequência-principal(MS) até ao aglomerado-vermelho(RC) entre 1-2M�, modelámos uma estrela com

1.5M� usando Fuller-formalism e comparámos os resultados obtidos com observações asterosı́smicas.

Verificámos que é necessária uma gama mais ampla para o parâmetro-α[0,5;5] reproduzir as medições na

RGB e RC.

Palavras-chave: Asterosismologia; estrelas; gigante vermelha; rotação; momento angular
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Abstract
Computational and analytical models predict several mechanisms of transport of angular momentum(AM)

and of chemical-mixing capable of describing the physics in star’s interiors. Nonetheless, recent measure-

ments of core rotation rates of red-giants(RGB) stars enabled by the Kepler mission, indicate a possible

missing AM transfer mechanism in the current theory of stellar interiors.

In the first part, we use the Modules for Experiments in Stellar Astrophysics(MESA) code to compute

models of a low-mass rotating star(KIC8579095) from the zero-age-main-sequence(ZAMS) to the RGB. We

include transport of AM and chemical-mixing due to magnetic fields in radiative zones, using the Tayler-

Spruit dynamo and the recent revision,Fuller-formalism, which has showed very promising results for RGB

models. We use the pulsation code,GYRE, to further study this mechanisms using asteroseismic observ-

ables.We find that only the models including the Fuller-formalism were able to predict the RGB observed

core rotation rates. The efficiency of transport of AM increases with inclusion of mixing, despite the Fuller-

formalism mixing being extremely small as expected.

In the second part, we tested the efficiency of AM transport of Fuller-formalism models with different

input physics. We found models particularly sensible to variations in the free α-parameter and initial-mass,

but less to metallicity and overshooting.Lastly, using a sample of 1093 stars from main-sequence(MS) to

red-clump(RC) with 1-2M�, we modeled a typical star with a mass of 1.5M� using the Fuller-formalism and

compared the results with asteroseismic observations. We found that a wider range for α-parameter[0.5;5]

is needed to reproduce the measurements of RGB and RC stars.

Keywords: Asteroseismology; stars; red giant; rotation; angular momentum

ix



x



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical background 7

2.1 Stellar evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Equations of stellar evolution of rotating stars . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Stellar Pulsations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Hydrodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Equations of Linear Stellar Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Asymptotic theory of stellar oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Asteroseismic diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Impact of rotation on oscillation frequencies . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Rotation and Angular momentum 23

3.1 Impact of rotation in the stellar structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Transport processes in stellar interiors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Evolution of angular momentum transport . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Evolution of processes of chemical mixing . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Tayler instability and dynamo formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Spruit prescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Fuller-formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 KIC 8579095: Stellar models with transport of angular momentum 33

4.1 Process of star selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Stellar models and input physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Calibration process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Modeling rotation-induced mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Computation of stellar oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



5 KIC 8579095: Impact of rotation in stellar models with transport of angular momentum 41

5.1 Angular momentum transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Rotation-induced chemical mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Asteroseismic diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Asteroseismic constraints on angular momentum transport models 51

6.1 Asteroseismic constraints on rotation rates along stellar evolution . . . . . . . . . . . . . . . . 51

6.2 Impact of input parameters in rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Constraining the α parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusions 61

7.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 63

A Impact of rotation in the stellar structure 69

B Radial and horizontal eigenfunction displacements 73

xii



List of Figures

1.1 HR diagram of different classes of pulsating stars following the nomenclature used by Aerts et

al. (2010). The solid black lines and the black dotted line correspond to standard evolutionary

tracks, with initial masses and timescales as indicated. The gray lines represent the classical

instability strip borders. The hatching linestyle used marks the dominant type of oscillation

mode in each class: // for gravity modes and //for pressure modes. Figure produced by
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Chapter 1

Introduction

Stars are the building blocks of the Universe. Our current knowledge of stars, planetary systems, galaxies

and the Universe is only possible due to light received from them. The production of nearly all chemical

elements in the Universe occurs in stellar interiors, hence stars are responsible for the dynamical and

chemical evolution of galaxies, planetary systems and of any potential form of life.

For most subjects in astrophysics, computational models of stellar structure and evolution are needed,

and are required to have remarkable precision to test theoretical predictions against the ever more precise

observations. In 1926, Arthur Eddington wrote in his paper The Internal Constitution of the Stars: ”At first

sight it would seem that the deep interior of the Sun and stars is less accessible to scientific investigation

than any other region of the Universe. [...] Our telescopes may probe farther and farther into the depths of

space; but how can we ever obtain certain knowledge of that which is hidden beneath substantial barriers?

[...] What appliance can pierce through the outer layers of a star and test the conditions within?” – Eddington

(1926). The answer to this question would later be unveiled through the field of Asteroseismology.

1.1 Motivation

More than 400 years ago, in 1596, David Fabricius discovered the first known periodic variable star, named

Mira, that disappeared and reappeared from the sky every ∼ 11 months. Nowadays, we know pulsating

stars populate a large portion of the Hertzsprung-Russel (HR) diagram. Several types of pulsators have

been identified in terms of the type of excited pulsation mode, mass and evolutionary state (temperature

and luminosity) as can be seen in figure 1.1.

Due to its proximity to the Earth, the interior structure of the Sun is the most studied so far. The field

of helioseismology has brought unprecedented resolution to the solar surface, with the observations of mil-

lions of pulsation modes (e.g., Christensen-Dalsgaard 2002).The frequencies of oscillation modes observed

in the surface of individual stars are dependent on physical properties of the stellar interiors. Stellar nucle-

osynthesis and other physical processes (e.g., mixing and diffusion) that have crucial impact in the structure

and course of evolution of stars predominately take place in deep stellar interiors. Hence, observations of
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Figure 1.1: HR diagram of different classes of pulsating stars following the nomenclature used by Aerts et
al. (2010). The solid black lines and the black dotted line correspond to standard evolutionary tracks, with
initial masses and timescales as indicated. The gray lines represent the classical instability strip borders.
The hatching linestyle used marks the dominant type of oscillation mode in each class: // for gravity modes
and //for pressure modes. Figure produced by Péter Pápics, adapted from Aerts (2021).

the time-dependent light output from variable stars on timescales shorter than evolutionary changes show

that they can be used to learn about these important physical processes, something unachievable to other

methods. Asteroseismology thus uses theoretical models to predict eigenfrequencies based on the current

knowledge of stellar structure, and matches the obtained values to the observations.

The pulsation modes identified in stellar surfaces are originated by waves propagating in stellar interiors,

analogously to sound waves resonating in musical instruments. The simplest normal modes that stars can

pulsate in are radial modes, where the star expands and contracts in a periodic motion. In nonradial modes

some parts of the star move up while others are going down periodically, changing the stars’ shape and

breaking spherical symmetry. The two major restoring forces for stellar oscillations are the pressure and

buoyancy. For radial motion (known as p-modes) the pressure acts as the main restoring force, whereas

for predominately horizontal motion (known as g-modes), gravity acts through buoyancy, similar to how

horizontally propagating waves are generated when throwing a stone into a pond (Handler 2013).

2



Figure 1.2: HR diagrams showing populations of stars with detected solar-like oscillations by CoRoT and
ground-based telescopes (left) and by Kepler (right). The large dark blue circles correspond to MS stars.
The light blue and dark green circles are stars located in the SGB. The light green, yellow, orange and red
circles are stars in the RGB. Adapted from Chaplin and Miglio 2013.

After Ledoux (1951) analysis, ground-based observatories intensively searched for nonradial oscilla-

tions in pulsating stars during half century. The search for solar-like oscillations further intensified after the

predictions published by Kjeldsen and Bedding (1995), that led to the first definite discovery of solar-like

oscillations in a star other than the Sun (Kjeldsen et al. 1995).

In the past decade, space missions dedicated to asteroseismology revolutionized the understanding

of pulsating stars. With the assembly of long-duration photometric data came an unprecedented quality

regarding the total length of the timeseries, the signal to noise ratio, and the number and range of observed

stars. Oscillation frequencies can now be measured directly from data with a precision of 0.001% for p-

modes of low-mass stars and 0.1% for g-modes of intermediate mass stars (Aerts et al. 2019).

The first space mission dedicated to asteroseismology and launched in 2003 was Canada’s MOST mis-

sion (Microvariablity and Oscillations of STars; Walker et al. 2003). In 2006, the French-led CoRoT mission

(Convection, Rotation, and exoplanetary Transits; Baglin et al. 2007) was launched into a low-Earth orbit to

monitor numerous nonradial pulsators and search for exoplanets. A major success of this mission was the

first discovery of nonradial oscillations in hundreds of red giant stars (Hekker et al. 2009) which opened up

the field of red giant seismology. Nonradial oscillations are capable of probing the deepest interiors of stars,

and after this mission, have now been identified in almost all stellar mass ranges (see figure 1.2), finally

bringing observational constraints to the study of stellar interiors (see e.g., Aerts 2021).

The NASA Kepler mission was launched in 2009 (Koch et al. 2010, Borucki et al. 2010) with almost 100

times better precision for the oscillation frequencies than CoRoT, and with a low noise level enabling the

detection of l = 3 modes. Thanks to the Kepler mission there is an overwhelming amount of precision data
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(around 14 000 red giants; see figure 1.2) which will bring more validation to the theory of stellar oscillations

and to stellar structure models.The Kepler space telescope has also made huge contributions to the field of

exoplanets, providing over 5 100 exoplanet candidates.

Currently, the ongoing NASA TESS space mission (Transiting Exoplanet Survey Satellite; Ricker et al.

2014) is scanning almost the entire sky and delivering high-precision space photometry for millions of stars, a

larger sample than Kepler, but at the cost of less precision in asteroseismic oscillation frequencies. The ESA

PLATO mission (PLAnetary Transits and Oscillations of stars; Rauer et al. 2014), expected to be launched

in 2026, will survey an even larger amount of stars (bringing up to a million the number of main-sequence,

subgiant and red giant stars data) with higher precision than previously provided by CoRoT and Kepler.

The observation of solar-like oscillations in red giant stars from CoRoT and Kepler has led to numer-

ous breakthroughs, since important internal physics; such as convective overshooting, angular momentum

transport and rotational mixing – are more pronounced in evolved stars as they accumulate with time. The

red giant phase happens after the core hydrogen depletion, and hydrogen-burning starts in the shell sur-

rounding the core. These stars are brighter and have longer oscillation timescales from a few hours to

months (Huber et al. 2011; Mosser et al. 2012). Kepler ’s detection of g-mode period spacings in a red giant

(Beck et al. 2011), and the discovery of gravity-dominated mixed modes in red giants (Bedding et al. 2011)

revealed the ability to probe both the inner and outer regions of stellar interiors in this stars, depending on

their predominant g- or p-mode nature. Those observations also provided a clear separation between hy-

drogen shell burning and helium core burning stars. Kepler’s measurements of rotational splittings of dipole

mixed modes led to the determination of internal rotation profiles in evolved stars. Slower core rotation in

red giant stars was found contrary to model predictions (Beck et al. 2012), highlighting some inaccuracies

in the current description of internal angular momentum transport (Mosser et al. 2012).

Rotation should be viewed as a phenomenon that dominates the course of stellar evolution at particular

stages, and not always as a side effect of stellar evolution, as there is a vast amount of evidence of rotational

effects from spectroscopy, interferometric observations, chemical abundance determinations, and recently

asteroseismology (e.g., Maeder 2009). In fact, space asteroseismology has the possibility to uncover the

hidden physics behind the internal transport of angular momentum and chemical mixing processes in ra-

diative zones of stars. At the moment, there are two major promising theories. Either angular momentum

transport by internal gravity waves (IGWs; e.g., Rogers et al. 2013) or by instabilities due to magnetic fields

as proposed by Spruit (2002) and reformulated by Fuller et al. (2019). Both theories are still incomplete and

there is currently no scientific consensus.

1.2 Objectives

It is known from literature that internal diffusive transfer processes, angular momentum transport and mixing

of chemical elements, influence the course of stellar evolution and structure (e.g., Maeder 2009). The

search for the missing mechanism that could explain the differences between theory and asteroseismic
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measurements is still a topic of debate, hence the focus of many studies is usually around finding the

most efficient mechanisms. Our first goal consists on understanding the impact of different prescriptions of

angular momentum transport, such as hydrodynamic instabilities (Heger et al. 2000) and magnetic torques

by Spruit 2002 (Tayler-Spruit dynamo) and by Fuller et al. 2019 (recently referred as Fuller-formalism), in

the stellar evolution and structure of low mass red giant stars.

The rotation-induced chemical mixing in stellar interiors is also an open topic since observations have

revealed discrepancies in computational models. We incorporate, for the first time, chemical mixing due

to the Fuller-formalism, using the coefficient derived by Fuller et al. (2019) with the goal to compare its

efficiency with the Tayler-Spruit dynamo and with hydrodynamic instabilities, and to understand its impact in

the chemical abundance profile of the models. Asteroseismic variables are a great tool to infer the properties

of stellar interiors, hence we aim to compute the mode oscillations frequencies of our previous calculated

models to better comprehend the effects of this transfer processes and attest if those effects are visible

enough to be detected in asteroseismic observations.

The Fuller-formalism is one of the current best candidates to explain the transport of angular momentum

in radiative interiors. However, the free parameter in this theory has received some attention (Eggenberger et

al. 2019; den Hartogh et al. 2020) since it shows some incompatibilities at some evolutionary stages. Using

up-to-date asteroseismic inferred rotational splittings, we want to extend the knowledge on this formalism by

testing its sensibility to different input parameters. It is also our objective to constraint the free parameter of

this formalism, by establishing an upper and lower limit to reproduce the large range of core rotation rates

of the stars, from the main-sequence to the red clump, in our sample.

1.3 Thesis Outline

In this chapter (Chapter 1) we introduce our topic of study and the context of this subject in the current

astrophysics research. We also summarize the objectives for this thesis and list its structure, as follows.

Chapter 2 introduces the theoretical background for the work presented in this thesis. In Section 2.1,

we start by describing the stellar evolution, from the process of star formation until the cooling white-dwarf

phase. Next, we lay out the basic equations used to model the structure evolution of rotating stars. In

Sections 2.2 and 2.3, we take a close look at the theory for stellar oscillations and at the used approximations

to arrive at the asymptotic expressions that describe with a good level of accuracy the mode behavior found

in observed stellar oscillation spectra.

Chapter 3 summarizes the state-of-the-art on rotation in stellar interiors. Section 3.1 briefly describes

the impact of rotation on the stellar surface and interior. In Section 3.2 we describe the most important

mechanisms of transport of angular momentum and rotationally-induced chemical mixing, along with their

capacity to probe current observations, and their implementation in current stellar evolution codes. Section

3.3 is dedicated to explain the Tayler-Spruit dynamo and Fuller-formalism.

In Chapter 4 we display the observational spectroscopic and asteroseismic data used to constraint our
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numerical models and we describe the methodology used in this work. In Chapter 5 we first discuss the

impact of different implementations of angular momentum transport on a red giant model (Section 5.1). We

also include models with different mechanisms of rotation-induced chemical mixing in Section 5.2. In Section

5.3 we tested the effects of the Tayler-Spruit dynamo and Fuller-formalism in the asteroseismic parameters,

dipole mode period spacing and rotational splitting, and on the eigenfunctions.

In Chapter 6 we started by gathering a significant amount of measured rotational splittings for stars in

the range 1-2 M� from the main-sequence to the red clump stage (Section 6.1). In Section 6.2 we test the

variability of the models for several input parameters using the Fuller-formalism prescription for transport of

angular momentum. At last, we find new constraints for the initial rotation period and free parameter of this

mechanism (Section 6.3).

In the last chapter (Chapter 7), we outline our results, present our conclusions and make suggestions for

future work in this subject.
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Chapter 2

Theoretical background

This chapter presents the theoretical background for the work performed in this thesis. The chapter starts

with a brief description of the stellar evolution process, from the beginning of star formation until the white

dwarf phase of stars with masses around 1.5 M�, including rotation effects in the stellar structure equations.

Next, we focus on the theoretical foundation for the study of stellar oscillations, discuss the asymptotic theory

and finish with a summary of the observational and theoretically derived impact of rotation on oscillation

frequencies.

2.1 Stellar evolution

The generally accepted theory of star formation states stars are formed inside large dense interstellar molec-

ular clouds, that have between 105-106 solar masses and diameters of about 50 pc with temperatures typi-

cally around 15 K (e.g., Carroll and Ostlie 2007). As a part of the interstellar medium (ISM), these clouds are

rich in hydrogen (H), helium (He) and contain more or less heavier elements depending on the population

type of its surroundings. The interstellar medium components constitute the remains from which new stars

are born and severely determine the course of stellar evolution. During a star’s lifetime, part of its constituent

matter is returned to the interstellar medium (e.g., through stellar winds, supernovae) from which future star

generations will form, restarting a new star formation cycle.

Star formation is triggered when these massive clouds of gas become gravitationally unstable and in-

duce collapse, fragmenting into smaller parts. Rotation enhances this fragmentation process. The angular

momentum embedded in the original cloud is conserved as time evolves, thus the fragments rotate faster

as they further contract, until a break-up velocity is reached. To form future rotating stars, preventing fur-

ther contraction or fragmentation, angular momentum has to reduce by a factor of 105-106 (Maeder 2009).

This is sustained by an evacuation of angular momentum, progressively forming an accretion disc, that will

constitute future planetary systems.

The contraction takes place on a dynamical timescale, as the gas is free falling towards the center of

the cloud. The gravitational potential energy is successively transformed into thermal energy and radiation,

increasing the density and pressure in the center, consequently increasing the opacity of the cloud. With
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increasing thermal energy generation, the temperature begins to rise, entering the stage where the cloud is

considered a protostar (e.g., Kippenhahn et al. 2013), mainly composed of molecular hydrogen (pre main-

sequence phase, pre-MS, in figure 2.1).

With further contraction, eventually, the temperature in the core reaches a point where ignition of hydro-

gen fusion is possible (if the mass exceeds 0.08 M�; Carroll and Ostlie 2007), and a star is ’born’. The

process of stellar evolution begins in the so-called zero age main-sequence (ZAMS) phase. At this stage,

the contraction stops and the star enters the main-sequence (MS) evolution (figure 2.1), where there is a

balance between the nuclear energy generation and the energy radiated through the surface. The star set-

tles into hydrostatic equilibrium, and its structure changes with time mainly due to alterations in the chemical

composition from the nuclear reactions.

Throughout the different evolutionary phases, changes in the star take place on different timescales. In

the main-sequence, evolution is mainly governed by three basic timescales (e.g., Christensen-Dalsgaard

2021). The previously mentioned dynamical timescale corresponds to the star’s reaction in response to loss

of hydrostatic equilibrium, the time it would take a star to collapse if the pressure counterbalancing gravity

were removed, and may be estimated as

τdyn =

(
R3

GM

)1/2

' 30 min

(
R

R�

)3/2(
M

M�

)−1/2

, (2.1)

where G is the universal gravitational constant, M and R are the stellar mass and radius, respectively. The

thermal or Kelvin-Helmholtz timescale is associated with the time in which a star would radiate away all its

thermal energy if the nuclear reactions in its core ceased, so thus,

τKH =
GM2

RL
' 3× 107 year

(
M

M�

)2(
R

R�

)−1(
L

L�

)−1

, (2.2)

where L is the luminosity of a given star. Lastly, the nuclear timescale refers to the time in which a star would

radiate away all the energy released from the nuclear reactions. It can be estimated by the time in which

all the hydrogen in the core turns into helium, in other words, the time a star spends in the main-sequence

phase,

τnuc = 7× 10−4 Mc2

L
' 1010 year

(
M

M�

)(
L

L�

)−1

, (2.3)

where the denominator is the energy released by nuclear fusion, with c the speed of light in vacuum.

The Sun has an estimated nuclear timescale of the order of 10 billion years, much longer than its thermal

and dynamical timescale, of 10 million years and half an hour, respectively (τnuc � τKH � τdyn; Kippenhahn

et al. 2013). Hence there is a higher probability of observing stars in the main-sequence, as they spend most

of their lives in this stage. As a star switches from nuclear sources, and there is a departure from hydrostatic

equilibrium, τKH and τdyn become relevant again, and as a consequence, later stages of evolution proceed

more rapidly.

The energy production process occurring during the main-sequence phase highly depends on the chem-

ical composition as well as on the initial mass of stars. Following the convention in Karttunen et al. 2007,
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for lower mass stars, roughly lower than 1.5 M� (e.g., the Sun), the central temperature is lower than for

massive stars, so hydrogen is fused into helium via proton-proton (pp) chains:

4 1H → 4He + 2e+ + 2νe , (2.4)

releasing 26.73 MeV per nuclear reaction (Carroll and Ostlie 2007), where e+ denotes a positron and νe

denotes the electron neutrino. Stars with masses above 1.5 M� reach higher temperatures in their cores,

thus the dominant energy production mechanism is the Carbon-Nitrogen-Oxygen (CNO) cycle. This mech-

anism consists of successive reactions using isotopes of C, N and O as catalysts to convert H into 4He.

The CNO cycle is strongly dependent on the temperature (εCNO ∼ T 17, Carroll and Ostlie 2007) hence its

energy production is highly concentrated in the core. In massive stars interiors the temperature gradient is

too steep that it reaches the physical limit, known as Schwarzschild criterion, where energy transport can

no longer be sustained by radiation consequently becoming convectively unstable. Therefore, convection

assures an efficient transport of energy and mixing of the internal composition in the core of those stars, in

contrast with their envelope where there is no fusion so energy is carried trough radiation. In lower mass

stars the opposite configuration is established – where radiative core is surrounded by a small convective

envelope (e.g., Karttunen et al. 2007).

The end of the main-sequence phase is marked by the complete depletion of hydrogen in the core and is

proceeded by the H-burning shell phase, as the requirements for helium burning in the core are not met yet.

This transition takes place gradually in lower mass stars. Since the conditions in the core significantly impact

the structure and evolution forward, our focus will be solely on the evolutionary path of stars with masses

around 1.5 M� with radiative cores (as in Karttunen et al. 2007). Without central nuclear reactions the stellar

core contracts and consequently releases gravitational potential energy. The temperature increases in the

shell surrounding the core, which incites more nuclear reactions in that region and the total stellar luminosity

rises. The build up pressure due to radiation will cause the envelope expansion and cool down, resulting in

a decrease of the star’s effective temperature. As follows, the star enters the subgiant branch (SGB) and it

continues to move almost horizontally (to the right) in the HR diagram illustrated in figure 2.1.

As the convective envelope expands due to the increase of photospheric opacity at lower surface tem-

peratures, the star reaches a limit where, in order to maintain hydrostatic equilibrium, has to evolve towards

larger luminosities (e.g., Hekker and Christensen-Dalsgaard 2017). In this stage, the star begins to move

upwards in the HR diagram, entering the so-called red giant branch (RGB). The mass of the inert degen-

erate helium core gradually increases with the deposit of helium from the H-burning happening in the shell,

increasing its density. The central temperature and pressure also increase, boosting the energy generation

in the shell.

Eventually the temperatures in the core reaches approximately 108 K and densities of 107 kg m−3, suffi-

cient to trigger the triple-alpha (3-α) process – which generates 12C from the fusion of three alpha particles

and additionally generates 16O through a secondary reaction. Fusion initially takes place in the degener-

ate helium core that is essentially independent of temperature as it rises. The unstable burning conditions
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Figure 2.1: HR diagram showing the evolution of a MESA model with 1.5 M� at solar metallicity. The illus-
trated evolutionary track starts in the pre-main sequence (pre-MS, blue) phase, passing through the zero
age main-sequence (ZAMS) entering in the main-sequence (MS, pink) phase. The model then evolves
along the subgiant branch (SGB, purple) and up the red giant branch (RGB, red) until it enters the asymp-
totic giant branch (AGB, green). The post asymptotic giant branch (post-AGB, yellow) is followed by the
white dwarf (WD) cooling sequence which is not represented.

result in a tremendous amount of energy being released in a matter of seconds. This run-away process

is called helium flash, and the luminosity generated by the He-burning core reaches values in the order of

1011 L� (Carroll and Ostlie 2007). Stellar models predict subsequent smaller sub-flashes towards the center

ultimately lifting the degeneracy in the core, and the star recovers equilibrium with He-burning in the center.

Once helium has exhausted in the core, the star enters the thermally pulsating phase in the asymptotic

giant branch (AGB), where helium quasi-periodically ignites in the shell around the degenerate carbon-

oxygen core, an aftereffect of the deposit of ashes from H-burning in upper shells. These intermittent helium

shell flashes lead to the loss of large amounts of mass from the stellar envelope and cause abrupt changes

in the surface luminosity along the asymptotic giant branch. The mass lost will latter constitute the so-called

planetary nebula that will be, ultimately, dispersed into the interstellar medium (e.g., Karttunen et al. 2007).In

the center, for this particular mass range, the conditions for carbon fusion are never met, thus the carbon-

oxygen core contracts to a radius comparable to the Earth radius, remaining in a compact and extremely

hot degenerate core, called a white dwarf (WD) (e.g., Kippenhahn et al. 2013).
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2.1.1 Equations of stellar evolution of rotating stars

Stellar evolution codes usually assume spherical symmetry when computing structures of non-rotating non-

binary stars without the presence of strong magnetic fields. This approximation allows to produce with

high accuracy one dimensional (1D) stellar evolution and structure models characterized by one spatial

coordinate (e.g., mass in the Lagrangian formalism) and time. However, since it is highly likely that all

stars rotate (the molecular clouds from which they originate have acquired angular momentum), it is often

important to consider rotation in stellar models. Rotation not only warps the equilibrium configuration (as

we will see in this chapter), but it also triggers various phenomena such us internal circulation motions,

hydrodynamic instabilities and mass loss, that ultimately lead to enrichment of a number of different elements

on the stellar surface due to chemical mixing and transfer of angular momentum in stellar interiors, latter

discussed in chapter 3.

The inclusion of rotation in stellar modeling (e.g., see Tassoul 1978; Maeder 2009) inherently implies

a departure from spherical symmetry, requiring a 3D numerical approach to solve the full stellar structure

equations. Currently, there are still many challenges implementing rotation using 2D (e.g., Rieutord et al.

2016) and 3D (e.g., Turcotte et al. 2004) methods, hence many widely used stellar evolution codes resort

to 1D modeling by considering the so-called shellular approximation introduced by Zahn (1992). One writes

the angular velocity Ω as

Ω(r, θ) = Ω(r) + Ω̂(r, θ) , (2.5)

with θ the colatitude, which is the complementary angle of a given latitude, Ω is the angular velocity of a

rigidly-rotating shell, and Ω̂ is the second order term to account for higher rotation velocities, defined in

terms of the Legendre polynomials (e.g., see Maeder 2009).

Current models assume radial differential rotation, so that the core is rotating faster than the outer con-

vective envelope. Consequently strong anisotropic turbulence develops in radiative regions with motion

more vigorous in the horizontal direction erasing the existent compositional inhomogeneities along isobaric

surfaces. The motion is much weaker in the vertical direction considering that the stable thermal gradient

suppresses the fluid motions. Hence, the angular velocity profile depends very weakly on latitude and is

almost constant on isobars Ω � Ω̂ (shellular approximation; Zahn 1992). The last term in equation (2.5) is

to account for cases of extreme rotation velocities, which will not be considered in the following derivation(
Ω(r) = Ω(r)

)
.

In this approach, the total potential Ψ is constant over isobaric surfaces, which differ from spherical shells.

The total potential writes as a sum of the gravitational potential and the potential from which the centrifugal

acceleration derives,

Ψ = Φ− 1

2
Ω2r2 sin2 θ = const. (2.6)

(e.g., Endal and Sofia 1976; Meynet and Maeder 1997; Maeder 2009) where in the Roche approximation,

the gravitational potential of the mass Mr inside radius r is assumed not distorted by rotation, such that Φ is
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given by the Newtonian potential Φ = −GMr/r. In the Roche model the inner layers are assumed spherical,

giving the same external potential as if the total mass of the star was concentrated at the center, which is

a good approximation to real stars as most of their mass is highly condensed in the core. The centrifugal

force term in equation (2.6) is what causes the deviation from the spherical symmetry in rotating stars. For

rapid rotators one should expect a strong distortion, since it varies with Ω2. For slow to moderate rotators

the deformations in the stellar structure remain fairly negligible, nonetheless there is still a small distortion

to be taken into account.

In literature, a criteria often used to establish whether the effects of rotation are significant is comparing

the actual star’s rotation velocity with its critical velocity. This last one, also called break-up velocity, is

reached when the modulus of the centrifugal force becomes equal to the modulus of the gravitational force

in the equatorial plane. The classical expression for the critical velocity at the equator (θ = π/2) is then

Ωe,crit =

√
GM

R3
e,crit

, (2.7)

(e.g., Heger et al. 2000) where Re,crit is the equatorial radius at break-up. The critical velocities grow with

stellar masses (as the associated increase in stellar radius is small),and with lower metallicities (since their

radii are smaller). Ultimately, the effect of rotation in the stellar surface (e.g., equatorial radius) is only visible

in cases where the rotational velocity is notably close to the critical velocity. Maeder (2009) saw that up to

Ω/Ωcrit = 0.7 the increase of the equatorial radius is inferior to 10%.

The stellar structure equations for rotating stars implemented in several widely used stellar evolution

codes, such as the Modules for Experiments in Stellar Astrophysics (MESA; Paxton et al. 2013, 2019),

make use of the shellular approximation (following the approach of Meynet and Maeder 1997) and take into

account effects of centrifugal acceleration (Kippenhahn and Thomas 1970; Endal and Sofia 1976).

The equation of continuity preserves the same form as for a non-rotating star, by re-defining the radius

coordinate as the volume-equivalent Vp = 4πr3
p/3 radius rp of an isobar Sp:

∂ rp
∂mp

=
1

4πr2
pρ

, (2.8)

where ρ is the density and mp the mass enclosed by the surface area Sp.

The equation of motion or momentum balance can be derived from the hydrostatic equilibrium equation

∇p = ρ geff , where the effective gravity geff cannot be defined as in the conservative potential case, and is

otherwise defined as

geff =

(
−GMr

r2
+ Ω2r2 sin2 θ , Ω2r sin θ cos θ , 0

)
. (2.9)

∂p

∂mp
= −Gmp

4πr4
p

fP −
1

4πr2
p

(
∂2rp
∂t2

)
mp

, (2.10)

is the equation of motion where ∂2rp/∂t
2 is the inertia term, which must vanish to regain 1D hydrostatic

equilibrium. This modified equation of motion describes the pressure p evolution in each isobaric layer of
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the star and the influence of rotation is described by the form factors

fp =
4πr4

p

GMpSp

1〈
g−1

eff

〉 and fT =

(
4πr2

P

SP

)2
1

〈geff〉
〈
g−1

eff

〉 , (2.11)

where geff ≡ |geff | with geff the effective gravitational acceleration normal to Sp and the averages are per-

formed over each isobar (Meynet and Maeder 1997). The quantities fp and fT reduce to 1 in non-rotating

models, differing from 1 the most in the outer stellar layers of fast rotators.

The energy transport equation that describes how energy is transported at each layer of the star, can be

written as
∂T

∂mp
=
GmpT

4πr4
P p
∇ , (2.12)

where T is the temperature and ∇ ≡ ∂ lnT/∂ ln p is the temperature gradient, a quantity that is used to test

whether a zone is stable or unstable against convection. From a computational perspective, the calculation

of the energy transport in stellar interiors needs to be divided into radiative and convective zones.

In the case of radiative transfer located in stellar atmospheres, the problem is non-trivial and it must be

solved in combination with the hydrodynamic equations. In stellar interiors a diffusion approximation to the

radiative transfer is adequate, owing to the very short photon mean free path in comparison to the length

scales of stellar structure variations (Maeder 2009). Hence, for stellar interiors this is given by

∇ = ∇rad =
3κ

16πacG

p

T 4

Lp
mp

fT
fp

, (2.13)

with a the radiation density constant, κ is the opacity and Lp is the energy flux through Sp.

In convection zones, on the other hand, the turbulent gas motions provide a very efficient and complex

transport of energy, resulting in equations far to complex to be handled analytically or numerically under most

circumstances. Therefore the so-called mixing-length theory (MLT; Houdek and Dupret 2015) is usually im-

plemented, despite being a rough approximation since it dismisses the turbulent pressure. It is characterized

by the free parameter αMLT , that accounts for the mean free path over which the convective eddies travel

before dissipating.

The energy conservation equation also retains its usual, non-rotating form

∂Lp
∂mp

= εnuc − εν + εgrav , (2.14)

where εnuc is the specific energy rate generation for the total nuclear reaction, εν is the specific thermal neu-

trino loss rate and εgrav is the specific rate of change of gravitational energy due to contraction or expansion.

The equations (2.8), (2.10), (2.12),(2.14) are the basic equations for the hydrostatic equilibrium of stars

with shellular rotation, that can be solved numerically if complemented with an appropriate equation of state,

tabulated opacities, network of nuclear reaction rates, element diffusion data and atmosphere boundary

conditions.
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2.2 Stellar Pulsations

2.2.1 Hydrodynamic equations

This section presents the theoretical background for the computation of stellar oscillations, based on Aerts

et al. (2010). Formally the equations of stellar oscillations are derived by performing small perturbations to

a spherical equilibrium state, determined by the four general equations of hydrodynamics without rotation

effects.

The first equation is the continuity or mass conservation equation (2.15), which relates the mass change

with time in a given volume V with its flux entering that given volume (with the fluid velocity v). Secondly

is the equation of motion or momentum conservation (2.16) that describes the motion caused by various

contributing forces. In stellar interiors one can ignore the internal friction in the gas (assuming zero viscosity)

and other external forces (i.e., magnetic fields), only remaining the pressure and gravity forces. The third

equation is the Poisson equation (2.17), where the gravitational acceleration can be written as the gradient

of the gravitational potential Φ. Lastly, there is the energy equation (2.18) obtained through a combination

between the continuity equation and the first law of thermodynamics, expressing that the heat gain dq/dt

comes both from the variation in the internal energy E and work of expanding or compressing the gas.

∂ρ

∂t
+∇ · (ρv) = 0 , (2.15)

ρ
∂v

∂t
+ ρ(v · ∇v) = −∇p− ρ∇Φ , (2.16)

∇2Φ = 4πGρ , (2.17)

dq

dt
=
dE

dt
− p

ρ2

dρ

dt
. (2.18)

In the adiabatic regime, where processes causing excitation or damping of oscillations are ignored, the

heating term in the energy equation can be neglected to a high degree of precision, thus simplifying the

calculation of oscillation frequencies. In this conditions equation (2.18) becomes

dp

dt
− Γ1

p

ρ

dρ

dt
= 0 , where Γ1 =

(
∂ ln p

∂ ln ρ

)
ad

, (2.19)

the subscript ’ad’ refers to derivatives taken at constant entropy. Near the surface, however, the timescale of

oscillations becomes comparable to the thermal timescale (equation 2.2) so the full energy equation must

be taken into account (Christensen-Dalsgaard 1997).

This equation, together with the equations (2.15), (2.16) and (2.17), form the complete set of equations

for adiabatic motion, which are still far to complex to solve analytically or even numerically. The already men-

tioned perturbation analysis obtains useful and valid simplifications to this equations, since the amplitudes

of solar oscillations are very small compared with the dimension of the Sun (e.g., Aerts et al. 2010).

The thermodynamic quantities p, ρ, φ and v are continuous functions of time t and position r, and can be

written as their value in the equilibrium configuration (with a subscript ’0’; i.e., X0) plus a small perturbative

contribution. The equilibrium structure is assumed to be static and velocities are ignored. It is convenient
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to use a description of the evolution of a field where the observer is stationary. The former is called the

Eulerian description, where a scalar quantity X can be written as

X(r, t) = X0(r) +X ′(r, t) , (2.20)

withX ′ denoting a small perturbation in this description. In turn, it is also useful to use the already mentioned

Lagrangian description, with an observer following the motion of the field. If the fluid suffers a displacement

δr from the equilibrium configuration, X can be written as

X(r0 + δr) = X0(r0) + δX(r) , (2.21)

where δX is the perturbation in this description. The Eulerian and Lagrangian perturbations are related to

each other by the expression below (left) which is completely equivalent to the expression below (right), that

shows the relation between the local and the material time derivative:

δX = X ′ + δr · ∇X0 ,

(
dX

dt

)
Lag.

=

(
∂X

∂t

)
Eul.

+ v · ∇X , (2.22)

with v = dr/dt and r = r0 + δr. Comparing both expressions in (2.22), one can obtain that the velocity is

given by the time derivative of the displacement v = ∂δr
∂t , by neglecting higher order terms.

The energy equation (2.19) involves calculating total time derivatives, so to first order in the perturbations

one can obtain the total time derivative of a quantity X as follows

dX

dt
=

(
∂

∂t
+ v · ∇

)
(X0 +X ′) =

∂X ′

∂t
+ v · ∇X0 =

∂

∂t
(X ′ + δr · ∇X0) =

∂δX

∂t
. (2.23)

The full linearized fluid equations listed below are obtained by inserting the expressions (2.20) or (2.21) in

the full set of equations for adiabatic motion, and subtracting the equilibrium equations, neglecting quantities

of order higher than one.

ρ′ +∇(ρ0δr) = 0 , (2.24)

ρ0
∂2δr

∂t2
= −∇p′ − ρ0∇Φ′ − ρ′∇Φ0 , (2.25)

∇2Φ′ = 4πGρ′ , (2.26)

p′ + δr · ∇p0 = Γ1,0
p0

ρ0
(ρ′ + δr · ∇ρ0) . (2.27)

2.2.2 Equations of Linear Stellar Oscillations

Solutions to the perturbed stellar structure equations above can be simplified by excluding the Lorentz and

Coriolis force, leaving the pressure and gravity as the only forces at play. Therefore, a spherically symmetric

equilibrium configuration is adopted and generally described using a spherical coordinate system (r, θ, φ),

where r is the distance to the center of the star, θ is the colatitude (coincides with the rotation axis), and φ is

the longitude (e.g., Aerts 2021). In this coordinates the displacement δr can be decomposed into radial and

horizontal components, such that

δr = ξrer + ξh = ξrer + ξθeθ + ξφeϕ , (2.28)

15



where ei is the unit vector in the respective direction.

Additionally, the simplifications in the linearized stellar structure equations lead to separable solutions

in terms of r, θ, φ and t. The time dependence is given by e−iωt, where ω is the angular frequency. The

angular dependence is given by the spherical harmonics Y ml (θ, ϕ) = (−1)m clm Pml (cos θ) eimϕ, where clm

is a normalization constant and Pml are the Legendre polynomials characterized by the spherical degree l

and azimuthal order m, that obey |m| ≤ l.

The (physical) displacement vector (analogously to the other dependent variables ρ′, p′ and Φ′) can now

be written, as function of position r and time t,

δr(r, t) =
√

4π Re

{(
ξr(r) Y

m
l , ξh(r)

∂Y ml
∂θ

, iξh(r)
m

sin θ
Y ml

)
e−iωt

}
, (2.29)

(Aerts et al. 2010) where ξr and ξh are the radial and horizontal displacement amplitude functions, respec-

tively.

After some algebraic manipulation of equations (2.24)-(2.27) and applying the expression above, the

equations of linear adiabatic stellar oscillations can be written as

dξr
dr

= −
(

2

r
+

1

Γ1,0p0

dp0

dr

)
ξr +

1

ρ0c2s

(
S2
l

ω2
− 1

)
p′ +

l(l + 1)

ω2r2
Φ′ , (2.30)

dp′

dr
= ρ0

(
ω2 −N2

)
ξr +

1

Γ1,0p0

dp0

dr
p′ − ρ0

dΦ′

dr
, (2.31)

1

r2

d

dr

(
r2 dΦ′

dr

)
= 4πG

(
ρ0
ξr
g0
N2 +

p′

c2s

)
+
l(l + 1)

r2
Φ′ , (2.32)

where c2s = Γ1,0p0/ρ0 is the adiabatic sound speed squared, Sl is the Lamb frequency

S2
l =

l(l + 1)c2s
r2

, (2.33)

and N is the Brunt-Väisälä or buoyancy frequency

N2 = g0

(
1

Γ1,0p0

dp0

dr
− 1

ρ0

dρ0

dr

)
. (2.34)

The fourth-order set of equations (2.30)-(2.32) with four dependent variables ξr, p′, Φ′, dΦ′/dr can only

be solved by providing four adequate boundary conditions (e.g., in the center and surface of the star),

discussed in great detail by Cox (1980) and Unno et al. (1989). The mode frequencies ω are the respective

eigenvalues of this system of equations described by the quantum numbers, n, l andm. For a radii r ∈ [0;R],

n consists of the number of nodes between r and the surface of the star R (by convention labeled with n > 0

for radial modes, where the mode with n = 0 is the fundamental frequency; Unno et al. 1989); for nonradial

modes n is the number of nodes below r (labeled with n < 0). l represents the number of nodal lines on the

surface and m the number of nodal lines crossing the stellar equator. The assumption of spherical symmetry

leads to a solution independent of m.
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2.3 Asymptotic theory of stellar oscillations

It is often useful to reduce the previous system of equations to second order by neglecting the perturbation

to the gravitational potential |Φ′| (and analogously its derivative dΦ′/dr) since it is small compared to the

perturbation to the density ρ′. This approximation known as the Cowling approximation (Cowling 1941) is

adequate when the spherical degree l and the radial order |n| are large. Despite being a rough first approxi-

mation to the equations of nonradial oscillations, it gives a good approximation to the mode frequencies and

is generally valid when applying to observed modes of solar oscillations and solar-like oscillations in other

stars.

For oscillations of high radial order, the derivatives of the equilibrium quantities (dp0dr ) in the equations

(2.30) and (2.31) can be neglected, due to the faster variation of eigenfunctions in comparison with equilib-

rium quantities. The first term of equation (2.30) (− 2
r ξr) can also be neglected in this regime. At last, the set

of equations (2.30)-(2.32) is reduced to

dξr
dr

=
1

ρc2s

(
S2
l

ω2
− 1

)
p′ , (2.35)

dp′

dr
= ρ

(
ω2 −N2

)
ξr , (2.36)

where the subscript ’0’ for equilibrium quantities was omitted. Combining these two equations one obtains

d2ξr
dr2

' ω2

c2s

(
1− N2

ω2

)(
S2
l

ω2
− 1

)
ξr ⇒ d2ξr

dr2
+K2ξr = 0 . (2.37)

A positive sign of the radial wave-number K2 determines an oscillatory solution for the equation 2.37.

Since stellar oscillations are standing waves driven by restoring forces, pressure and gravity, they are

trapped in a zone limited by points where K = 0, known as turning points of the waves (radii where ω = Sl or

ω = N ). Stellar oscillations are sensitive to the structure of the trapping region (also known as mode cavity ).

High frequency oscillations (|ω| > |N |, Sl) are excited by pressure, hence are labeled p-modes, whereas

lower frequency oscillations (|ω| < |N |, Sl) are excited by buoyancy and are labeled g-modes. Outside the

mode cavities, the negative sign of K2 leads to an exponentially decaying motion, meaning that the modes

are evanescent in those regions (|N | < |ω| < Sl or Sl < |ω| < |N |).
Several oscillation modes have been detected in the Sun, with periods in the range of 3-15 minutes

(Claverie et al. 1980; equivalent to high frequencies). These modes are stochastically excited by convective

noise - p-modes - with high amplitudes when reaching the stellar surface thus probing the envelope struc-

ture. Since g-modes are anticipated to be confined in the inner radiative regions and decay exponentially

within convective regions, they have only a residual amplitude at the surface. Until now, attempts to observe

g-modes in the solar surface have proven to be unsuccessful, despite the controversial detection and inter-

pretation of individual modes at low amplitude (Garcı́a et al. 2007). Figure 2.2 (left) illustrates a propagation

diagram for a 1 M� main sequence star with the mode cavities for pure p- and g-modes.

In the subgiant stage of low to intermediate mass stars, the core contraction and subsequent envelope

expansion leads to an increase of Brunt-Väisälä frequency in radiative interiors, therefore g-mode frequen-
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Figure 2.2: Propagation diagrams illustrating the mode cavities of p- and g-modes for two 1 M� models,
in core H-burning (left) and shell H-burning (right) stage of evolution. The blue region is the g-mode cavity
delimited by the Brunt-Väisälä frequency (full line), the orange region is the p-mode cavity delimited by the
Lamb frequency (dashed lines for l = 1 and l = 2). The white region show evanescent regions. Left: The
values of the dipole mode frequencies are indicated as black horizontal dashed lines. The position of the
nodes of ξr are indicated as black dots for l = 1. Adapted from Aerts (2021). Right: The red band shows
the observable region for mixed modes. Adapted from Christensen-Dalsgaard et al. (2020).

cies increase. In addiction, the mean density of stars decreases, hence the p-mode frequencies decrease.

As a result, there is an overlap in the frequency domain of p and g-modes, therefore p-modes couple to

the g-modes between the two oscillation cavities through the evanescent zone. Nonradial modes develop

a mixed nature (predicted theoretically by Dziembowski (1971) and Shibahashi (1979)) exhibiting g-mode

behavior in the convectively stable core of the star and p-mode behavior in the outer convective regions.

Unlike pure g-modes which cannot be observed in solar-like oscillators, these so-called mixed modes have

the potential to probe the entire star, and have been detected in Kepler data of evolved low mass stars (Beck

et al. 2011; Bedding et al. 2011). The number of mixed modes increases as the stars evolves toward the

red giant branch and the mode amplitude also increase in comparison to the main-sequence phase. The

total number of nodal lines on the stellar surface also increases with higher angular degrees l, hence current

observations are limited to modes with lower angular degree l ≤ 3, due to the so-called partial cancellation

(e.g., Aerts et al. 2010). Moreover, due to the lower density in the red giant branch, the mode oscillations

periods increase to hours or even days.

Figure 2.2 (right) illustrates a schematic propagation diagram for a 1 M� red giant star that exhibits mixed

mode character.

2.3.1 Asteroseismic diagnosis

Over the past decade, major improvements in high-resolution spectroscopy and the success of space mis-

sions such as MOST, CoRoT, Kepler, and most recently TESS have significantly increased the number of
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Figure 2.3: Power density spectrum of KIC 9145955. The numbers indicate the spherical degree (l) of
the modes. The red dashed curve shows a smoothed bell-shaped curve centered around the frequency
of maximum oscillation power. An estimated range for the observed mixed modes (l = 1) is indicated.
Adapted from Hekker and Christensen-Dalsgaard (2017).

stars, particularly red giants, with detected nonradial oscillations and the resolution of oscillation patterns.

Nonradial oscillations, specially of mixed modes, allow us to probe the stellar interiors at different depths of

the stars acting as very important diagnostic tools in the study of stellar evolution theory.

Stellar oscillations of stochastic nature (triggered by turbulent motions in stellar convective envelopes),

are detected in timeseries data of intensity variations (photometric fluxes) or radial-velocity variations. The

timeseries data is transformed to the frequency space by performing a Fourier transform where the oscilla-

tion frequencies appear as sharp peaks in a Fourier power spectrum. Figure 2.3 shows the power density

spectrum (PDS) of the red giant KIC 9145955. The individual modes are characterized by their frequencies,

width, amplitudes, their overall shape and patterns in the PDS. Solar-like oscillations display a bell-shaped

curve centered around a specific frequency in the PDS known as the frequency of maximum oscillation

power νmax. Measuring this quantity provides a direct measure to the surface gravity when the effective

temperature is known νmax ∝ g/
√
Teff . To determine the solar mass and radius a simple approach using the

following scaling relation is used:

νmax =

(
M

M�

)(
R

R�

)−2(
Teff

Teff,�

)−1/2

νmax,� , (2.38)

(Kjeldsen and Bedding 1995) where Teff,� = 5770 K, and νmax,� = 3090 ± 30 µHz as derived by Huber et al.

(2011). An analogous scaling relation to equation 2.38 is often used for the frequency separation between

consecutive radial-mode frequencies ∆ν ≡ νnl − νn−1 l, known as the large frequency separation,

∆ν =

(
M

M�

)1/2(
R

R�

)−3/2

∆ν� , (2.39)

(Kjeldsen and Bedding 1995) where ∆ν� =135.1 ± 0.1 µHz (Huber et al. 2011).
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For high radial order (meaning n � l), there is an asymptotic relation for pure acoustic modes that

predicts approximately equally spacing ∆ν in frequency. Following a first approximation by Tassoul (1980),

the frequencies of acoustic modes follow the distinct pattern

νnl ≡
ωnl
2π
'
(
n+

l

2
+ ε

)
∆ν − dnl , (2.40)

with εn,l being a frequency dependent phase shift of the acoustic modes and dn,l a small corrective param-

eter (e.g., zero for l = 0). The regular structure of p-mode spectra predicted by asymptotic theory can be

observed through the sequence of modes with l = 0 and l = 2 in figure 2.3 (effectively with less definition

than in the case of pure p-modes). The large frequency separation is very sensitive to the sound speed cs

on the outer regions, hence it can be used to estimate the propagation time of sound waves across the star,

∆ν =

(
2

ˆ R

0

dr

cs(r)

)−1

. (2.41)

The frequency pattern for high-order g-modes in the inner radiative region can be obtain from the asymp-

totic approximation for a non-rotating star resulting in a spectrum nearly uniformly spaced in period satisfying

the following relation by Tassoul (1980):

∆Πl =
2π2√
l(l + 1)

(ˆ r2

r1

N

r
dr

)−1

=
Π0√
l(l + 1)

, (2.42)

where r1 and r2 correspond to the inner and outer positions of the g-mode cavity, respectively, and the

quantity Π0 stands for the buoyancy travel time. The value of ∆Π has a strong diagnostic power in the

inner regions of stars. In fact, it allows to clearly distinguish two different stages in the red giant branch,

stars with an inert core from stars with core He-burning (Bedding et al. 2011; Mosser et al. 2011). Addition-

ally, deviations from asymptotic values can bring insight to inner structure changes triggered by chemical

discontinuities due to the first dredge-up (Cunha et al. 2015).

Due to the mixed nature in evolved stars, the period spacing of oscillation modes (equation 2.42) suffers

a departure from asymptotic predictions. The ∆Π is smaller for p-dominated mixed modes (e.g., contain

multiple mixed modes per p-mode order) and increases for g-dominated mixed modes (∆Π evolves towards

the asymptotic value for modes with more g-dominated character). This feature is illustrated in the PDS

of figure 2.3, where dipole modes are presented as several peaks with different frequencies for p- and g-

dominated mixed modes instead of only one has presented for l = 0 and l = 2 modes where there are

mainly p-modes.

The relative contributions of different regions of the star to a mixed mode are usually characterized by the

normalized inertia Enorm. This is defined in Hekker and Christensen-Dalsgaard (2017) and can be written

as

Enorm =
4π
´ R

0

[
ξr(r)

2 + l(l + 1)ξh(r)2
]
ρr2dr

M [ξr(Rphot)2 + l(l + 1)ξh(Rphot)2]
, (2.43)

where Rphot is the photospheric radius and the rest of the quantities are their usual definitions. The value of

Enorm is much higher for g-dominated mixed modes than for p-dominated ones.
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Figure 2.4: Panel a: Illustrates the oscillation spectrum of KIC 5356201, indicating radial modes (green
squares), l=2 modes (red triangles) and l=1 rotational multiplets (blue circles). Panel b: Shows the ob-
served rotational splitting for individual l=1 modes. Adapted from Beck et al. (2012).

Hundreds of stars in Kepler data showed decreasing ∆Π with increasing mode period, revealing a ”tilted”

pattern (e.g., see Aerts 2021). These slope is a consequence of the star rotation and we will discuss its

implications in the adiabatic stellar oscillations equations in the next section.

2.3.2 Impact of rotation on oscillation frequencies

In the absence of rotation, frequency modes of different m values are degenerate due to spherically sym-

metry. In rotating stars, the Coriolis force lifts this degeneracy, and modes with different m split into 2l + 1

frequency components. Measurements of this rotational splitting were performed in early analysis of red

giants in Kepler data (Beck et al. 2012) revealing that red giant cores rotate approximately ten times faster

than the surface. Rotational splittings constitute a crucial diagnostic tool of stellar interiors along with v sin i

spectroscopic measurements, bringing knowledge of the internal rotation of stars as inferred in recent re-

sults (e.g., Mosser et al. 2012; Vrard, M. et al. 2016) and possible constraints on rotationally induced internal

chemical mixing. Figure 2.4 illustrates the rotational frequency splitting in dipole mixed modes.

In slowly rotating stars, where the rotation frequency is well below the oscillation frequencies 2Ω/ω � 1,

the Coriolis force can be treated as a small perturbation in the equations of adiabatic stellar oscillations

(equations (2.30)-(2.32)). This generally applies for slow rotators such as p- and mixed modes in red giants

of low-mass stars (e.g., see Aerts 2021). Low frequency g-modes observed in the majority of intermediate-

and high-mass stars have rotation periods similar to their pulsation period, so their modes occur in the

gravito-inertial regime and require a nonperturbative approach when including the Coriolis force (Aerts et al.

2017). Currently this is performed by adopting the ”Traditional Approximation of Rotation” (TAR; Lee and

Saio 1987a, 1987b) and solving the Laplace tidal equations, subject that is out of the scope of this thesis.
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In the frame corotating with the star, the Coriolis force leads to a purely geometric shift of oscillation

frequencies of the multiplet components,

ωnlm = ωnl +mΩ , (2.44)

where ωnl is the frequency in the nonrotating case. Shellular rotation is assumed so that the angular fre-

quency Ω = Ω(r) only depends on the radius, and, to account for differential rotation, Ω in equation (2.44) is

replaced by the average

〈Ω〉 '
´

Ω|δr|2dV´
|δr|2dV . (2.45)

where δr is the radial displacement vector defined in equation (2.29). Hence the rotational splitting measures

an average of the rotation rate over the stellar interior, determined by the mode properties. The first-order

rotational splitting is given by

δωnlm = m βnl

ˆ R

0

Knl(r)Ω(r)dr , (2.46)

(see derivations in Unno et al. 1989; Aerts et al. 2010) where the rotational kernel Knl is given by

Knl =

(
ξ2
r + L2ξ2

h − 2ξrξh − ξ2
h

)
r2ρ´ R

0
(ξ2
r + L2ξ2

h − 2ξrξh − ξ2
h) r2ρdr

, (2.47)

with L2 ≡ l(l + 1) and

βnl =

´ R
0

(
ξ2
r + L2ξ2

h − 2ξrξh − ξ2
h

)
r2ρdr´ R

0
(ξ2
r + L2ξ2

h) r2ρdr
. (2.48)

For high-order p-modes the terms ξ2
r and L2ξ2

h dominate, thus βnl ≈ 1. Since the neglected terms account

for the Coriolis force, advection is the most responsible for the rotational splitting in p-modes. For high-order

g-modes, the terms containing ξr can neglect, hence βnl ≈ 1− 1/L2.
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Chapter 3

Rotation and Angular momentum

In the beginning of chapter 2 we discussed the departure from spherical symmetry in the stellar surface

due to rotation and the alterations made to hydrodynamic equations to accommodate those effects. In this

chapter we review other phenomena also directly correlated with rotation: gravity darkening, stellar winds,

mixing of chemical elements and transport of angular momentum; that drastically influence the course of

stellar evolution. Up to today, the physical knowledge in some of these phenomena is still limited and highly

uncertain, nonetheless they are extremely important to be considered when building stellar models.

Lastly, we focus on processes of transport of angular momentum by magnetic fields subjected to insta-

bilities in radiative stellar interiors and their potential to explain the discrepancies between computational

models and current observations.

3.1 Impact of rotation in the stellar structure

As pointed out in chapter 2, the centrifugal force deforms the shape of the stellar surface from spherical

symmetry (the equatorial radius becomes larger than the polar radius). The degree of this deformation

depends on several parameters, such as the ratio between the actual velocity and the critical velocity, the

degree of differential rotation, the stellar radius, etc. The centrifugal force also lowers the effective gravity

in the equatorial regions relative to polar ones (see equation 2.9) – the so-called gravity darkening (von

Zeipel 1924). This makes the stellar evolution tracks analogous to a non-rotating slightly less massive star,

shifting the evolutionary tracks towards lower luminosity and effective temperature. The hydrostatic structure

of faster rotators (e.g., intermediate to high mass stars) can be dramatically affected, on the other hand, in

slowly rotating stars (e.g., low mass main-sequence and more evolved stars) these effects can generally be

neglected.

The main effects of rotation on the evolution, however, result from the enhancement of mass loss (e.g.

Maeder 2009) in massive stars and the development of anisotropies in the stellar winds (see e.g. Maeder

and Meynet 2000; Georgy et al. 2011), leading to an enhanced polar mass flux. On the other hand, in the

1-2 M� range, rotation greatly impacts the mixing of the chemical elements and the transport of angular

momentum from the inner to outer regions, in the convective or radiative zones (e.g., Endal and Sofia 1978).
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3.2 Transport processes in stellar interiors

3.2.1 Evolution of angular momentum transport

There are several mechanisms that try to explain the physics of angular momentum redistribution in stellar

interiors. Some of the most accepted mechanisms include hydrodynamic instabilities, meriodional circula-

tions, torques due to magnetic fields and transport by internal gravity waves (see an extensive discussion in

Aerts et al. (2019).

Large scale circulations in the meridian plane (e.g., Eddington-Sweet circulation by Sweet 1950) trans-

port angular momentum through advection in radiative and convective regions. This circulation motions

arise from the thermal imbalance created due to the deformation of isobars (that become much closer to

each other in the polar regions than in the equatorial ones) by the centrifugal acceleration. Nowadays, there

are still some uncertainties regarding the interactions with horizontal turbulence, magnetic fields and the

amount of horizontal differential rotation generated by those interactions (Zahn 1992; Maeder 2009).

Hydrodynamic instabilities in radiative zones arise from the turbulent motions created by differential ro-

tation mainly in phases with successive expansion and contraction of the star. These instabilities whether

draw their energy from the increase in potential energy (due to entropy stratification and centrifugal force) or

from the kinetic energy of the medium (e.g., Aerts et al. 2019). The last ones, the shear instabilities, have a

significantly higher weight.

The implementation, in 1D stellar evolution codes, of hydrodynamic processes such as circulation and

hydrodynamic instabilities described above showed that they can explain some transport in massive stars

(e.g., Maeder and Meynet 2000). Nonetheless, torques generated by the majority of these processes scale

as (Ω/N)2 and are rather ineffective, thus fail to explain the asteroseismic inferred core rotation rates of

evolved stars, predicting spins two orders of magnitude higher (e.g., Heger et al. 2000; Cantiello et al.

2014), see figure 3.1.

Internal gravity waves (IGWs) are stronger candidates to explain the transport of angular momentum.

With buoyancy as their dominant restoring force, they can transport angular momentum efficiently into ra-

diative zones, in the presence of a certain amount of radial differential rotation, where they eventually dis-

sipate. The work of Charbonnel and Talon (2005) with solar-like stars demonstrated the possibility for this

phenomenon to explain the near rigid rotation profile of the Sun. At the interface between convective and

radiative zones, it is predicted that the damped IGWs can travel forced by turbulent convective flux, hence

have an impact in rotation in inner and outer regions of the stars (Rogers et al. 2013). Transport of angular

momentum by IGWs in mixed modes was also studied by Belkacem et al. (2015a,b), and in g-modes in

Townsend et al. (2017) (see an overview in Aerts 2021).

Magnetic fields are present in low mass stars and in convective envelopes of solar-like stars. Whether a

dynamo can operate in a radiative zone with differential rotation remains a topic of discussion (e.g., Zahn et

al. 2007; Maeder 2009). The torque imposed by a magnetic field would have important consequences in the
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Figure 3.1: Evolution of the average core rotational period as a function of stellar radius of a 1.5 M� model
with initial rotation of 50 km s −1, for different angular momentum transport mechanisms. Illustrated are
models without angular momentum transport (green), including transport of angular momentum due to ro-
tational instabilities (purple) and due to magnetic torques in radiative regions (red; Tayler-Spruit dynamo).
Red giants in the sample of Mosser et al. (2012) are shown as black dots. Adapted from Cantiello et al.
(2014).

internal rotation profile, as this magnetic fields are subject to the instabilities: magnetorotational instability

(MRI) and magnetohydrodynamical instability (e.g., the Tayler instability; Tayler 1973; Pitts and Tayler 1985).

For example the Tayler-Spruit dynamo (Spruit 2002) mechanism based on this last instability, achieves

rotation rates one order of magnitude higher than observations, regardless, it still predicts more efficient

angular momentum transport than most candidates (see figure 3.1) A recent revision of this mechanism

was performed by Fuller et al. (2019), most recently referred as the Fuller-formalism, that predicts stronger

torques and higher efficiencies, overcoming previous limitations. There are also some other alternative

candidates that predict opposite configurations, with differential rotation in the envelope and rigid rotation in

radiative zones enforced by magnetic torques (Kissin and Thompson 2015).

The discrepancy between theory and asteroseismic observations of core rotation rates (e.g., den Har-

togh et al. 2020) suggest that there must exist an additional process of transport of angular momentum from

the inner to outer regions of stars. There is no consensus on which of the two processes above – IGWs or

magnetic torques – is dominant since both still require calibrations of free parameters to reach the inferred

rotation rates.

The inclusion of microscopic processes and convection along stellar evolution poses a real challenge to

computational models due to the wide variety of spatial and temporal scales (e.g., Palacios 2013). Angular

momentum transport is usually included using an advection-diffusion approach (as developed by Zahn 1992
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and others) or only a diffusive approach (Endal and Sofia 1978; Pinsonneault et al. 1989; Heger et al.

2000). In this thesis we make use of the diffusion approximation as implemented in MESA (Paxton et al.

2013), where the transport of angular momentum as a diffusive process can be written as(
∂Ω

∂t

)
m

=
1

i

(
∂

∂m

)
t

[
(4πr2ρ)2iν

(
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)
t

]
− 2Ω

r

(
∂r

∂t

)
m

(
1

2

d ln i

d ln r

)
, (3.1)

(Endal and Sofia 1978), where i is a shell specific moment of inertia, and ν is the turbulent viscosity cal-

culated as the sum of the diffusion coefficients for convection, semiconvection, and rotationally induced

instabilities (neglecting interactions such as amplification and damping between some instabilities). The first

term on the right-hand side accounts for the diffusion transport and the second term is an advection term,

accounts for contraction and expansion of the shells at constant mass.

3.2.2 Evolution of processes of chemical mixing

The transport of angular momentum mechanisms described above constitute the source of rotationally

driven mixing, that transports chemical elements between layers in stellar interiors. Thus, the detection

of surface chemical abundances can indirectly probe the angular momentum missing processes.

The evolution of chemical elements is computed separately from the transport of angular momentum.

The enforced shellular rotation sweeps out compositional differences, leading to an approximately chemical

homogeneous composition on isobars. This allows to solve the evolution of compositional mixing in a 1D

diffusive approach, by solving the following equation(
∂Xn

∂t

)
m

=

(
∂
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)
t

[
(4πr2ρ)2D

(
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t

]
+

(
dXn

dt

)
nuc

, (3.2)

(Heger et al. 2000), where Xn is the mass fraction for n’th nucleus, D is the diffusion coefficient determined

as the sum of individual mixing processes (e.g., convection, semiconvection, thermohaline mixing and rota-

tionally induced instabilities). The first term on the right-hand side accounts for diffusive transport and the

second term is for nuclear reactions.

Mixing of nuclides modifies the elements stratification in the inner regions, and in particular, rotation-

induced mixing is known to affect the evolutionary tracks in the HR diagram (Maeder and Meynet 2000).

During the main-sequence phase, new hydrogen is brought into the core and the produced helium trans-

ported outwards. As a consequence, stars evolve with more luminosity and effective temperatures, larger

helium cores, and extended lifetimes during core burning phases. In low to intermediate mass red giants,

the convective envelope expands and penetrates deeper into the regions where nuclear reactions have al-

tered the chemical composition, and some of these material is transported to the surface (e.g., see Aerts

2021).

In low mass stars on the red giant and asymptotic giant branch, the most representative observational

tracer is the surface abundance of lithium (Somers and Pinsonneault 2016), due the lithium sensitivity to

temperature and thus to the physics of internal transfer processes. Spectroscopic measurements of surface
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Figure 3.2: Mass fractions of the indicated chemical elements as a function of stellar mass for a 1.25 M�
model at the end of core H-burning computed with different initial rotation velocities. All models include
thermohaline and rotation-induced chemical mixing (except for the top left non rotating panel). The mass
fractions are multiplied by 100 for 3He, 12C and 14N, by 2500, 50, 900, 5×104 and 1500 for 13C, 16O, 17O,
18O , and 23Na, respectively. Adapted from Charbonnel and Lagarde (2010).

abundances in red giants have shown evidence of a drop in lithium and carbon abundances, a sudden

drop in the carbon isotopic ratio 12C/13C (Gratton et al. 2000), and a slight increase in nitrogen abundance

(Frebel et al. 2005). Besides, abnormalities in the 3He abundance in low mass stars (Lagarde et al. 2011)

can possibly be explained by missing mixing processes. For example, in figure 3.2 one can see the effect of

rotation in the abundances of 3He, 12C, 13C and 17O.

The nature of mixing of chemical elements in stellar interiors is still a heated topic. Recent studies have

shown that rotationally induced mixing and meridional circulation alone do not produce enough mixing to

explain the abundance anomalies observed around the so-called luminosity bump on the red giant branch

(Hekker and Christensen-Dalsgaard 2017). Additional causes for mixing of chemical elements usually have

to be considered such as semiconvective and thermohaline mixing. The last one has shown great poten-

tial explaining the observed surface abundances of low mass bright giant stars pass the red giant bump

(Charbonnel and Lagarde 2010; Lagarde et al. 2011). Magnetism and IGWs are also expected to affect the

mixing of chemical elements, however current implementations of the last one have shown a disagreement

by orders of magnitude (Aerts 2021).

27



3.3 Tayler instability and dynamo formation

In this thesis we focus on the transport of angular momentum and rotationally-induced mixing generated

by the Tayler-Spruit dynamo mechanism and the revised version by Fuller et al. (2019). In this section we

summarize the process of formation and saturation of the Tayler instability, and the derived coefficients for

diffusive transfer in stellar interiors for those mechanisms.

Spruit (2002) suggested that to generate a dynamo process there was no need for convection, or other

velocity fields such as waves or shear turbulence, as otherwise stated. In fact, the generation of a magnetic

field in a star only requires a strong differential rotation. In his description, latitudinal differential rotation

shears an original weak fossil field (the radial component Br) generating a toroidal field (Bφ) – the so-called

Ω-effect. From the magnetic induction equation (see e.g. Denissenkov and Pinsonneault 2007), one can

say that the toroidal field strength grows linearly as

∂

∂t
Bφ = qΩBr , (3.3)

where q = −∂ ln Ω/∂ ln r is the dimensionless shear and Ω is the angular rotation frequency. After a few

turns, the field is predominantly azimuthal, Bφ � Br.

As Bφ grows, it becomes unstable for the first instability to set in, the Tayler instability (Tayler 1973; Pitts

and Tayler 1985). A nonaxisymmetric instability, with m = 1 the fastest growing perturbation, that can take

place in stably stratified regions (see e.g. Ma and Fuller 2019). This instability sets in only for unstable

displacements that avoid doing work against the gas pressure (displacements nearly incompressible) and

the buoyancy force (displacements nearly horizontal, along equipotential surfaces).

The Bφ critical strength for this instability to set in (Spruit 2002; Zahn et al. 2007) can be written as,

ωA > ωc ∼ Ω

(
N

Ω

)1/2 ( η

r2Ω

)1/4

, (3.4)

where ωA is the Alfvèn frequency ωA = Bφ/
√

4πρr2 associated with Bφ, η is the magnetic diffusivity and N

is the Brunt-Väisälä frequency.

As illustrated in figure 3.3, Bφ field lines can be seen as stacks of loops around the rotation axis. At sat-

uration, the Bφ magnetic pressure between the field lines drives this kink-like instability to slip the field lines

sideways with respect to each other an horizontal displacement l⊥ coupled by a small radial displacement

lr. Due to a strong effect of the stratification, the radial length scale of the instability is limited to

lr ∼ l⊥
ωA
N

, (3.5)

where the maximum horizontal length scale is approximately l⊥ ∼ r (Ma and Fuller 2019). This radial

displacement produces a weak poloidal Br field (the so-called α-effect), that will be sheared again into a Bφ

field by the Ω-effect. The alternation of the action of differential rotation and the radial displacements caused

by the Tayler instability (Ω- and α-effect) close the dynamo loop.
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Figure 3.3: Schematic representation of the different stages of the Tayler-Spruit dynamo formation. Red
lines represent the magnetic field lines. Adapted from Barrère et al. 2022.

A number of standard assumptions are used in this formulation: the frequencies are ordered such that

ωA � Ω � N ; shellular rotation (Zahn 1992) is assumed ; the initial magnetic field is considered to be

sufficiently weak so that initial magnetic forces can be neglected (Spruit 2002).

3.3.1 Spruit prescription

Spruit (2002) proposes that the energy in the background Bφ field is damped to small scales by a turbulent

cascade as follows

γturb ∼
ω2

A

Ω
, (3.6)

Ėdamp ∼
ω2

A

Ω
|Bφ|2 , (3.7)

where Ėdamp is the non-linear energy dissipation rate. The growth of the Bφ field saturates when the

generation of the field due to the instability (γamp ∼ qΩωA/N ) is balanced by the diffusion of the field

through turbulent cascade (γturb). Equating this two expressions one obtains the saturation expression for

ωA. From the definition of the Alfvèn frequency, the Bφ strength at saturation can be calculated. The Br

saturation value is obtain using the following relation

Br
Bφ
∼ ωA

N
, (3.8)

that derives from the incompressible nature of the instability Br/lr ∼ Bφ/l⊥. Combining the magnetic field

strengths, the magnetic torque (BrBφ) transporting angular momentum is produced via Maxwell stresses

due to the dynamo field generated, and can be written in terms of the following diffusivity (ν = BrBφ/4πρqΩ)

νTS ∼ r2Ωq2

(
Ω

N

)4

. (3.9)
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This equation applies in the case when thermal diffusion is unimportant, thus the composition gradient

dominates the effects of thermal stratification (see Spruit 2002 for details when accounting for thermal

diffusion). The minimal shear in order for the instability to operate can be obtained combining the instability

criterion (equation 3.4) with the ωA in the saturated state,

qmin,TS ∼
(

Ω

N

)7/4 ( η

r2N

)1/4

. (3.10)

The small fluid displacement in the radial direction due to the saturation of the Tayler instability is usually

orders of magnitude lower than the horizontal displacements, hence a possible generated chemical mixing

will be less efficient than the transport of angular momentum. Nonetheless, the diffusivity of mixing of

chemical elements can be written as,

DTS ∼ r2Ωq4

(
Ω

Nµ

)6

. (3.11)

There are two particular aspects of this theory that have been criticized. Zahn et al. (2007) outlined

that since the instability generates a non-axisymmetric Br field (as m=1 modes dominate in the Tayler

instability), the winding of this field does not necessarily reproduce an axisymmetric Bφ field (but mostly a

non-axisymmetric component). So the axisymmetric component of the fields Br and Bφ are not necessarily

related by (3.8) as initially suggested by Spruit (2002). The second problem (raised by Fuller et al. (2019))

is that equation 3.6 possibly overestimates the damping rate for the large-scale components of Bφ, hence,

the saturated Bφ and Br fields can reach higher values. Recently, Cantiello et al. (2014) also demonstrated

that this mechanism cannot explain the slowing down of the core rotation of red giants as shown in figure

3.1.

3.3.2 Fuller-formalism

To overcome the difficulties of this theory, Fuller et al. (2019) proposed that the Tayler instability transfers

energy from the background magnetic field Bφ (axisymmetric) to a perturbed field δB⊥ (non-axisymmetric).

Instead of the background field as in Spruit (2002), it is the energy of δB⊥ that is damped to small scales

with a turbulent damping rate γcas,

γcas ∼
δνA

r
, (3.12)

where δνA = δB/
√

4πρ is the perturbed Alfvèn velocity. Hence, the following damping rate is much smaller

than equation 3.7,

Ėdamp ∼
ω4

A

Ω3
|Bφ|2 . (3.13)

The magnetic field thus reaches higher values in the saturated regime, and the associated effective angular

momentum diffusivity writes as follows

νF = α3r2Ω

(
Ω

Neff

)2

, (3.14)
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where α is a dimensionless parameter, and Neff is the effective Brunt-Väisälä frequency given by N2
eff =

η
KN

2
T + N2

µ, with η and K the magnetic and thermal diffusivities, NT and Nµ the thermal and chemical

composition components. In Fuller et al. (2019) α ≈ 1 was found to fit the observational data.

The minimal shear for the Tayler instability to set in, analogous of equation 3.10, for the Fuller prescription

also highly depends on this free parameter and can be written as

qmin,F = α−3

(
Neff

Ω

)5/2 ( η

r2Ω

)3/4

. (3.15)

The coefficient for the induced chemical mixing associated with this formalism writes as follows

DF = α3r2Ω

(
Ω

Neff

)2(
qΩ

Neff

)5/3

. (3.16)

The authors highlighted some potential problems with this formalism. The models seem to converge to

the same rotation rate independent of the initial rotations. Also, a very weak magnetic fossil field is needed

for this mechanism to be the dominant source of transport of angular momentum.

Eggenberger et al. (2019) has tested that the Fuller-formalism is in fact dominant over meridional and

shear instabilities. However, further studies on the α parameter to model subgiants and red giants showed

a departure from the value in the original article (α = 1). Eggenberger et al. (2019) found that α = 0.5 was

needed to match the measured frequency splittings for subgiants, but did not match the frequency splittings

for red giants, that require α = 1.5. They also found a lower degree of radial differential rotation in their

models in opposition to observed values. den Hartogh et al. (2020) studied the limits for α in red clumps and

white dwarfs. For red clump stars, α between 2 and 4 was required to match the observations. For white

dwarfs the Fuller-formalism could not match the core rotation rates, unless when it was excluded at the end

of the core He-burning phase.
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Chapter 4

KIC 8579095: Stellar models with
transport of angular momentum

This chapter describes the computational models and methodology used throughout this work. To compute

stellar evolutionary models we made use of the open-source 1D stellar evolution package, Modules for

Experiments in Stellar Astrophysics (MESA). This code is widely used in the astrophysics community, as it

is undergoing active development and contains a wide variety of input stellar parameters to model different

physics in stellar interiors. We also made use of the robust open source pulsation code GYRE for the

purpose of computing oscillation frequencies and the respective eigenfunctions. GYRE has the advantage

to compute solutions for the stellar oscillation equations in both adiabatic and non adiabatic regimes and

the possibility to include first and higher approximations in the implementation of rotation, which we took

advantage off in this work.

4.1 Process of star selection

For this particular study we considered targets from the APOKASC catalog (Pinsonneault et al. 2018) that

combined general spectroscopic quantities with crucial seismic quantities to model the evolution of a star.

The targets in the APOKASC catalogue contain high-resolution H-band spectra from the APOGEE project

(Majewski et al. 2017), analyzed during the 14th data release (DR14) of the Sloan Digital Sky Survey (Abol-

fathi et al. 2017). The asteroseismic data was obtained by the Kepler mission (Borucki et al. 2010) and

analyzed by members of the Kepler Asteroseismology Science Consortium. This catalog provides the

observational parameters {Teff , ∆ν, νmax, [Fe/H]} (effective temperature, large frequency separation, fre-

quency of maximum power, metallicity) as well asteroseismic quantities {log g, M , R} (log of asteroseismic

surface gravity, mass, radius) estimated using the scaling relations (equations (2.38) and (2.39)) that are

extremely useful to model the evolution of red giant stars.

In addition we made use of the {∆Π1, δνrot} (dipole mode period spacing, rotational splitting frequency)

in Gehan et al. (2018), that were extracted from the mixed mode frequency spectra of a red giants sample.

We selected KIC 8579095 as our target star since it gathered all the information from both sources,
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summarized in table 4.1. KIC 8579095 is also a confirmed rotating red giant branch star (not a fast rotator)

with an estimated mass of ∼ 1.366 M�, which is in the mass range of previous studies of angular momentum

transport in evolved stars (e.g., Cantiello et al. 2014; Eggenberger et al. 2019).

Quantities Values Sources

Teff (K) 4773.6 ± 72.9 Abolfathi et al. 2017

[Fe/H] 0.352 ± 0.025 Abolfathi et al. 2017

log g (seis) 3.091 ± 0.005 Pinsonneault et al. 2018

M (M�) 1.366 ± 0.039 Pinsonneault et al. 2018

R (R�) 5.512 ± 0.014 Pinsonneault et al. 2018

νmax (µHz) 152.046 ± 0.009 Pinsonneault et al. 2018
152.46 Gehan et al. 2018

∆ν (µHz) 11.942 ± 0.004 Pinsonneault et al. 2018
12.0 Gehan et al. 2018

∆Π1 (s) 77.9 ± 0.92 Vrard, M. et al. 2016
78.2 Gehan et al. 2018

δνrot (nHz) 285.0 ± 1.46 Gehan et al. 2018

Table 4.1: Observed and estimated parameters of KIC 8579095. The illustrated columns correspond to:
effective temperature, metallicity, log of asteroseismic surface gravity, mass, radius, frequency of maximum
power, large frequency separation, dipole mode period spacing, rotational splitting frequency.

4.2 Stellar models and input physics

Stellar evolutionary tracks and structure models for a low mass star from the zero-age main sequence to the

red giant branch were computed with the release version 12115 of MESA (Paxton et al. 2011, 2013, 2015,

2018, 2019). We used the same physical inputs as in the publicly available MESA inlist of Fuller et al. (2019)

(except for the input parameters described in the calibration process below).

The physical inputs of our stellar evolution models follow the default MESA implementation. With the

OPAL equation of state (Rogers and Nayfonov 2002) and OPAL opacities (Iglesias and Rogers 1996). Using

the NACRE rate (Angulo et al. 1999) for the nuclear reaction rates and the Eddington grey atmosphere

(Eddington 1926). Convection is treated according to the standard mixing-length theory as presented by

Cox and Giuli (1968).

Besides the default MESA parameters, these models also include a predictive mixing scheme (Paxton

et al. 2018), where the boundaries of a convection region expands until ∇rad = ∇ad (equation 2.13) on

the convective side, at each time step. Overshooting (controlled by the parameter fov; Paxton et al. 2011,

2013) is implemented via a convective diffusion coefficient exponentially decaying beyond the boundary of

convection regions: whether above convective cores or below convective envelopes. Mass loss (Paxton
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et al. 2011) is taken into account following the implementations of Reimers (1975) for red giant stars and

Blöcker (1995) for asymptotic giant branch stars.

Our MESA models incorporate rotation (Palacios 2013) and the effects of centrifugal force on the stellar

structure by adopting the shellular approximation as described in chapter 2. The implementation of transport

of angular momentum and mixing of chemical elements in radiative zones in MESA is described in detail in

chapter 3. In convective regions the transport of angular momentum and mixing is accounted for using the

MLT diffusion coefficient (αMLT; Paxton et al. 2011) enforcing almost rigid rotation in those zones.

For all our models, initial solid body rotation with spin rate of∼ 3.6 days is set at zero-age main sequence.

We evolve four MESA models until the red giant phase with different implementations of angular momentum

transport and chemical mixing in radiative regions:

- the ’AM conservation’ model ensures total conservation of angular momentum (J) up to a 10−9 order

between each step of evolution (Jini − J/J < 10−9). This model does not include stellar wind (or major

mass loss) and does not account for any angular momentum transport or mixing of chemical elements

induced by rotation;

- the ’Hydrodynamic inst.’ model includes angular momentum transport and rotation-induced mixing en-

sured by a combination of several hydrodynamic instabilites (dynamical shear (DSI), Solberg-Hoiland (SH),

secular shear (SSI), Goldreich-Schubert-Fricke (GSF) instabilities and Eddington-Sweet circulation (ES);

described in great detail in Heger et al. 2000);

- the ’TS dynamo’ model includes dynamo-generated magnetic fields that transport angular momentum and

mixing of chemical species in radiative zones, as proposed by Spruit (2002) (also known as Tayler-Spruit

dynamo);

- the ’Fuller-form.’ model makes use of the revised prescription of the Tayler-Spruit dynamo for transport of

angular momentum and mixing of chemical elements by Fuller et al. (2019) (known as Fuller-formalism).

We computed a model with the free parameter of this prescription at the value of α = 1 as suggested by

the author and then with α = 1.65 to reach the observed core rotation rate for this particular star.

4.2.1 Calibration process

To model KIC 8579095 we took advantage of the astero module (Paxton et al. 2013), and generated cal-

ibrated models from the zero age main-sequence to the current day (allowing a direct comparison with

current observations) using the physical inputs described above.

The stellar model calibration process takes as inputs parameters {Mini, Yini, [Fe/H]ini, αMLT, fov} (stel-

lar mass, initial helium abundance, initial metallicity, mixing-length parameter and overshooting parameter,

respectively) and, throughout the stellar evolution, at each timestep, performs a comparison to the chosen

observational and estimated constraints {Teff , log g, ∆ν}, computing a χ2
star value.
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The helium mass fraction Y was computed assuming the linear relation with the metallicity, Y (Z) =

Y0 + ∆Y/∆Z · Z, with Y0 = 0.248 and ∆Y/∆Z = 1.4. The hydrogen mass fraction was computed using the

relation X = 1−Y −Z. [Fe/H] is calculated through [Fe/H] = log[(Z/X)/(Z/X)�] where (Z/X)� = 0.02293

(computed by Bahcall et al. 2006).

The χ2
star resulting from the calibration process determines whether the computed MESA evolution model

can reproduce the outputs parameters within the observational uncertainties. In the case χ2
star ≤ 1 the

final model parameters {Teff , log g, ∆ν} are within the observational uncertainties. The χ2
star value is

calculated by weighting the contribution of spectroscopic χ2
spec and seismic χ2

seis observable according to

χ2
star = 2/3χ2

spec + 1/3χ2
seis with

χ2
spec/seis =

1

N

N∑
i=1

(
Xmod
i −Xobs

i

σXi

)2

(4.1)

where N is the number of parameters (N = 2 and N = 1 for χ2
spec and χ2

seis, respectively), Xmod
i and Xobs

i

are the stellar model and observed values of the ith parameter, respectively, with σXi being the observational

uncertainty.

To determine the optimal set of input parameters (minimum χ2
star) we used a common method (e.g.,

Capelo and Lopes 2020) where an optimization run is performed using the Nelder-Mead simplex algorithm

(Nelder and Mead 1965) implemented in the astero module. For each MESA simulation, the astero module

is called at each timestep to calculate the χ2
star values from the current MESA model output parameters.

This process is repeated multiple times with a different set of inputs until several models, with reasonable

χ2
star value, have been found. The output of this process is a table with χ2

star and initial input parameters of

the several red giant models. We selected the model with the minimal χ2
star and use it as our benchmark

model. Table 4.2 shows the benchmark model input parameters.

Mini (M�) Yini [Fe/H]ini αMLT fov

1.405 0.298 0.373 2.04 0.014

Table 4.2: Input parameters of the benchmark model. The illustrated columns correspond to: initial mass,
initial helium abundance, initial metallicity, mixing-length parameter and overshooting parameter.

The benchmark model was computed using the Fuller-formalism prescription described above. The rest

of the models with different mechanisms of transport of angular momentum and mixing – AM conservation,

hydrodynamical instabilities and TS dynamo – were initialized with the same values of input parameters

displayed in table 4.2.
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Model age M R Teff log g Ωsurf/2π Ωcore/2π ∆ν ∆Π1 νmax χ2
star

(Gyr) (M�) (R�) (K) (nHz) (nHz) (µHz) (s) (µHz)

AM conservation 4.57 1.405 5.640 4753.9 3.083 84 410,327 11.940 79.3 150.91 0.586
Hydrodynamic inst. 4.57 1.403 5.635 4753.8 3.083 84 402,812 11.948 79.4 150.98 1.117
TS dynamo 4.57 1.403 5.637 4753.5 3.083 85 21,824 11.942 79.4 150.88 0.482
Fuller-form. (α=1) 4.57 1.403 5.636 4753.6 3.083 85 1,076 11.943 79.4 150.90 0.496
Fuller-form. (α=1.65) 4.57 1.403 5.637 4753.6 3.083 85 674 11.942 79.4 150.89 0.478

Table 4.3: Properties of the KIC 8579095 converged RGB models without mixing of chemical elements.
The 5 models were computed using the input parameters of table 4.2. The illustrated columns correspond
to: age, mass, radius, effective temperature, logarithm of surface gravity, average surface rotation, aver-
age core rotation, large frequency separation for radial modes from scaling relations, dipole mode period
spacing, frequency of maximum power from scaling relations.

Model age M R Teff log g Ωsurf/2π Ωcore/2π ∆ν ∆Π1 νmax χ2
star

(Gyr) (M�) (R�) (K) (nHz) (nHz) (µHz) (s) (µHz)

Hydrodynamic inst. 4.60 1.403 5.608 4755.98 3.087 85 323,206 12.034 79.5 152.40 176.26
TS dynamo 4.58 1.403 5.633 4754.30 3.083 85 13,112 11.954 79.2 151.08 3.45
Fuller-form. (α=1.65) 4.58 1.403 5.636 4754.03 3.083 85 597 11.943 79.1 150.90 0.50

Table 4.4: Properties of the KIC 8579095 converged RGB models with rotation-induced mixing of chemical
elements. The 3 models were computed using the input parameters of table 4.2. The illustrated columns
are the same as table 4.3.
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The model in yellow was computed with angular momentum transport and rotation-induced mixing by a
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For the models besides the benchmark model we have not performed an optimization run to obtain their

optimal input values. If we had initialized the four models with different input values, the converged final

models would inherently differ due to those inputs, since any difference in the initial mass and metallicity

would cause crucial changes in the evolution path and final state of the star. The different input parameters

would not allow to isolate the visible differences in the stellar structure and evolution solely due to the

mechanisms of transport of angular momentum which is one of our goals of study.

Table 4.3 summarizes the properties of the final converged models (without mixing of chemical elements)

with the respective χ2
star. We notice that the predictions of all these models are compatible with the stellar

observational parameters shown in table 4.1.

4.2.2 Modeling rotation-induced mixing

Including rotation-induced mixing processes in stellar models is far from trivial. As described in chapter 3,

MESA uses a diffusion approach where the diffusion coefficient in equation (3.2) is determined as the sum

of individual mixing processes. This gives rise to discontinuities along the radius of the models as seen in

figure 4.1, particularly in the model accounting for hydrodynamic instabilities since there is a sum of five

different coefficients. On one hand, to overcome this problem some degree of spatial smoothing is applied

to the models. On the other hand, a new problem arises, namely the effects of the mixing processes on the

chemical composition and internal structure are enhanced. This MESA feature is in ongoing development

so the results have to be interpreted with caution.

On that note, we accounted for rotation-induced mixing and implemented a minimal smoothing on three

of the models described in the previous section: hydrodynamical instabilities model; TS dynamo model;

Fuller-formalism model. The rotation-induced mixing coefficient of the Fuller-formalism is being implemented

in a computational model for the first time in our work.

The models with mixing converge with χ2 values much higher than one 1 (see table 4.4). This is a result

of initializing this models with the same input parameters as the models without mixing (which we decide

to maintain the consistency between models). The results in tables 4.3 and 4.4 clearly show the important

impact of diffusion in the asteroseismic background structure.

4.3 Computation of stellar oscillations

To fully understand the repercussions of the different mechanisms of transport of angular momentum and

mixing in the stellar interior we need to investigate the oscillation frequencies and respective eigenfunctions

in the crucial regions of the previous obtained MESA stellar models. According to the observed frequency

of maximum power and large frequency separation for KIC 8579095 (table 4.1), we selected the frequency

window (νmax ± 4∆ν) ∼ [100; 200] µHz to compute the oscillation frequencies.

The oscillation modes and corresponding rotational kernels were obtained using GYRE (Townsend and
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Teitler 2013; Townsend et al. 2017) given the MESA input stellar models described above (TS dynamo

and Fuller-formalism). GYRE was used to compute the oscillation frequencies by solving the fourth-order

system of adiabatic equations (e.g., Aerts 2021), given by equations (2.30)-(2.32), rather than relying on the

Cowling approximation.

Differential rotation is implemented according to the Ω distribution of the equilibrium stellar model (assum-

ing shellular rotation). We took advantage of the lowest-order rotation effects in the oscillations equations

included in GYRE (does not account for the Coriolis effects). The rotational splittings for all the modes in

our frequency window were obtained according to equation (2.46).

Table 4.5 shows the estimated core rotational splittings obtained using δνrot = max(δνrot,n,l=1) (Mosser

et al. 2012). In other words, we selected the mode with higher Enorm and retrieve the respective rotational

splitting, that should in theory correspond to the core rotation rate.

Model ∆ν ∆Π1 δνrot σδνrot
(µHz) (s) (nHz)

Fuller-form. 78.88 12.62 291.91 5
Fuller-form. with mix 78.60 12.62 252.10 23

TS dynamo 78.88 12.62 8982.48 5957
TS dynamo with mix 78.71 12.63 5090.96 3292

Table 4.5: Large separation in frequency and separation in period for dipole modes obtained using asymp-
totic expressions (equations (2.40) and (2.42)), and rotational splittings plus the respective relative er-
rors. This values were computed using GYRE for the TS dynamo and Fuller-formalism, with and without
rotation-induced mixing.
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Chapter 5

KIC 8579095: Impact of rotation in
stellar models with transport of angular
momentum

In this chapter we discuss how different angular momentum transport mechanisms impact the evolution and

structure of a red giant model. We also implement mixing induced by these angular momentum mechanisms

to visualize the evolution of the abundance profiles of various chemical elements. At last, we obtain the

frequency modes for the Tayler-Spruit dynamo and Fuller-formalism with and without mixing to understand

their important on the mode propagation in the various regions inside the star.

5.1 Angular momentum transport

A description of the models and its input parameters used in this section is written in detail in chapter 4. We

successfully modeled the stellar evolution of the star KIC8579095, reaching the values for measured and

estimated quantities Teff , log g, ∆ν in table 4.1, and matching the core rotation rate of the red giant model to

the asteroseismic derived rotational splitting by adjusting the α parameter of the Fuller-formalism.

The models with different mechanisms of transport of angular momentum (figure 5.1 filled lines) barely

show any deviations from the point of view of the surface stellar variables (e.g., luminosity, effective temper-

ature, surface gravity) – less than 0.05% deviation – and also from the asteroseismic diagnostic variables

(e.g., large frequency separation, dipole modes period spacing) – less than 0.1% deviation. In fact, the

helium core mass and radius are one of the variables more influenced by the different mechanisms, with a

relative deviation around 0.1% and 0.04%, respectively. Overall, the major impact of these mechanisms rely

on the evolution of the core rotation rates and they solely differ in the efficiency of transport of angular mo-

mentum from the inner to outer regions of the star. In the subgiant phase the envelope suffers an expansion

while the inert helium core contracts. This is where the mechanisms diverge and predict different core spin

rates. On the other hand, the surface rotation behavior is similar for all models, and evolves as rigid rotation

throughout all stages of evolution.
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Figure 5.1: Evolution of core rotation rates as a function of radius from the ZAMS to below the RGB bump
(left panel). Rotation profile for calibrated RGB models (right panel). The full (dotted) lines indicate the
models without (with) mixing of chemical elements induced by rotation. Models accounting for conserva-
tion of local angular momentum (purple), including transport of angular momentum due to hydrodynamic
instabilities (blue), and to magnetic torques in radiative regions, with the Tayler-Spruit dynamo (green) and
with the Fuller-formalism: α = 1 (yellow) and α = 1.65 (red). The star symbol represents the location of
KIC8579095. The grey dashed and dotted line corresponds to the surface rotation rate of all the models.

The top panel of figure 5.1 illustrates the core rotation rate evolution with the stellar radius of an approx-

imately 1.4 M� red giant model with different prescriptions of transport of angular momentum in the inner

radiative region.
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The model accounting for conservation of angular momentum (purple) predicts the highest core rotation

rates at all times, and a core spin up of more than 2 orders of magnitude higher than observed values for

this red giant. This model has no substantial mass loss star, thus in the main-sequence phase the model

does not lose mass and already spins faster comparing to the other models. In the subgiant phase, due to

the local conservation of angular momentum, the core contracts and spins up drastically while the surface

expands and consequently spins down to very low values. Along the red giant branch, the core continues to

spin up but at a lower rate, and the surface continually spins down.

The inclusion of transport of angular momentum through hydrodynamical instabilities (blue) also leads

to higher core rotation rates in the red giant phase than current measurements. In fact this model predicts

almost the same rotation rate as the model with conservation of angular momentum, which reveals how non

efficient this mechanisms are in this mass range.

The Tayler-Spruit dynamo model (green) provides a lower core spin up at the subgiant phase than the

model considering local conservation of angular momentum or even the model with hydrodynamic instabil-

ities (same results in Cantiello et al. 2014). However the core rotation rate is still one order of magnitude

higher than asteroseismic values. The low efficiency of transport comes from the suppression of angular

momentum mixing in red giant due to the steep composition gradient. Cantiello et al. (2014) increased the

coefficient of diffusion by a factor of 100 however that still did not lower the rotation rate to match observed

values.

After the initial spin up in the subgiant phase, the efficiency of transport of angular momentum in the

Fuller-formalism (Fuller et al. 2019) model (red) matches the observed core rotation in the red giant. Figure

5.1 shows 2 models with a different value for the free parameter α of this mechanism. The original paper

suggests α ≈ 1 as a reasonable saturation parameter that leads to good agreement with asteroseismic

core measurements. In our models, a higher value of α = 1.65 was needed to meet the core rotation rate

of KIC8579095. This parameter enters in the calculation of the viscosity coefficient and in the instability

condition and we discuss its implications in the next chapter 6.

The bottom panel of figure 5.1 illustrates the rotation profile of the calibrated red giant models, for the four

mechanisms of transport of angular momentum. All models predict almost rigid rotation in the helium core.

The decay of rotation in transition zone between radiative and convective layers, with H-burning in the shell

surrounding the core, diverges between models. The conservation of angular momentum, hydrodynamical

instabilities and the TS dynamo models decay exponentially (as can be seen in figure 5.1). Whereas the

Fuller-formalism decays with a tanh(r) function (as implemented in the code from Fuller et al. 2019). In the

convective zones, all the models show almost uniform rotation.
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5.2 Rotation-induced chemical mixing

Rotation-driven transport processes have to be taken into account to explain the discrepancies between

abundance observations and stellar evolution models predictions. This mechanisms are only dominant in

some cases, thorough calculations must be performed incorporating chemical transport via other equally rel-

evant sources such meridional circulation, convective overshoot, thermohaline mixing and others, however,

this is out of the scope of this thesis.

In this section we included rotation-induced mixing processes (figure 5.1 dashed lines) in three of the

models of the previous section: hydrodynamic instibilities, Tayler-Spruit dynamo and Fuller-formalism; to

understand their role on the evolution of chemical abundances in a particular red giant model and test if they

can in fact explain some of the current discrepancies between numerical models and observations. The

models obtained in this section are described in detail in chapter 4, and are initialized with the same input

physics as the models in the previous section with the addition of rotation-induced mixing.

In figure 4.1 of the previous chapter we sought that the mixing diffusion coefficient for the model including

hydrodynamical instabilities surpasses by 4 and 6 orders of magnitude the coefficient for mixing induced by

the Tayler-Spruit dynamo and Fuller-formalism, respectively. Hence, we expect higher mixing of chemical

elements in between radiative and convective regions (the so-called tachocline region) from that first model.

The expression derived by Fuller et al. (2019) for the mixing of chemical elements (equation (3.16))

predicts very lower values (νmix/νAM ∼ 10−6). Models with the Fuller-formalism exhibit slower core rotation

and smaller shears, which translates into a non efficient mixing of chemical elements in stellar interiors.
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Figure 5.2: Ratio between the diffusion coefficients for rotation-induced mixing (Dmix) and angular momen-
tum transport (νAM). In blue is the model computed using the Tayler-Spruit dynamo prescription. In red is
the model obtained using the Fuller-formalism.
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Figure 5.3: Brunt-Väisälä frequency as a function of radius for the RGB models with mixing induced by
the hydrodynamic instabilities (yellow), by the Tayler-Spruit dynamo mechanism (green) and by the Fuller-
formalism (red). The model without mixing is illustrated with a black dashed line. The horizontal grey line
indicates the measured frequency of maximum oscillation power νmax of KIC8579095.

Since this hypothesis was not previously tested in computational models, we include this expression in our

models to test the statements of the original paper. We observed that νmix/νAM varies from 10−13 to 10−5

in the regions where the instability is triggered (see figure 5.2). Hence in our models, the Fuller-formalism

manifests slightly higher mixing than what was initially theorized, nonetheless still very low values and non

significant. However, the resolution of this processes in numerical evolution codes needs to be improved in

order to derive further conclusions.

The repercussions in the internal properties of the star due to rotation-induced mixing are more visible in

the asteroseismic variables (e.g., large frequency separation and mixed mode period spacing; see tables 4.3

and 4.4). There are small but visible changes in the density and abundance profile of the red giant models

due to the mixing processes (see figure 5.4). In figure 5.1 we can identify that models including rotation-

induced mixing predict slightly lower rotation rates. The induced mixing seems to act as an additional angular

momentum diffusion coefficient increasing its transport efficiency.

The Brunt-Väisälä frequency (figure 5.3) is also affected due to the change in compositional gradient in

the inner layers (below the convective envelope). The highlighted spike around 0.04 R� that results from a

variation in the chemical composition at the H-shell burning displays some disparity between different mixing

processes. Nonetheless, this spike is far from the observational window centered around the frequency of

maximum oscillation power, so it will unlikely contribute to constraint the mixing coefficients. The second

spike around 0.5 R� results from chemical discontinuities left behind by the receding convective envelope.

This is the signature of the first dredge up that occurs when a low mass star enters the red giant phase,
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Figure 5.4: Evolution of mass fractions of several chemical species with radius for the red giant
KIC8579095. In the top panel the mass fractions are 1H (purple), 4He (yellow) and multiplied by 1000 3He
(green). In the bottom panel the mass fractions are multiplied by 50 for 12C (green), 14N (blue) and mul-
tiplied by 100 for 16O (red). The models without mixing induced by rotation are grey and the models with
mixing induced by the hydrodynamic instabilities are the dotted dashed lines, by the Tayler-Spruit dynamo
mechanism the dashed lines and by the Fuller-formalism the full lines.

where the convective envelope extends up to the nuclear reactions region. There are slight visible differ-

ences between mixing mechanisms in that spike, although still not significant. Nonetheless, in more extreme

cases (e.g., more efficient mixing mechanisms), this sharp features may affect g-dominated modes (through

buoyancy glitches Cunha et al. 2015) and hence become mensurable.
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The mass fractions of 1H, 3He, 4He, 12C, 14N and 16O profiles for the calibrated red giant models are

illustrated in figure 5.4. The main variation takes place in the tachocline region as expected. Models with

mixing induced by hydrodynamic instabilities show a less steeper slope (very small difference) than the

other models in this transition region. Hence, rotation-induced mixing seems to smooth the abundance

profile in the interior (also observed in Charbonnel and Lagarde 2010). Our models do not predict signifi-

cant modifications in the surface abundances, which can potentially come from the weak mixing power of

this rotation-induced mechanisms as discussed in chapter 3. However this is an important tracer in order

to compare this models with current spectroscopic abundance measurements (Somers and Pinsonneault

2016).

Both the mixing of chemical elements by the Tayler-Spruit prescription and by the Fuller-formalism show

a small effect in figure 5.3 and 5.4 (as expected by Maeder and Meynet 2004 for the case of TS dynamo).

The mixing due to hydrodynamic instabilities has the higher impact as expected.
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5.3 Asteroseismic diagnosis

In this section we compute important asteroseismic variables that can be used to extend our knowledge in

stellar interiors. Particularly, the observation of dipole modes in red giant stars reveal a mixed mode pattern

which is extremely useful to use as a complementary tool to probe the core structure and chemical proper-

ties. In this section, stellar oscillations for theoretical models were computed using GYRE (see chapter 4 for

details).

Period spacing

The left panels of figure 5.5 illustrate the period spacing for modes with l = 1 for the models with transport of

angular momentum/mixing mechanism by the Fuller-formalism with α = 1.65 (top) and by the Tayler-Spruit

dynamo (bottom).

The pattern of period spacing in figure 5.5 shows mixed modes, predominantly of g-mode character. The

several local minima and maxima of the period spacing, suggests that the modes in between those regions

are being subject to trapping. At high frequency (low period), the period spacing shows a characteristic de-

crease as more local minima appear in the pattern due to an increase in p-dominated modes. At relatively

low frequency (high period), the frequency spacing becomes nearly constant in agreement with the asymp-

totic period spacing (equation (2.42); horizontal grey dashed line). Therefore, observations of low frequency

g-dominated modes provide constraints to the integral of the Brunt-Väisälä frequency in the stellar cores

(Hekker and Christensen-Dalsgaard 2017).

The chemical discontinuities previously described in the Brunt-Väisälä frequency, can also be observed

through sharp features (also called glitches) in the oscillation spectrum and in the mixed mode period spac-

ing, and cause oscillatory variations in the frequencies that can be modeled (Cunha et al. 2015). We do

not observe glitches in the models with mixing which is another possible indication that the impact of this

rotation-induced mixing processes is not enough to leave a detectable imprint on oscillation frequencies.

Mode inertia

The right panels of figure 5.5 illustrate the normalized inertia for l = 1 modes Fuller formalism (top) and the

TS-dynamo (bottom) models. The mixed mode pattern is very defined by the large contrast between the

deep local minima and maxima.

The values of Enorm are much larger for g-dominated modes – about one order of magnitude – than

for p-dominated modes. This reflects the higher contribution to the mixed mode that g-dominates modes

have in the core, since they present larger amplitudes in the inner radiative cavity than p-dominated modes.

The models with rotation-induced mixing of chemical elements show slight lower Enorm in comparison with

models without mixing, but this effect is fairly negligible.
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Figure 5.5: Period spacing of dipole modes as a function of the mode period, for models including the
Fuller-formalism (top left) and the TS dynamo (bottom left). Normalized inertia for dipole modes as a func-
tion of period, for models including the Fuller-formalism (top right) and the TS dynamo (bottom right). The
grey dashed line represents the estimated dipole mode period spacing ∆Π1 = 78.2 s from Gehan et al.
(Gehan et al. 2018).

Rotational splittings

In figure 5.5 (left bottom) it is evident the drastic impact of rotation in the oscillation frequencies. Rotational

splittings of g-dominated modes are a great tool to probe the rotation of the central region. The rotational

splittings are computed with GYRE using equation (2.46), hence, the splitting of modes follows the almost

same behavior as the value of Enorm. Rotation causes a slope on the period spacing pattern in the low

frequency g-dominated modes, and higher rotations lead to steeper slopes. The splitting of oscillation

frequencies increases with the higher rotation rates, hence models with TS dynamo mechanism predict

higher splittings. On the other hand, in the previous section we observed that including rotation-induced

chemical mixing slightly decreases the core rotation rate, and as we can see in figure 5.5, this reflects on a

slightly lower frequency splitting.
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Radial and horizontal displacement

Figure 5.6 presents two of the scale eigenfunction displacements calculated in this work. The full compi-

lation of figures can be found in appendix B. We want to find a correlation between the amplitudes of the

eigenfunctions in stellar interiors and the differences observed in figures 5.5 when implementing the various

models with/without rotation-induced mixing.
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Figure 5.6: Scaled radial and horizontal displacement (on arbitrary scale) for modes with l=1 and m=-1, ν
= 102.4 µHz. Models with the Fuller-formalism on the left and with Tayler-Spruit dynamo on the right, both
computed with and without rotation-induced mixing for comparison purposes. For reference, the selected
mode corresponds to the local minimum around 9770s in figure 5.5.

The general behavior in the figures of appendix B reveals that more visible differences between models

with and without rotation-induced mixing arise in modes with lower inertia (correspond to local minimum in

figure 5.5). This modes are less g-dominated and more p-dominated, as can be seen by the lower amplitude

in the deepest zone (∼ 0.6) and the higher amplitude closer to the surface in figure 5.6 in comparison to

modes with higher inertia.

The horizontal eigenfunction amplitudes near the deepest zone r/R < 10−2 for models with mixing of

chemical elements due to rotational transport are slightly lower than without mixing. Closer to the surface,

this differences dissipates. For the models computed using the Tayler-Spruit dynamo the variations are more

visible than models with the Fuller-formalism, as expected, in particular in modes with m=1 or m=-1, since

one can identify a small shift in the eigenfunctions when including rotation-induced mixing.

Overall the variations are of very lower amplitudes hence they unlikely will be mensurable. Nonetheless,

the potential of asteroseismic diagnostic tools to probe the mixing in stellar interiors should not be dismissed

and instead explored with other more efficient mixing processes.
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Chapter 6

Asteroseismic constraints on angular
momentum transport models

This chapter is devoted to the subject of evolution of rotation rates from the main-sequence to the red clump

stage (RC; stars that are currently fusing helium in their cores). We start by reviewing the current status

of asteroseismic rotation data along stellar evolution. Next, we discuss the impact of the initial parameters:

stellar mass, metallicity, convective overshooting and α parameter from the Fuller-formalism when modeling

rotation. Lastly, we compute the initial rotation period and the free parameter α using the Fuller-formalism in

order to reproduce the observed surface and core rotation rates obtained through asteroseismic inversions.

6.1 Asteroseismic constraints on rotation rates along stellar evolu-
tion

The rotation profile evolves as the star moves along the HR-diagram. Asteroseismology is a great tool to

constraint the core and surface/envelope rotation rates of stars from the main-sequence to the white dwarf

phase.

However, asteroseismic rotation splittings of main-sequence solar-like stars cannot probe core rotation

rates Ωcore, only envelope rotation rates Ωenv (near surface layers). Nonetheless, asteroseismic rotation

rates in combination with surface rotation rates, Ωsurf obtained using high-precision spectroscopic measure-

ments of v sin i, revealed that intermediate mass main-sequence stars envelopes rotate nearly uniformly

(Aerts et al. 2019). Observational data shows two distinct rotational regimes on the main-sequence stage

(Kraft 1967). Stars with masses greater than 1.2 M� that do not spin down during the main-sequence and

remain fast rotators. Stars with masses lower than 1.2 M� that spin down presumably due to magnetic

braking during the main-sequence, thus are generally slow rotators. After the main-sequence, there is a

general decrease in the surface rotation rate with age for both mass ranges.

On the subgiant branch, as the core contracts, the inner and outer regions evolve with different rotation.

The core spins up while the envelope spins down as it expands (Marques et al. 2013). The number of mixed

modes at the beginning of the subgiant branch is small, however, it increases as the star evolves towards
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Figure 6.1: Core (filled circles) and envelope/surface (empty circles) rotation period as a function of the
stellar radius for 1,093 stars with masses between 1-2 M�. The asteroseismic estimates of core and sur-
face rotation and respective radius of 34 main-sequence (yellow), 6 subgiants (red), 843 red giants (blue)
and 164 red clump (green) stars were obtained from Aerts et al. (2019). The 46 remaining main-sequence
(yellow) stars were taken from Hall et al. (2021) and the respective radius from Aguirre et al. (2017). The
dashed black lines indicate the fit performed to subgiant, red giant and red clump core rotation period.

the red giant branch. Nonetheless the core and envelope rotation of subgiant stars are currently precisely

determined from asteroseismic measurements (Deheuvels et al. 2014).

As stars evolve up in the red giant branch, the number of g-dominated modes increases in comparison

with the existing mixed modes (Dupret et al. 2009) hence measurements of these modes essentially probe

the core rotation (Beck et al. 2012) and reveal a strong differential rotation profile (Marques et al. 2013).

This implies that there must be an efficient angular momentum transport mechanism in the inner regions of

subgiant and red giant stars.

Asteroseismic estimates of red clump stars show they are rotating (Mosser et al. 2012) six times slower

than red giant cores. This can be somewhat explained by the change in core radius during He-burning, but

not entirely, suggesting a strong transfer of angular momentum from the inner to outer regions.

Figure 6.1 shows the core and envelope or surface rotation period as a function of the stellar radius from

a sample of 1,093 stars that were monitored during Kepler mission, obtained from combination of the data

in Aerts et al. (2019) and in Hall et al. (2021). The sample varies from main-sequence up to red clump

stars, with stellar masses between 1-2 M� and stellar radius between 1-15 R�. Asteroseismic masses

and radii were deduced from scaling relations (defined in equations (2.38) and (2.39)) of damped p-modes

or from forward modeling of g-modes obtained by Aguirre et al. (2017), with precisions of ∼4% and ∼2%,

respectively. The rotation rates vary from 0 up to 80% of the critical velocity, with precisons from 0.1-5%

(Aerts et al. 2019), hence their errors are smaller than the symbol size in figure 6.1. We also excluded from
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the initial sample stars in binaries systems.

To estimate how the core rotation period varies with the stellar radius along the subgiant, red giant and

red clump stage we performed a linear fit to logarithm of the data from figure 6.1 to obtain the power laws

below and compare them with the values in Mosser et al. (2012). Taking into consideration our broader

mass range [1,2 M�], we obtained the following values:

Pcore,SGB ∝ R−3.5±1.1 Pcore,RGB ∝ R0.27±0.09 Pcore,RC ∝ R1.4±0.5 (6.1)

We found no correlation between the core rotation periods and the stellar mass of the stars in the subgiant,

red giant and in the red clump phase.

During core H-burning, the radius of main-sequence stars does not increase significantly, hence the

rotation period does not depend strongly on the radius as we can see from the data in figure 6.1. On the

subgiant branch, we observe that the period decreases with increasing radius, in opposition to van Saders

and Pinsonneault (2013) results. However, the number of subgiant stars in figure 6.1 is not enough to take

plausible conclusions. From the red giant power law, we found that red giants period slightly increases with

radius. We estimate a less steeper slope than found by Mosser et al. (2012) (PRGB ∼ R0.7±0.3), that can

possibility be justified by our broader mass range [1,2 M�]. Red clump stars spin down faster as they evolve.

The slope found for red clump stars agrees with the Mosser et al. (2012).
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6.2 Impact of input parameters in rotation

To investigate the dependence on the input physics of stellar models on the evolution from the main-

sequence to above the red giant bump, when including the Fuller-formalism (Fuller et al. 2019), several

models were generated with different initial stellar masses, metallicities, convective overshooting and α

parameters.

The benchmark model (purple) was computed with an initial stellar mass of 1.5 M�, Z= 0.02, fov = 0.015

and αmlt = 2 with an initial period of 2 days and α = 1. This mass is commonly used for studying rotation

on red giants (see e.g., Cantiello et al. 2014), the rest of the values were chosen based on the calibration

performed for a RGB star in chapter 5, and all the non-disclosed remaining parameters are the same as in

Fuller et al. (2019), also described in chapter 4.

Mass

To test the sensitivity of rotation rates in models with the Fuller-formalism to the initial mass along evolution,

all models were generated with identical starting conditions to the benchmark model but different initial

masses. In the top left panel of figure 6.2 we show the evolution of core and surface rotation rates of models

with initial masses ranging between 1-2 M�, starting from the zero age main-sequence and ending right

above the red giant bump.

An increase in the mass leads to a decrease in the core rotation rate, and this is particularly notorious at

the end of the subgiant phase. The surface rotation rate also decreases with mass, however the difference is

less significant than in the core. This behavior is expected according to equation (3.14) as νAM ∼ R2. Since

more massive stars have higher radius models, they have more efficient angular momentum transport. The

increase in efficiency of transport of angular momentum leads to a decrease of core rotation. Since there is

a visible change due to increase of mass, this means that the increase of radius in the later stages possibly

overpowers the other quantities (e.g., local rotation and Brunt-Väissälä) in the coefficient of transport of

angular momentum using Fuller-formalism prescription (equation (3.14)). Lastly, we observe that the degree

of differential rotation in the models increases slowly with mass from the end of the subgiant phase.

Metallicity

The top right panel of figure 6.2 illustrates the evolution of core and surface rotation rates of models with

surface gravity for initial metallicities ranging between Z = 0.015− 0.045.

The major differences in core rotation rates due to initial composition lay in the main-sequence and

subgiant phase. The lower metallicity models show shorter total lifetimes. At the end of subgiant phase,

the lower metallicity models reach higher helium core radius, which according to equation (3.14) translates

roughly into higher viscosity and more efficient transport of angular momentum to the outer layers, thus

lower rotation rates.
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Figure 6.2: Rotation rates as a function of the surface gravity. The full (dashed) line indicates the core (sur-
face) rotation models. The benchmark model is marked in purple. Top left panel illustrates models with
different masses ranging between 1-2 M�. Top right panel with different metallicities between Z = 0.015-
0.045. Bottom left panel with different overshooting parameters between fov = 0-0.04. Bottom right panel
with different α parameter values between α = 0.1-5. The input physics of the stellar models is described in
the text.

As the star moves along the red giant branch this situation is inverted. The more metal rich stars ex-

pand more than the metal poor ones (as seen in van Saders and Pinsonneault 2013), thus increasing the

efficiency of transport of angular momentum in their cores and consequently slowing them down. Despite

the metal rich models reaching higher rotations in the initial stages of evolution, in the late stages they have

slowed down and met the rotation rates of the metal poor ones. The top right panel of figure 6.2 shows that

the core rotation of different metallicity models is almost unaffected in the red giant branch while surface

rotation rates are visibly affected, since metal rich models reach higher surface rotation rates. Hence, more

metal rich models develop a lower degree of radial differential rotation in later stages of evolution.

Convective overshooting

The overshooting parameter fov is a scaling parameter and when reduced to zero makes the boundary

between the radiative interior and the outer convective zone in stellar models extremely sharp. In literature
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the adopted value for fov is around 0.016 (Herwig 2000), hence we tested a range between fov = 0 − 0.04

(as in Paxton et al. 2013) to understand the impact this parameter has in the rotation rate of our stellar

models.

The bottom left panel of figure 6.2 illustrates the evolution of core and surface rotation with the sur-

face gravity for various fov. Increasing overshooting affects the stellar models similarly as increasing initial

masses but with more emphasis in the red giant phase, improving the efficiency of internal transport of

angular momentum. The impact on the surface rotation rate of these models is negligible. The degree of

radial differential rotation slowly decreases with increase overshooting.

α parameter

The efficiency of transport of angular momentum relies in the coefficient of equation (3.14). An increase in α

enhances the efficiency of transport and core spin down, since νAM ∝ α3. According to Fuller et al. (2019),

the α parameter has an even more significant impact in the computation of the minimum shear qmin ∝ α−3

for the instability to occur. α leads to a decrease in qmin, so when q > qmin, efficient angular momentum

transport will tend to decrease the shear until q ∼ qmin and consequently the reduce the core rotation. The

bottom right panel of figure 6.2 illustrates the evolution of core and surface rotation with the surface gravity

for α ranging between 0.1-5 (values decided according to recent studies in this variable; Fuller et al. 2019;

Eggenberger et al. 2019; den Hartogh et al. 2020).

The minimum shear in equation (3.15) also shows a dependence on the effective Brunt-Väissälä fre-

quency. The shear is strongest where the compositional component N2
µ is large due to stratification, and

that is at the H-burning shell in the subgiant and red giant stages. As such, we expect the mechanism to be

more effective in those phases.

As expected, figure 6.2 reveals a significant impact in the core rotation rate in the sungiant and red giant

stages with increasing α parameter, and none at the main-sequence where the models experience solid

body rotation. The age at which the spin up of the core happens suffers a delay with the increase of α.

Higher efficiency of transport of angular momentum prevents the spin up of the core: with a lower α the

core spins up during the subgiant phase whereas with a higher α the core only spins up in the early red

giant phase. In the red giant phase the core rotation rate decreases up to an order in magnitude (Ωcore ∈
[200-2000 nHz]) with increase α. The surface rotation rates are unaffected by this parameter.Hence, the

models with faster core rotation (e.g., α = 0.5) develop a higher degree of radial differential rotation.
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6.3 Constraining the α parameter

As observed in the previous section (6.2), the α parameter of the Fuller-formalism has a very significant

impact in the evolution of core rotation rate and angular momentum transport efficiency. Figure 4 of Fuller

et al. (2019), shows a range of values for this parameter α ∈ [0.5− 2] with different initial spin rates Pi, that

are able to reproduce the core rotation of a limited sample of red giants, red clumps and white dwarfs.

Using the asteroseismic data from figure 6.1 that contains a broader range of core and surface rotation

rates of main-sequence, subgiant, red giant, and red clump stars than Fuller et al. (2019), we aim to establish

new limits for the α parameter. To do so, we build two models: one that aims to reproduce the core and

surface rotation rate of fast rotators (fast track) and a second for slow rotators (slow track), using the Fuller-

formalism. To achieve this, we created two sets of models: in the first set (top panel of figure 6.3), the initial

rotation period Pi for the fast and slow track models (green and purple) was fixed to match the maximum and

minimum observed rotation rates of main-sequence stars. In the second set (bottom panel of figure 6.3), Pi

for the fast and slow track models (blue and orange) was allowed to vary. In both sets, the α parameter was

chosen to match the core rotation rates of subgiant, red giant, and red clump stars. All models in figure 6.3

were computed with an initial mass of 1.5 M�, Z= 0.02, fov = 0.015 and αmlt = 2, the rest of parameters

are the same as in Fuller et al. (2019), described in chapter 4.

The lower amount of subgiant stars in figure 6.3 does not give a good representation of the core and

surface rotation rates, mass and metallicity of those stars. More asteroseismic data from those stars is

needed in order to fully determine their range of rotation rates and constrain stellar models. Taking that

information into consideration, for the sole purpose of this discussion we will be using those values as

our guide for the subgiant rotation rates. The same principle applies to the main-sequence stars in this

discussion. Even tough we gathered a significant amount of those stars, they are sparsely distributed in

figure 6.3.

For the two sets of models in figure 6.3 we obtained the same α parameter values for the fast and slow

tracks α = 0.5 and α = 5, respectively. α = 0.5 is needed to model the subgiant, red giant and red clump

fast rotators. At least α = 5 is needed to model the slow rotators in the red giant and red clump phase.

However, even this α value is not enough to reach the lowest core rotation rates. Increasing the α even

more shows small to no improvement in slowing down the core, as can be seen in the bottom panel of figure

6.2. Increasing the mass or the convective overshooting would however reach the desired results, hence we

defined the limit to be α = 5.

Models with the same α converge to the same core rotation rates in the red giant branch, independently

of the imposed initial rotation. This can become a problem in stellar modeling, since there are other factors

that we do not take into account (e.g., magnetic braking, anisotropic winds, binary stars) that also have a

great impact in the rotation, and that the α could possibly overpower.

The α parameter varying between 0.5 and 5 implies that the viscosity coefficient has to vary between

0.125 to 125 due to the cube dependence on α. Corresponding to a variation of 3 orders of magnitude
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Figure 6.3: Core and surface (solid and dashed lines) rotation rates as a function of stellar radius from the
ZAMS until RC phase. Top panel: models constraining the initial periods of the models to match the MS
fastest and slowest rotators. Bottom panel: models where the initial period was not constrained. The data
points are the same as in figure 6.1.

both in the viscosity coefficient and in the required shear for the Tayler instability to saturate. Hence, the

degree of freedom of this parameter is compensating for important missing physics not included in the

Fuller-formalism, as discussed in previous reviews.

In early main-sequence stages the core and surface rotation rates strongly depend on the initial rotation

rate. The initial rotation period also has an impact in the model’s age – lower initial periods seem to generate

younger evolutionary tracks. Besides, there is also a strong dependence of the viscosity on the local spin
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Figure 6.4: Core and surface (solid and dashed lines) rotation period as a function of stellar age from the
ZAMS until RC phase. Top panel: models constraining the initial periods of the models to match the MS
fastest and slowest rotators. Bottom panel: models where the initial period was not constrained. The boxes
refer to data in figure 6.1 with estimates of the ages for the evolution of a 1.5 M� star. Filled (stripped)
boxes correspond to core (surface or envelope) periods. Boxes in yellow, red, blue and green correspond
to estimated MS, SGB, RGB and RC stars rotation rates, respectively.

rate, νF ∝ Ω3 (Fuller et al. 2019). As such, the fast track (top panel of figure 6.3) in the early stages

experiences a stronger decrease in rotation, although not enough to slow down the core to match the

subgiant measurements. In later stages, the core rotation evolution is poorly affected by the initial rotation

period.

In this section we abstain to discuss the effects of fast rotation in the stellar surface (see appendix A for
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a brief study). Nonetheless, the fastest main-sequence stars in our data are in a rotation range were their

surface variables will be substantially affected by the centrifugal force.

The surface rotation in not affected by the α parameter variations, on the other hand it highly depends

on the rotation imposed at the zero age main-sequence. Therefore, surface rotation rates in the top panel of

Figure 6.3 do not match subgiants and red giants measured rates, whereas the bottom panel of figure 6.3

shows a better agreement with observations.

Figures 6.4 illustrate the evolution of core and surface rotation period with the age of Fuller-formalism

models, for the two sets of models. The bottom panel of figure 6.4 shows models with a good match for

the lower and higher rotation periods of subgiant and red giant stars. The Fuller-formalism predicts slightly

higher periods for the red clump fastest and slowest rotators, nonetheless the results are still very close to

observations.

Our attempt to create a fast and slow rotation track to constraint the observed rotation rates, revealed that

the Fuller-formalism overestimates the spin down of the core between the red giant and red clump phase.

We explored changing the α parameter after the red giant bump to compensate this effect, however it did not

reproduce the desired results. Since most of the angular momentum extraction in these models happens

in the subgiant and red giant phase. And at later stages, due to the large stabilizing composition gradients,

the rotation rates are reproduced with conservation of angular momentum (e.g., Cantiello et al. 2014, Fuller

et al. 2019).

We can compare (indirectly) the figure 6.4 with 6.1, since the radius of the stars in this range of mass

between the main-sequence and red giant increases with age. Figure 6.4 shows a positive slope in the

period of subgiant models and a negative slope in the period of red giant models in opposition to values in

equation 6.1. Although, the Fuller-formalism models matches the observed core rotation rates, the evolu-

tionary tracks of this models divergences from the fits performed to the measured rotation rates, revealing

some inaccuracies in the formalism.
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Chapter 7

Conclusions

In this thesis we focused on overall aspects of rotation in red giant stars, more precisely the transport of

angular momentum and mixing of chemical elements in radiative zones of 1-2 solar mass stars.

The recent measurements of gravity dominated mixed modes in red giant stars showed slower core

rotation rates than predictions, leading to the inevitable conclusion that a more efficient transfer of angular

momentum is needed in current stellar models to explain the discrepancies. Transport processes in stellar

interiors are extremely complex. Despite several proposed theories, there is still no consensus on the

mechanisms responsible for the observed core rotation rates.

7.1 Achievements

In the first part of this work, we concluded that the inner regions of evolved stars are mainly affected by

diffusive transport processes. We performed side-by-side comparisons of four mechanisms of transport of

angular momentum that corroborated the small impact of different transport mechanisms in variables not

related to rotation in red giant stars. We successfully reproduced the observed asteroseismic core rotation

rate of a red giant star making use of a recently proposed mechanism based on the Tayler instability. The

inherent calibration of the free parameter in this theory revealed a higher value than was initially proposed

for red giant stars.

We implemented for the first time the rotational-driven mixing coefficient of the Fuller-formalism in the

interior of red giant stars. Comparisons of the efficiency of three transport processes revealed expected, al-

beit important results. The efficiency of mixing induced by rotation is overestimated in less efficient transport

mechanisms due to higher core rotation predictions. Our study shows that the inclusion of mixing increases

slightly the efficiency of angular momentum transport.

Using the previous results, we carried out calculations for the oscillation mode frequencies. We verified

the mixed mode period spacing pattern present in red giant stars. The period spacing and the frequency

splitting of mixed modes showcased clear distinctions between different transport processes and small ones

between mixing processes. This notable result confirms that asteroseismic derived rotational mixed mode
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splittings are a great tool to probe the values of the diffusion coefficient for angular momentum transfer, and

a potential tool to study the mixing of chemical elements in evolved stars.

Lastly, we performed a further study on the Fuller-formalism. Based on our results, the transport effi-

ciency is particularly sensitive to variations on the initial stellar mass and less dependent on the metallicity

and convective overshooting. With that information, we performed a calibration on the α parameter. Astero-

seismic derived rotational splittings from a considerable amount of main sequence to red clump stars were

used to constraint the models. We established new limits for the α parameter of the Fuller-formalism using

a wide range of rotators with 1-2 solar masses.

7.2 Future Work

Further advances in this field of study are largely dependent on upcoming discoveries in asteroseismology.

In this work, the low number of asteroseismic rotation data for subgiant stars constituted a limitation when

obtaining the range of rotation for those stars. More asteroseismic data of those stars is needed to constraint

with high precision the rotation profiles of stellar evolutionary models. The space missions COROT and

Kepler already provided a considerable amount of stellar oscillation data of main-sequence, red giants and

white-dwarfs. The on-going TESS mission and the future PLATO mission (expected to launch in 2026) will

hopefully survey an increasingly higher amount of stars with unprecedented precision.

In order to perform a more in-depth study on the impact of rotation-induced chemical mixing of the Tayler-

Spruit dynamo and the Fuller-formalism, one needs to include a more complex table of nuclear reactions

in models than what was considered in this work. This would allow to obtain computational abundances

of crucial observational tracers such as lithium, 12C/13C, nitrogen and others. Additionally, different targets

with spectroscopic measurements for these species would also have to considered to perform side-by-side

comparisons.

Another important aspect to consider in future work is the contribution of both magnetic fields and internal

gravity waves to a complete description of angular momentum and rotation-induced chemical mixing in

stellar radiative interiors.
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Provost (2007). “Tracking Solar Gravity Modes: The Dynamics of the Solar Core”. In: Science 316.5831,
pp. 1591–1593. DOI: 10.1126/science.1140598.

64

https://doi.org/10.1146/annurev-astro-082812-140938
https://doi.org/10.1051/0004-6361/201014432
https://doi.org/10.1051/0004-6361/201014432
https://doi.org/10.1126/science.1116849
https://doi.org/10.1103/RevModPhys.74.1073
https://doi.org/10.1103/RevModPhys.74.1073
https://doi.org/10.1007/s41116-020-00028-3
https://doi.org/10.1007/s41116-020-00028-3
https://doi.org/10.1051/0004-6361/201936766
https://doi.org/10.1093/mnras/101.8.367
https://doi.org/10.1088/0004-637x/805/2/127
https://doi.org/10.1051/0004-6361/201322779
https://doi.org/10.1051/0004-6361/202037568
https://doi.org/10.1086/510345
https://doi.org/10.1051/0004-6361/200911713
https://doi.org/10.1051/0004-6361/201936348
https://doi.org/10.1051/0004-6361/201936348
https://doi.org/10.1086/154817
https://doi.org/10.1086/155904
https://doi.org/10.1038/nature03455
https://doi.org/10.1093/mnras/stz514
https://doi.org/10.1126/science.1140598


Gehan, C., Mosser, B., Michel, E., Samadi, R., and Kallinger, T. (2018). “Core rotation braking on the red
giant branch for various mass ranges”. In: A&A 616, A24. DOI: 10.1051/0004-6361/201832822.

Georgy, C., Meynet, G., and Maeder, A. (2011). “Effects of anisotropic winds on massive star evolution”. In:
A&A 527, A52. DOI: 10.1051/0004-6361/200913797.

Gratton, R. G., C. Sneden, E. Carretta, and A. Bragaglia (2000). “Mixing along the red giant branch in
metal-poor field stars”. In: 354, pp. 169–187.

Hall, O. J. et al. (2021). “Weakened magnetic braking supported by asteroseismic rotation rates of Kepler
dwarfs”. In: Nature Astronomy 5.7, pp. 707–714. DOI: 10.1038/s41550-021-01335-x.

Handler, Gerald (2013). “Asteroseismology”. In: Planets, Stars and Stellar Systems. Springer Netherlands,
pp. 207–241. DOI: 10.1007/978-94-007-5615-1_4.

Heger, A., Langer, N., and Woosley, S. E. (2000). “Presupernova Evolution of Rotating Massive Stars. I.
Numerical Method and Evolution of the Internal Stellar Structure”. In: The Astrophysical Journal 528.1,
pp. 368–396. DOI: 10.1086/308158.

Hekker, S. and J. Christensen-Dalsgaard (2017). “Giant star seismology”. In: The Astronomy and Astro-
physics Review 25.1. DOI: 10.1007/s00159-017-0101-x.

Hekker, S., Kallinger, T., Baudin, F., De Ridder, J., Barban, C., Carrier, F., Hatzes, A. P., Weiss, W. W., and
Baglin, A. (2009). “Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet
field ***”. In: A&A 506.1, pp. 465–469. DOI: 10.1051/0004-6361/200911858.

Herwig, F. (2000). “The evolution of AGB stars with convective overshoot”. In: 360, pp. 952–968.
Houdek, G. and M.-A. Dupret (2015). “Interaction Between Convection and Pulsation”. In: Living Reviews in

Solar Physics 12.1, 8, p. 8. DOI: 10.1007/lrsp-2015-8.
Huber, D. et al. (2011). “Testing scaling relations for solar-like oscillations from the main sequence to red

giants using iKEPLER/i data”. In: The Astrophysical Journal 743.2, p. 143. DOI: 10.1088/0004-637x/
743/2/143.

Iglesias, C. A. and F. J. Rogers (1996). “Updated Opal Opacities”. In: 464, p. 943. DOI: 10.1086/177381.
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Appendix A

Impact of rotation in the stellar
structure
In this appendix we briefly touch on the impact of rotation in the stellar surface of KIC8579095 using

the Fuller-formalism, for the prescription of angular momentum transport and without any rotation-induced

chemical mixing (model details described in chapter 4).

The impact of rotation in the stellar structure, as discussed in chapter 2 and 3, is vastly studied in massive

stars since rotation has a substantially stronger effect on their structure. Low and intermediate mass stars

demonstrate weaker effects in fast rotation regimes. Sills et al. (2000) explain that this comes from the fact

that the centrifugal acceleration balances the gravitational pull, consequently reducing the internal pressure

of the star. Since in these stars there is a more a dominant degeneracy pressure in contrast to higher mass

stars, the contribution of rotation to the total pressure in less massive stars will be a smaller fraction.However

small this effects may be, the implementation of rotation on stellar models should not be neglected has it

has secondary implications in other processes (e.g., the amount of lithium depletion).

The top panel of figure A.1 illustrates the HR diagram for a 1.4 M� model including the Fuller-formalism

for different initial rotation velocities. The gravity darkening phenomena, as explained in chapter 3 becomes

visible for higher rotations. The centrifugal acceleration lowers effective gravity, resulting in a reduction in

the luminosity and in the effective temperature. Thus rapid rotators are cooler than slow rotators, despite

the change in luminosity not being as significant as the change in temperature. The effect is dominant in

the main-sequence, but suddenly disappears due to a steep decrease of the rotational velocity of the model

as it evolves along the subgiant and red giant branch. In those stages, the H-burning shell promotes a

rapid envelope expansion increasing the stellar radius hence decreasing the total rotation.In these stages

the effects of high initial rotation rates are not relevant and the models evolve up the red giant branch

into later stages almost independently of that parameter, as can be seen in the middle panel of figure A.1

that illustrates the evolution of the core rotation rate with the stellar radius.In models with initial rotation

close to critical velocities in the main-sequence (e.g., 0.7 Ωcrit) the stellar envelope structure begins to be

compromised as there is a drastic decrease in the effective temperature.

The bottom panel of figure A.1 shows the evolution of the equatorial/polar radius with the stellar radius.

Rotation deforms the star from spherical symmetry, leading to an increase in the equatorial radius relative
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Figure A.1: HR diagram from ZAMS to the RGB of a 1.4 M� model using the Fuller-formalism described in
detail in chapter 4 (top panel). Evolution of core rotation rate with the stellar radius (middle panel). Effect of
increasing rotation rates in the equatorial versus polar radius ratio with the surface gravity (bottom panel).
All panels include models with no rotation (dashed line), initial rotation velocity of 40 km/s (red), 130 km/s
(green), 220 km/s (yellow) and 370 km/s (purple).

70



to the polar radius. Only very rapid rotators experience a strong effect – particularly important in the main-

sequence, as older stars experience an increase in the stellar radius accompanied of a decrease in the

rotation rate, rendering this effect fairly negligible.

Table A.1 shows how the age of the main-sequence models evolves with increasing initial rotation. Fast

rotators have slightly longer lifetimes compared to slow ones, because they are fainter, and behave as

slightly less massive non-rotating stars due to the decrease in total gravitational potential.

Ωini vini Ω/Ωcrit Age
(rad/s) (km/s) (Gyr)

3× 10−5 40 0.1 4.11
1× 10−4 130 0.3 4.18
2× 10−4 220 0.5 4.34
3× 10−4 370 0.7 4.48

Table A.1: Initial rotation velocities, ratio of current rotation versus the critical rotation and ages at the end
of the main-sequence of the 1.4 M� model computed with Fuller-formalism and initialized with values in
table 4.2.

Figure A.2 illustrates the variable fP , defined in equation (2.11) (left), that modifies the equation of motion

in the presence of rotation. The variable fT (equation (2.11) (right)) is not represented here as its impact

is negligible in our models fT ≈ 1 throughout all evolutionary stages. fP only drops below 1 on very fast

rotating models, assuring previous results. Since it enters directly in the structure equations implemented in

MESA, the impact will be visible in the stellar structure. For slow rotators in the main-sequence and stars

above the red giant bump (which is the case for the models of KIC8579095 in chapter 5) the impact of

rotation in the stellar surface with the Fuller-formalism can be totally neglected.
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Figure A.2: Evolution of the quantity fP with the radius with different initial velocities for a main-sequence
model and for a red giant model (highlighted). fP = 1 for the non rotating model. Model with no rotation
(dashed line), initial rotation velocity of 40 km/s (red), 130 km/s (green), 220 km/s (yellow) and 370 km/s
(purple).
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Appendix B

Radial and horizontal eigenfunction
displacements

In this appendix we show the full scaled radial and horizontal eigenfunction displacements for oscillation

modes with local maximum and minimum in the dipole mode period spacing (see figure 5.5), an extension

from section 5.3. The stellar oscillations were computed using GYRE and the equilibrium models were

computed with MESA to model KIC8579095 (full description of the models in chapter 4). This appendix

shows the comparison between eigenfunctions of oscillations modes of models with and without rotation-

induced mixing.
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Figure B.1: Scaled radial and horizontal eigenfunction displacements (arbitrary scale) for modes with l=1,
m=0 (left panels) and m=1 (right panels) for RGB models with the Fuller-formalism computed with and
without rotation-induced mixing for comparison purposes. The modes in the first line correspond to the
local minimum around 9770s (ν = 102.4 µHz) in figure 5.5. The second line corresponds to the local max-
imum around 9270s (ν = 107.9 µHz). The third line corresponds to the local minimum around 5435s (ν =
184.0 µHz).
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Figure B.2: Scaled radial and horizontal eigenfunction displacements (arbitrary scale) for modes with l=1,
and m=0 (left panels) and m=1 (right panels) for RGB models with the Tayler-Spruit dynamo computed
with and without rotation-induced mixing for comparison purposes. The modes in the first line correspond
to the local minimum around 9770s (ν = 102.4 µHz) in figure 5.5. The second line corresponds to the local
maximum around 9270s (ν = 107.9 µHz). The third line corresponds to the local minimum around 5435s (ν
= 184.0 µHz).
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