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ABSTRACT
Asteroseismic measurements enabled by the Kepler mission revealed lower rotation rates of red giant’s cores
than theoretical predictions, highlighting some gaps in the theory of stellar interiors. We used the Modules
for Experiments in Stellar Astrophysics evolution code to compute state-of-the-art models of the Kepler target,
KIC8579095, from the zero-age main-sequence (ZAMS) to the red giant branch (RGB). We included angular
momentum (AM) transport and chemical mixing in radiative zones due to hydrodynamical instabilities, and
magnetic fields generated by the Tayler-Spruit dynamo and the recent revision – Fuller-formalism. This last
model, was the only one able to best reproduce the observed RGB core rotation. The mixing induced by the
Fuller-formalism, computed for the first time in our work, revealed to be very small. Nonetheless, the AM
transport efficiency increases with the inclusion of mixing. We also used the pulsation code, GYRE, to further
study this mechanisms using asteroseismic observables. Lastly, we tested the efficiency of AM transport of
Fuller-formalism models for different input physics. And using a sample of 1093 stars from the main-sequence
(MS) to the red clump (RC) phase in the 1 − 2 M� range, we found that a wider range for the free parameter
α ∈ [0.5; 5] in the Fuller-formalism is needed to reproduce rotation asteroseismic measurements.
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1. INTRODUCTION

Over the past decade, major improvements in high-
resolution spectroscopy and the success of space missions such
as CoRoT (Baglin et al. 2007), Kepler (Gilliland et al. 2010;
Koch et al. 2010), and most recently TESS (Ricker et al. 2014)
have significantly increased the number of stars, particularly
red giants, with detected nonradial oscillations and the resolu-
tion of oscillation patterns.

The pulsation modes identified in stellar surfaces are orig-
inated by waves propagating in stellar interiors stochastically
excited by convective noise. The simplest normal modes that
stars can pulsate in are radial modes, where the star expands
and contracts in a periodic motion. In nonradial modes some
parts of the star move up while others are going down period-
ically, changing the stars’ shape and breaking spherical sym-
metry. For radial motion the pressure acts as the main restor-
ing force to small perturbations of the equilibrium position,
leading to the formation of the so-called p-modes, whereas for
predominately horizontal motion, gravity acts through buoy-
ancy as the restoring force, originating g-modes (e.g., Aerts et
al. 2010). After the MS, the core contraction and subsequent
envelope expansion leads to an overlap in the frequency do-
main of p- and g-modes. Hence, nonradial modes develop a
mixed nature (predicted theoretically by Dziembowski et al.
(1971) and Shibahashi (1979)) exhibiting g-mode behavior in
the convectively stable core of the star and p-mode behavior
in the outer convection regions. These so-called mixed modes
have the potential to probe the entire star (e.g., Chaplin et al.
2013).

In that stage, conservation of AM requires the contracting
core to spin up and the expanding envelope to spin down
(Marques et al. 2013; Deheuvels et al. 2014). Kepler’s mea-
surements of rotational splittings of dipole mixed modes have
shown red giants cores rotating around ten times faster than
the surface (e.g., Mosser et al. 2012), revealing a strong dif-
ferential rotation profile (Marques et al. 2013). Beck et al.
(2012) found lower core rotation in red giants in opposition
to model predictions, highlighting some inaccuracies in the
current description of internal AM transport. The discovery
of g-dominated mixed modes in red giants also provided a
clear separation between hydrogen shell burning and helium
core burning stars (RC stars) (Bedding et al. 2011). Astero-
seismic estimates of RC stars show they are rotating six times
slower than red giant cores (Mosser et al. 2012). This can be
somewhat explained by the change in core radius during He-
burning, but not entirely, suggesting a strong transfer of AM
from the inner to outer regions.

There are several mechanisms that try to explain the physics
of AM transfer processes in stellar interiors (see an extensive
discussion in Aerts et al. (2019)). Some of the most accepted
include hydrodynamic instabilities and meriodional circula-
tion, however internal torques generated by this processes are
rather ineffective, thus fail to explain the asteroseismic inferred
core rotation rates of evolved stars, predicting spins two orders
of magnitude higher (e.g., Heger et al. 2000; Cantiello et al.
2014). Internal gravity waves (see Rogers et al. (2013)) and
torques due to magnetic fields in radiative zones (e.g., Tayler-
Spruit (TS) dynamo by Spruit (2002) or the revised version
by Fuller et al. (2019)) are stronger candidates to explain the
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transport of AM. However there is still no consensus on which
of the two processes above is dominant since both require cal-
ibrations of free parameters to reach the inferred asteroseismic
rotation rates.

We focus on studying the impact of different prescriptions of
AM transport, with emphasis on the Fuller-formalism, in the
stellar evolution and structure of low mass RGB stars. Eggen-
berger et al. (2019c) demonstrated that the Fuller-formalism is
more efficient transporting AM in radiative interiors than meri-
odinal circulations and other hydrodynamic instabilities. The
Fuller-formalism is also able to reproduce core rotation rates
of low mass SGB, RGB and even RC stars, however recent
tests showed that it is not the solely solution for the missing
AM problem. Eggenberger et al. (2019a) found that a differ-
ent value for the free parameter α = 0.5 was needed to match
the frequency splittings for SGB stars, in contrast with α = 1.5
required to RGB stars. For RC stars, denHartogh et al. (2020)
argued that α between 2 and 4 was required to match the ob-
servations. For white dwarfs (WD) the Fuller-formalism could
not match the core rotation rates, unless when it was excluded
at the end of the core He-burning phase.

In the following section we present the physical details for
AM transport and rotation-induced chemical mixing of the
Fuller-formalism. Section 3 describes the computational mod-
els and methodology to obtain the results of next section. Sec-
tion 4 shows the AM evolution of stellar models using four dif-
ferent mechanisms. We incorporate, for the first time, chem-
ical mixing due to the Fuller-formalism, using the coefficient
derived by Fuller et al. (2019) (Section 4.1). In Section 4.2 we
compute important asteroseismic variables that can be used to
extend our knowledge in stellar interiors. Section 5 presents
the AM evolution of stellar models using the Fuller-formalism
from the ZAMS to the RC phase. We tested the sensibility
of the Fuller-formalism to different input parameters (Section
5.1). Using up-to-date asteroseismic inferred rotational split-
tings, we also found new limits for the α parameter of this
formalism (Section 5.2). Our conclusions are summarized in
Section 6.

2. TRANSPORT OF ANGULAR MOMENTUM VIA THE
FULLER-FORMALISM

In the Spruit (2002) prescription, the stars’ latitudinal dif-
ferential rotation shears an original weak magnetic fossil field
generating a toroidal field (Bφ) – by the so-called Ω-effect.
After a few turns, the toroidal component strength grows and
becomes unstable as the first hydrodynamic instability sets in,
the Tayler instability (Tayler 1973; Pitts et al. 1985), that can
take place in stably stratified regions. This instability will re-
produce the radial field (Br) components necessary to close
the loop (by the α-effect). They eventually will be sheared
again into a poloidal field, repeating the process so-called TS
dynamo.

Spruit (2002) proposes that the energy in the background
toroidal field is damped into small scales with a specific rate,
i.e., energy dissipation from non-linear effects. At saturation,
the energy obtained from winding the radial field equals the
energy dissipation rate. The magnetic torque produced via

Maxwell stresses that redistributes the AM is calculated using
the BrBφ field strength at saturation.

There are a couple of important aspects on the theoretical
basis of this mechanism that have been criticized by Zahn et
al. (2007) and Fuller et al. (2019). Nonetheless, the Spruit
prescription achieves rotation rates orders of magnitude lower
than most mechanisms, and only one order higher than obser-
vations (Cantiello et al. 2014).

A revision of this mechanism was performed by Fuller et
al. (2019) (recently referred as the Fuller-formalism) which
achieves better agreement with observations and addresses the
previous theoretical concerns. Fuller et al. (2019) proposed
a lower damping rate for the components of the perturbed
toroidal field than Spruit (2002), leading to stronger mag-
netic fields and consequently higher Maxwell torques in the
saturated regime. Hence, the Fuller-formalism transports AM
more efficiently than the TS dynamo. The associated vis-
cosity coefficient (ν = BrBφ/4πρqΩ) and the minimal shear(
q = −∂ ln Ω

∂ ln r

)
for the Tayler instability to set in for the Fuller-

formalism can be written as

νF =α3r2Ω

(
Ω

Neff

)2

; qmin =α−3

(
Neff
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)5/2( η
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where α is a dimensionless calibration parameter (α ∼ 1),
Neff is the effective Brunt-Väisälä frequency given by N2

eff =
η
KN

2
T +N2

µ, with η and K the magnetic and thermal diffusiv-
ities, NT and Nµ the thermal and chemical composition com-
ponents.

The small fluid displacement in the radial direction due to
the saturation of the Tayler instability is usually orders of mag-
nitude lower than the horizontal displacements, hence a possi-
ble generated chemical mixing will be less efficient than the
transport of AM. Fuller et al. (2019) estimated the mixing of
chemical elements induced by the Tayler instability to be fairly
negligible, nonetheless derived the following relation:

DF = α3r2Ω

(
Ω

Neff

)2(
qΩ

Neff

)5/3

. (2)

3. KIC 8579095: STELLAR MODELS WITH TRANSPORT
OF ANGULAR MOMENTUM

Stellar evolution models were computed with the release
version 12115 of Modules for Experiments in Stellar Astro-
physics (MESA; Paxton et al. 2011; 2013; 2015; 2018; 2019).
These models incorporate rotation and the effects of centrifu-
gal force on the stellar structure by adopting the so-called shel-
lular approximation (Zahn 1992; Meynet et al. 1997), where
the angular velocity depends very weakly on latitude and is al-
most constant on isobars (Ω ≈ Ω(r)). All models are set at the
ZAMS with initial solid body rotation and spin rate of ∼ 3.6
days.

AM transport and the evolution of chemical elements are
computed separately using a diffusive approach (Endal et al.
1978; Heger et al. 2000), that can be written as
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where i is a shell specific moment of inertia, and ν is the turbu-
lent viscosity calculated as the sum of the diffusion coefficients
for convection, semiconvection, and rotationally induced in-
stabilities (neglecting interactions such as amplification and
damping between some instabilities). Xn is the mass fraction
for the n’th nucleus and D is the diffusion coefficient deter-
mined as the sum of individual mixing processes.

We calculate four separate models assuming different
physics for AM transport and mixing of chemical elements in
radiative regions (e.g., different ν and D coefficients in equa-
tions (3) and (4)): 1) a model that ensures total conservation
of AM between each step of evolution, and does not include
stellar wind (or major mass loss) or account for any AM trans-
port or mixing of chemical elements induced by rotation; 2) a
model that includes AM transport and rotation-induced mix-
ing ensured by a combination of several hydrodynamical in-
stabilites described in great detail in Heger et al. (2000); 3) a
model with transport of AM and mixing according to the TS
description (Spruit 2002); and 4) a model with the implemen-
tation of the Fuller-formalism for mixing of AM and chemi-
cal elements (following the publicly available MESA inlist of
Fuller et al. (2019)).

3.1. Input physics: calibration process

We selected the rotating RGB star KIC 8579095 with an es-
timated mass of 1.366 M�, that is a target from the APOKASC
catalog (Pinsonneault et al. 2018) and combines general spec-
troscopic quantities with crucial seismic quantities to model
the evolution of a star. The observed and previously estimated
parameters are summarized in table 1.

We took advantage of the astero module (Paxton et al. 2013)
incorporated in MESA, to generate calibrated models from
the ZAMS to the current day (allowing a direct comparison
with current observations) of KIC 8579095. The stellar model
calibration process takes as inputs parameters {Mini, Yini,
[Fe/H]ini, αMLT, fov} and, throughout the stellar evolution, at
each timestep, performs a comparison to the chosen observa-
tional constraints {Teff , log g, ∆ν}, computing a χ2

star value.
The χ2

star value is calculated by weighting the contribution
of spectroscopic χ2

spec and seismic χ2
seis observable according

to χ2
star = 2/3χ2

spec + 1/3χ2
seis with

χ2
spec/seis =

1

N

N∑
i=1

(
Xmod
i −Xobs

i

σXi

)2

(5)

where N is the number of parameters, Xmod
i and Xobs

i are the
stellar model and observed values of the ith parameter, respec-
tively, with σXi

being the observational uncertainty.

Quantities Values Sources

Teff (K) 4773.6 ± 72.9 Abolfathi et al. (2017)

[Fe/H] 0.352 ± 0.025 Abolfathi et al. (2017)

log g (seis) 3.091 ± 0.005 Pinsonneault et al. (2018)

M (M�) 1.366 ± 0.039 Pinsonneault et al. (2018)

R (R�) 5.512 ± 0.014 Pinsonneault et al. (2018)

νmax (µHz) 152.046 ± 0.009 Pinsonneault et al. (2018)

152.46 Gehan et al. (2018)

∆ν (µHz) 11.942 ± 0.004 Pinsonneault et al. (2018)

12.0 Gehan et al. (2018)

∆Π1 (s) 77.9 ± 0.92 Vrard et al. (2016)

78.2 Gehan et al. (2018)

δνrot (nHz) 285.0 ± 1.46 Gehan et al. (2018)

Table 1. Observed and estimated parameters of KIC 8579095. The
illustrated columns correspond to: effective temperature, metallicity,
log of asteroseismic surface gravity, stellar mass, stellar radius, fre-
quency of maximum power, large frequency separation, dipole mode
period spacing, rotational splitting frequency.

To determine the optimal set of input parameters (minimum
χ2
star) an optimization run is performed using the Nelder-

Mead simplex algorithm (Nelder et al. 1965) implemented in
the astero module. For each MESA simulation, the astero
module is called at each timestep to calculate the χ2

star val-
ues from the current MESA model output parameters. This
process is repeated multiple times with a different set of inputs
until several models, with reasonable χ2

star value, have been
found. We selected the model with the minimal χ2

star and use
it as our benchmark model (see input parameters in Table 2).

Mini (M�) Yini [Fe/H]ini αMLT fov

1.405 0.298 0.373 2.04 0.014

Table 2. Input parameters of the benchmark model. The illustrated
columns correspond to: initial mass, initial helium abundance, initial
metallicity, mixing-length parameter and overshooting parameter.

The benchmark model was computed using the Fuller-
formalism prescription described above. The rest of the mod-
els with different mechanisms of transport of AM and mixing –
AM conservation, hydrodynamic instabilities and TS dynamo
– were initialized with the same values of input parameters dis-
played in table 2. Tables 3 and 4 summarize the properties of
the final converged models with the respective χ2

star, without
and with mixing of chemical elements, respectively. We notice
that the predictions of all these models are compatible with the
stellar observational parameters shown in table 1.

3.2. Asteroseismic diagnostic tools

For high radial order, there is an asymptotic relation for pure
acoustic modes that predicts approximately equally spacing
∆ν in frequency (Tassoul 1980). The large frequency sep-
aration ∆ν is very sensitive to the sound speed c(r) on the
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Model age M R Teff log g Ωsurf/2π Ωcore/2π ∆ν ∆Π1 νmax χ2
star

(Gyr) (M�) (R�) (K) (nHz) (nHz) (µHz) (s) (µHz)

AM conservation 4.57 1.405 5.640 4753.9 3.083 84 410,327 11.940 79.3 150.91 0.586

Hydrodynamic inst. 4.57 1.403 5.635 4753.8 3.083 84 402,812 11.948 79.4 150.98 1.117

TS dynamo 4.57 1.403 5.637 4753.5 3.083 85 21,824 11.942 79.4 150.88 0.482

Fuller-form. (α=1) 4.57 1.403 5.636 4753.6 3.083 85 1,076 11.943 79.4 150.90 0.496

Fuller-form. (α=1.65) 4.57 1.403 5.637 4753.6 3.083 85 674 11.942 79.4 150.89 0.478

Table 3. Properties of the KIC 8579095 converged RGB models without mixing of chemical elements. The 5 models were computed using
the input parameters of table 2. The illustrated columns correspond to: age, mass, radius, effective temperature, logarithm of surface gravity,
average surface rotation, average core rotation, large frequency separation for radial modes from scaling relations, dipole mode period spacing,
frequency of maximum power from scaling relations.

Model age M R Teff log g Ωsurf/2π Ωcore/2π ∆ν ∆Π1 νmax χ2
star

(Gyr) (M�) (R�) (K) (nHz) (nHz) (µHz) (s) (µHz)

Hydrodynamic inst. 4.60 1.403 5.608 4755.98 3.087 85 323,206 12.034 79.5 152.40 176.26

TS dynamo 4.58 1.403 5.633 4754.30 3.083 85 13,112 11.954 79.2 151.08 3.45

Fuller-form. (α=1.65) 4.58 1.403 5.636 4754.03 3.083 85 597 11.943 79.1 150.90 0.50

Table 4. Properties of the KIC 8579095 converged RGB models with rotation-induced mixing of chemical elements. The 3 models were
computed using the input parameters of table 2. The illustrated columns are the same as table 3.

outer regions, hence it can be used to estimate the propagation
time of sound waves across the star,

∆ν = νnl − νn−1 l '
(

2

∫ R

0

dr

c(r)

)−1

. (6)

where νnl corresponds to the mode frequency of the mode with
radial order n and spherical degree l, r is the radial coordinate,
and R is the radius at the surface.

The frequency pattern for high-order g-modes in the inner
radiative region can be obtain from the asymptotic approxi-
mation for a non-rotating star resulting in a spectrum nearly
uniformly spaced in period satisfying the following relation
by Tassoul (1980):

∆Πl =
2π2√
l(l + 1)

(∫ r2

r1

N

r
dr

)−1

, (7)

where N is the Brunt-Väisäla frequency. Due to the mixed na-
ture in evolved stars, the period spacing of oscillation modes
suffers a departure from asymptotic predictions. Hundreds
of stars in Kepler data showed decreasing ∆Π with increas-
ing mode period, revealing a ”tilted” pattern (e.g., see Aerts
(2021)). These slope is a consequence of the star rotation.

In the absence of rotation, frequency modes of different m
values are degenerate due to spherically symmetry. In rotating
stars, the Coriolis force lifts this degeneracy, and modes with
different m split into 2l + 1 frequency components. In slowly
rotating stars, where the rotation frequency is well below the
oscillation frequencies 2Ω/ω � 1, the Coriolis force can be
treated as a small perturbation in the equations of adiabatic
stellar oscillations (e.g., Aerts 2021),

ωnlm = ωnl0 +m δωnlm , (8)

where ωnl0 is the frequency in the nonrotating case. The first-
order rotational splitting is given by

δωnml = mβnl

∫ R

0

Knl(r)Ω(r)dr , (9)

(Aerts et al. 2010) where Knl and βnl are the rotational ker-
nels of the modes that depend on the equilibrium structure of
the star and on the mode eigenfunctions (radial and horizontal
displacement amplitude functions).

To fully understand the repercussions of the different mech-
anisms of transport of AM and mixing in the stellar interior
we need to investigate the oscillation frequencies and respec-
tive eigenfunctions in the crucial regions of the previous ob-
tained MESA stellar models. The oscillation modes and cor-
responding rotational kernels were obtained using the open
source pulsation code GYRE (Townsend et al. 2013; 2018)
given the MESA input stellar models (TS dynamo and Fuller-
formalism) described above. GYRE was used to compute the
oscillation frequencies by solving the fourth-order system of
adiabatic equations (e.g., Aerts 2021). Differential rotation is
implemented according to the Ω distribution of the equilibrium
stellar model (assuming shellular rotation). We took advantage
of the lowest-order rotation effects in the oscillations equations
included in GYRE (does not account for the Coriolis effects).

4. KIC 8579095: IMPACT OF ROTATION IN STELLAR
MODELS

We successfully modeled the stellar evolution of the star
KIC8579095 (see Section 3 for the models and its input param-
eters), reaching the values for measured and estimated quanti-
ties Teff , log g, ∆ν, and matching the core rotation rate of the
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Figure 1. Evolution of core rotation rates as a function of radius from the ZAMS to below the RGB bump (left panel). Rotation profile
for calibrated RGB models (right panel). The full (dotted) lines indicate the models without (with) mixing of chemical elements induced by
rotation. Models accounting for conservation of local AM (purple), including transport of AM due to hydrodynamic instabilities (blue), and to
magnetic torques in radiative regions, with the TS dynamo (green) and with the Fuller-formalism: α = 1 (yellow) and α = 1.65 (red). The star
symbol represents the location of KIC8579095. The grey dashed and dotted line corresponds to the surface rotation rate of all the models.

red giant model to the asteroseismic derived rotational splitting
by adjusting the α parameter of the Fuller-formalism.

The models with different mechanisms of transport of AM
(figure 1 filled lines, without rotation-induced chemical mix-
ing) barely show any deviations from the point of view of the
surface stellar variables (e.g., luminosity, effective tempera-
ture, surface gravity), less than 0.05% deviation, and also the
asteroseismic diagnostic variables (e.g., large frequency sepa-
ration, dipole modes period spacing), less than 0.1% deviation.
Hence, the significant impact of these mechanisms rely on the
evolution of the core rotation rates and they solely differ in the
efficiency of transport of AM from the inner to outer regions
of the star. The mechanisms diverge and predict different core
spin rates in the SGB where occurs an internal AM redistri-
bution. On the other hand, the surface rotation behavior is
similar for all models, and evolves as rigid rotation throughout
all stages of evolution.

The model accounting for conservation of AM (purple) pre-
dicts the highest core rotation rates at all times, and a core
spin up of more than 2 orders of magnitude higher than ob-
served values for this red giant (see left panel of Figure 1).
This model has no substantial mass loss star, thus in the MS
phase the model does not lose mass and already spins faster
comparing to the other models. In the SGB, due to the local
conservation of AM, the core contracts and spins up drasti-
cally while the surface expands and consequently spins down
to very low values. Along the RGB, the core continues to spin
up but at a lower rate, and the surface continually spins down.

The inclusion of transport of AM through hydrodynamical
instabilities (blue) also leads to higher core rotation rates in the
RGB than current measurements. In fact this model predicts
almost the same rotation rate as the model with conservation
of AM, which reveals how non efficient this mechanisms are
in this mass range.

The TS dynamo model (green) provides a lower core spin
up at the SGB than the model considering local conservation
of AM or with hydrodynamic instabilities. However the core
rotation rate is still one order of magnitude higher than astero-
seismic values. Cantiello et al. (2014) increased the coefficient
of diffusion by a factor of 100 however that still did not lower
the rotation rate to match observed values.

After the initial spin up in the SGB, the efficiency of trans-
port of AM in the Fuller-formalism (Fuller et al. 2019) model
(red and orange) matches the observed core rotation in the
RGB. Figure 1 shows 2 models with a different value for the
free parameter α of this mechanism. The original paper sug-
gests that α ≈ 1 is in agreement with asteroseismic core mea-
surements. In our models, a higher value of α = 1.65 was
needed to meet the core rotation rate of KIC8579095. This
parameter enters in the calculation of the viscosity coefficient
and in the instability condition and we discuss its implications
in the Section 5.

The left panel of Figure 1 illustrates the rotation profile of
the RGB calibrated models, for the four mechanisms of trans-
port of AM. All models predict almost rigid rotation in the he-
lium core. The decay of rotation in transition zone between ra-
diative and convective layers, with H-burning in the shell sur-
rounding the core, diverges between models. The conservation
of AM, hydrodynamical instabilities and the TS dynamo mod-
els decay exponentially (as can be seen in figure 1). Whereas
the Fuller-formalism decays with a tanh(r) function (as im-
plemented in the code from Fuller et al. (2019)). In the con-
vective zones, all the models show almost uniform rotation.

4.1. Rotation-induced chemical mixing

Mixing of nuclides modifies the elements stratification in
the inner regions, and in particular, rotation-induced mixing
is known to affect the evolutionary tracks in the HR dia-
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Figure 2. Evolution of mass fractions of several chemical species with radius for KIC8579095 model. In the top panel the mass fractions are
1H (purple), 4He (yellow) and multiplied by 1000 3He (green). In the bottom panel the mass fractions are multiplied by 50 for 12C (green),
14N (blue) and multiplied by 100 for 16O (red). The models without mixing are grey and the models with mixing induced by the hydrodynamic
instabilities are the dotted dashed lines, by the TS dynamo mechanism the dashed lines and by the Fuller-formalism the full lines.

gram (Maeder et al. 2000). During the MS phase, new hy-
drogen (H) is brought into the core and the produced helium
(He) transported outwards. As a consequence, evolutionary
tracks evolve with more luminosity and effective temperatures,
larger helium cores, and extended lifetimes during core burn-
ing phases. In the RGB of low to intermediate mass stars,
the convective envelope expands and penetrates deeper into
the regions where nuclear reactions have altered the chemi-
cal composition, and some of these material is transported to
the surface (e.g.,Aerts 2021).

The transport of AM mechanisms described above consti-
tute the source of rotationally driven mixing, that transports
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Figure 3. Brunt-Väisälä frequency as a function of radius for the
RGB models with mixing induced by the hydrodynamic instabilities
(yellow), by the TS dynamo mechanism (green) and by the Fuller-
formalism (red). The model without mixing is illustrated with a
black dashed line. The horizontal grey line indicates the measured
frequency of maximum oscillation power νmax of KIC8579095.

chemical elements between layers in stellar interiors. Thus,
the detection of surface chemical abundances can indirectly
probe the AM missing processes. In this section we included
rotation-induced mixing processes (dashed lines in Figure 1)
in three of the models of the previous section: hydrodynamic
instibilities, TS dynamo and Fuller-formalism (see Table 4).

We calculated that the mixing diffusion coefficient for the
model including hydrodynamical instabilities surpasses by 4
and 6 orders of magnitude the coefficient for mixing induced
by the TS dynamo and Fuller-formalism, respectively. The
expression derived by Fuller et al. (2019) for the mixing of
chemical elements (equation (2)) predicts very lower values
(νmix/νAM ∼ 10−6). This hypothesis was not previously
tested in computational models, hence we implement this ex-
pression in our models for the first time to test the statements
of the original paper. We observed that νmix/νAM varies from
10−13 to 10−5 in the regions where the instability is triggered.
Manifesting slightly higher mixing than what was initially the-
orized, nonetheless still very low values and non significant.
However, the resolution of this processes in numerical evo-
lution codes needs to be improved in order to derive further
conclusions.

The repercussions in the internal properties of the star due to
rotation-induced mixing are more visible in the asteroseismic
variables (e.g., large frequency separation and mixed mode pe-
riod spacing; see tables 3 and 4). There are small but visi-
ble changes in the density and abundance profile in the RGB
model due to the mixing processes (see figure 2). In figure 1
we can identify that models including rotation-induced mix-
ing predict slightly lower rotation rates. The induced mixing
seems to act as an additional AM diffusion coefficient increas-
ing its transport efficiency.

The Brunt-Väisälä frequency (figure 3) is also affected due
to the change in compositional gradient in the inner layers (be-
low the convective envelope). The highlighted spike around
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Figure 4. Period spacing of dipole modes as a function of the mode period, for models including the Fuller-formalism (left) and the TS dynamo
(right). The grey dashed line represents the estimated dipole mode period spacing ∆Π1 = 78.2 s from Gehan et al. (2018).

0.04 R� that results from a variation in the chemical compo-
sition at the H-shell burning displays some disparity between
different mixing processes. Nonetheless, this spike is far from
the observational window centered around the frequency of
maximum oscillation power, so it will unlikely contribute to
constraint the mixing coefficients. The second spike around
0.5 R� results from chemical discontinuities left behind by
the receding convective envelope. This is the signature of the
first dredge up that occurs when a low mass star enters the
RGB, where the convective envelope extends up to the nuclear
reactions region. There are slight visible differences between
mixing mechanisms in that spike, although still not significant.
Nonetheless, in more extreme cases (e.g., more efficient mix-
ing mechanisms), this sharp features may affect g-dominated
modes (through buoyancy glitches Cunha et al. (2015)) and
hence become mensurable.

Models with mixing induced by hydrodynamic instabilities
show a less steeper slope (very small difference) than the other
models in the tachocline region in Figure 2. Hence, rotation-
induced mixing seems to smooth the abundance profile in
the interior (also observed in Charbonnel et al. (2010)). Our
models do not predict significant modifications in the surface
abundances, which can potentially come from the weak mix-
ing power of this rotation-induced mechanisms. However this
is an important tracer in order to compare this models with
current spectroscopic abundance measurements (Somers et al.
(2016)).

Both the mixing of chemical elements by the TS prescription
and by the Fuller-formalism show a small effect in Figures 3
and 2 (as expected by Maeder et al. (2004) for the case of TS
dynamo). The mixing due to hydrodynamic instabilities has
the higher impact as expected.

4.2. Seismic Analysis of the models

In this section, stellar oscillations for theoretical models
were computed using GYRE (see chapter 3 for details).

The pattern of period spacing in Figure 4 shows mixed
modes, predominantly of g-mode character. The several local

minima and maxima of the period spacing, suggests that the
modes in between those regions are being subject to trapping.
At high frequency (low period), the period spacing shows a
characteristic decrease as more local minima appear in the
pattern due to an increase in p-mode character. At relatively
low frequency (high period), the frequency spacing becomes
nearly constant in agreement with the asymptotic period spac-
ing (Equation (7); horizontal grey dashed line).

The chemical discontinuities previously described in the
Brunt-Väisälä frequency, can also be observed through sharp
features (also called glitches) in the oscillation spectrum and
in the mixed mode period spacing (Cunha et al. (2015)). We
do not observe glitches in the models with mixing which is
another possible indication that the impact of this rotation-
induced mixing processes is not enough to leave a detectable
imprint on oscillation frequencies.

4.2.1. Rotational splittings

In Figure 4 it is evident the drastic impact of rotation in the
oscillation frequencies. Rotational splittings of g-dominated
modes are a great tool to probe the rotation of the central re-
gion. Rotation causes a slope on the period spacing pattern
in the low frequency g-dominated modes, and higher rotations
lead to steeper slopes. The splitting of oscillation frequen-
cies increases with the higher rotation rates, hence models
with TS dynamo mechanism predict higher splittings. On the
other hand, in the previous section we observed that including
rotation-induced chemical mixing slightly decreases the core
rotation rate, and as we can see in Figure 4, this reflects on a
slightly lower frequency splitting.

Overall the variations between models with and without
mixing are of very lower amplitudes hence they unlikely will
be mensurable. Nonetheless, the potential of asteroseismic di-
agnostic tools to probe the mixing in stellar interiors should
not be dismissed and instead explored with other more effi-
cient mixing processes.
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5. ASTEROSEISMIC CONSTRAINTS ON ANGULAR
MOMENTUM TRANSPORT MODELS

To estimate how the core rotation period varies with the stel-
lar radius along the SGB, RGB and RC phase we performed
a linear fit to logarithm of the data from a sample with 1,093
stars (see Figure 5) and compare the results with the values
in Mosser et al. (2012). We found no correlation between the
core rotation periods and the stellar mass of the stars in the
SGB, RGB and in the RC phase.

During core H-burning, the radius of MS stars does not in-
crease significantly, hence the rotation period does not depend
strongly on the radius as we can see from the data in Figure
5. On the SGB, we observe that the period decreases with in-
creasing radius, in opposition to what vanSaders et al. (2013)
found. However, the number of subgiant stars in Figure 5 is not
enough to take plausible conclusions. From the RGB power
law, we found that red giants period slightly increases with ra-
dius. We estimate a less steeper slope than found by Mosser
et al. (2012) (PRGB ∼ R0.7±0.3), that can possibility be justi-
fied by our broader mass range [1,2 M�]. RC stars spin down
faster as they evolve. The slope found for RC stars agrees with
the Mosser et al. (2012).

5.1. Impact of input parameters in rotation

To investigate the dependence on the input physics of stel-
lar models on the evolution from the MS to above the RGB
bump, when including the Fuller-formalism, several models
were generated with different initial stellar masses, metallic-
ities, convective overshooting and α parameters. The bench-
mark model (purple) was computed with an initial mass of 1.5
M�, Z= 0.02, fov = 0.015 and αmlt = 2 with an initial pe-
riod of 2 days and α = 1. This mass is commonly used for
studying rotating red giants (see e.g., Cantiello et al. 2014).
The implementation of AM transport follows the prescription
of Fuller et al. (2019).

5.1.1. Mass

In the top left panel of Figure 6 we show the evolution of
core and surface rotation rates of models with initial masses
ranging between 1-2 M�, starting from the ZAMS and ending
above the RGB bump.

An increase in the mass leads to a decrease in the core ro-
tation rate, and this is particularly notorious at the end of the
SGB. The surface rotation rate also decreases with mass, how-
ever the difference is less significant than in the core. This
behavior is expected according to equation (1) as νF ∼ R2.
Since more massive stars have higher radius models, they have
more efficient AM transport that translates into a decrease in
core rotation. Lastly, we observe that the degree of differential
rotation in the models increases slowly with mass from the end
of the SGB.

5.1.2. Metallicity

The major differences in core rotation rates due to initial
composition lay in the MS and SGB (see top right panel of
Figure 6). The lower metallicity models show shorter total
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Figure 5. Core (filled circles) and envelope/surface (empty circles)
rotation period as a function of the stellar radius for 1,093 stars with
masses between 1-2 M�. The rotation asteroseismic estimates were
taken from Aerts et al. (2019), from Hall et al. (2021) and the re-
spective radius from Aguirre et al. (2017). The dashed black lines
indicate the fit performed to SGB, RGB and RC core rotation period.
The uncertainties are smaller than the symbol size.

lifetimes. At the end of SGB, the lower metallicity models
reach higher helium core radius, which according to equation
(1) translates roughly into higher viscosity and more efficient
transport of AM to the outer layers, thus lower rotation rates.

As the star moves along the RGB branch this situation is in-
verted. The more metal rich stars expand more than the metal
poor ones (as seen in vanSaders et al. (2013)), thus increas-
ing the efficiency of transport of AM in their cores and con-
sequently slowing them down. Despite the metal rich models
reaching higher rotations in the initial stages of evolution, in
the late stages they have slowed down and met the rotation
rates of the metal poor ones. The top right panel of Figure 6
shows that the core rotation of different metallicity models is
almost unaffected in the RGB while surface rotation rates are
visibly affected, since metal rich models reach higher surface
rotation rates.

5.1.3. Convective overshooting

The overshooting parameter fov is a scaling parameter im-
plemented via a convective diffusion coefficient exponentially
decaying beyond the boundary of convection regions. When
reduced to zero makes the boundary between the radiative inte-
rior and the outer convective zone in stellar models extremely
sharp. We tested a range between fov = 0 − 0.04 (as in Pax-
ton et al. (2013)) to understand the impact this parameter has
in the rotation rate of models with the Fuller-formalism (see
bottom left panel of Figure 6). Increasing overshooting af-
fects the stellar models similarly as increasing initial masses
but with more emphasis in the RGB, improving the efficiency
of internal transport of AM. The impact on the surface rotation
rate of these models is negligible.
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Figure 6. Rotation rates as a function of the surface gravity. The full (dashed) line indicates the core (surface) rotation models. The benchmark
model is marked in purple. Top left panel illustrates models with different masses ranging between 1-2 M�. Top right panel with different
metallicities between Z = 0.015-0.045. Bottom left panel with different overshooting parameters between fov = 0-0.04. Bottom right panel
with different α parameter values between α = 0.1-5. The input physics of the stellar models is described in the text.

5.1.4. α parameter

The efficiency of transport of AM relies in the coefficient of
equation (1). An increase in α enhances the efficiency of trans-
port and core spin down, since νF ∝ α3. According to Fuller
et al. (2019), the α parameter has an even more significant im-
pact in the computation of the minimum shear qmin ∝ α−3

for the instability to occur. α leads to a decrease in qmin, so
when q > qmin, efficient AM transport will tend to decrease
the shear until q ∼ qmin and consequently the reduce the core
rotation. The minimum shear in Equation (1) also shows a de-
pendence on the effective Brunt-Väissälä frequency. The shear
is strongest where the compositional component N2

µ is large
due to stratification, and that is at the H-burning shell in the
SGB and RGB. As such, we expect the mechanism to be more
effective in those phases.

As expected, Figure 6 reveals a significant impact in the core
rotation rate in the SGB and RGB with increasing α parameter,
and none at the MS where the models experience solid body
rotation. The age at which the spin up of the core happens
suffers a delay with the increase of α. Higher efficiency of
transport of AM prevents the spin up of the core: with a lower
α the core spins up during the SGB whereas with a higher α
the core only spins up in the early RGB. In the RGB the core

rotation rate decreases up to an order in magnitude Ωcore ∈
[200 − 2000nHz] with increase α. The surface rotation rates
are unaffected by this parameter. Hence, the models with faster
core rotation (e.g., α = 0.5) develop a higher degree of radial
differential rotation.

5.2. Constraining the α parameter

Using the asteroseismic data from Figure 5 that contains a
broader range of core and surface rotation rates of MS, SGB,
RGB, and RC stars than Fuller et al. (2019), we establish new
limits for the α parameter. To do so, we build two models: one
that aims to reproduce the core and surface rotation rate of fast
rotators (fast track) and a second for slow rotators (slow track),
using the Fuller-formalism. To achieve this, we created two
sets of models: in the first set (left panel of Figure 7), the initial
rotation period Pi for the fast and slow track models (green
and purple) was fixed to match the maximum and minimum
observed rotation rates of MS stars. In the second set (right
panel of Figure 7), Pi for the fast and slow track models (blue
and orange) was allowed to vary. In both sets, the α parameter
was chosen to match the core rotation rates of SGB, RGB, and
RC stars. All models in Figure 7 were computed with an initial
mass of 1.5 M�, Z= 0.02, fov = 0.015 and αmlt = 2, the rest
of parameters are the same as in Fuller et al. (2019).
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models constraining the initial periods of the models to match the MS fastest and slowest rotators. Right panel: models where the initial period
was not constrained. The data points are the same as in figure 5.

The lower amount of SGB stars in Figure 7 does not give
a good representation of the core and surface rotation rates,
mass and metallicity of those stars. More asteroseismic data
is needed to fully determine their range of rotation rates and
constrain stellar models. The same principle applies to the
MS stars in this discussion, as they are sparsely distributed in
Figure 7.

For the two sets of models in Figure 7 we obtained the same
α parameter values for the fast and slow tracks α = 0.5 and
α = 5, respectively. α = 0.5 is needed to model the SGB,
RGB and RC fast rotators. At least α = 5 is needed to model
the slow rotators in the RGB and RC phase. However, even
this α value is not enough to reach the lowest core rotation
rates. Increasing the α even more shows small to no improve-
ment in slowing down the core, as can be seen in the right
panel of Figure 6. Increasing the mass or the convective over-
shooting would however reach the desired results, hence we
defined the limit to be α = 5.

Models with the same α converge to the same core rotation
rates in the RGB, independently of the imposed initial rotation.
This can become a problem in stellar modeling, since there are
other factors that we do not take into account (e.g., magnetic
braking, anisotropic winds, binary stars) that also have a great
impact in the rotation, and that the α could possibly overpower.

The α parameter varying between 0.5 and 5 implies that the
viscosity coefficient has to vary between 0.125 to 125 due to
the cube dependence on α. Corresponding to a variation of 3
orders of magnitude both in the viscosity coefficient and in the
required shear for the Tayler instability to saturate. Hence, the
degree of freedom of this parameter is compensating for im-
portant missing physics not included in the Fuller-formalism,
as discussed in previous reviews.

In early MS stages the core and surface rotation rates
strongly depend on the initial rotation rate. The initial rotation
period also has an impact in the model’s age – lower initial pe-
riods seem to generate younger evolutionary tracks. Besides,

there is also a strong dependence of the viscosity on the local
spin rate, νF ∝ Ω3 (Fuller et al. (2019)). As such, the fast
track (left panel of Figure 7) in the early stages experiences
a stronger decrease in rotation, although not enough to slow
down the core to match the SGB measurements.

The surface rotation in not affected by the α parameter vari-
ations, on the other hand it highly depends on the rotation im-
posed at the ZAMS. Therefore, surface rotation rates in the left
panel of Figure 7 do not match SGB and RGB measured rates,
whereas the right panel of Figure 7 shows a better agreement
with observations.

Our attempt to create a fast and slow rotation track to con-
straint the observed rotation rates, revealed that the Fuller-
formalism overestimates the spin down of the core between
the RGB and RC phase. We explored changing the α param-
eter after the RGB bump to compensate this effect, however it
did not reproduce the desired results. Since most of the AM
extraction in these models happens in the SGB and RGB. And
at later stages, due to the large stabilizing composition gra-
dients, the rotation rates are reproduced with conservation of
AM (e.g., Cantiello et al. 2014, Fuller et al. 2019).

6. SUMMARY AND CONCLUSIONS
In the first part of this work, we concluded that the in-

ner regions of evolved stars are mainly affected by diffusive
transport processes. We performed side-by-side comparisons
of four mechanisms of transport of AM that corroborated the
small impact of different transport mechanisms in variables not
related to rotation in RGB stars. We successfully reproduced
the observed asteroseismic core rotation rate of a red giant star
making use of a recently proposed mechanism based on the
Tayler instability. The inherent calibration of the free param-
eter in this theory revealed a higher value than was initially
proposed for RGB stars.

We implemented for the first time the rotational-driven mix-
ing coefficient of the Fuller-formalism in the interior of RGB
stars. Comparisons of the efficiency of three transport pro-
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cesses revealed expected, albeit important results. The effi-
ciency of mixing induced by rotation is overestimated in less
efficient transport mechanisms due to higher core rotation pre-
dictions. Our study shows that the inclusion of mixing in-
creases slightly the efficiency of AM transport.

Using the previous results, we carried out calculations for
the oscillation mode frequencies. We verified the mixed mode
period spacing pattern present in RGB stars. The period spac-
ing and the frequency splitting of mixed modes showcased
clear distinctions between different transport processes and
small ones between mixing processes. This notable result con-
firms that asteroseismic derived rotational mixed mode split-

tings are a great tool to probe the values of the diffusion coef-
ficient for AM transfer, and a potential tool to study the mixing
of chemical elements in evolved stars.

Lastly, we performed a further study on the Fuller-
formalism. Based on our results, the transport efficiency is par-
ticularly sensitive to variations on the initial stellar mass and
less dependent on the metallicity and convective overshooting.
With that information, we performed a calibration on the α
parameter. Asteroseismic derived rotational splittings from a
considerable amount of MS to RC stars were used to constraint
the models. We established new limits for the α parameter of
the Fuller-formalism using a wide range of rotators.
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