
Automatic User Interface Generation

Gonçalo Correia de Matos

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. Mário Alexandre Teles de Figueiredo
Eng. Hugo Miguel Ferrão Casal da Veiga

Examination Committee

Chairperson: Prof. José Alberto Rodrigues Pereira Sardinha
Supervisor: Prof. Mário Alexandre Teles de Figueiredo

Member of the Committee: Prof. Alexandre José Malheiro Bernardino

June 2022

ii

To my beloved grandparents

Lisa and Zé, Roca and João

iii

iv

Acknowledgments

This dissertation would not have been possible without the support of many people to whom I would like

to express my gratitude and appreciation.

First and foremost, I would like to thank my supervisors, Prof. Mário Figueiredo, Eng. Hugo Veiga,

and Eng. João Lages for the perfectly balanced encouragement, guidance, and freedom throughout the

thesis. You have provided me an unparalleled opportunity for growth and professional development.

Being able to do research in this exciting field with your counseling, scientific feedback, and openness

to new ideas has made this a truly enjoyable journey that I will never forget.

For a whole year I was supported by OutSystems, to which I want to thank the support, resources,

and outstanding working conditions provided during my internship. It was thanks to the friendly and

supportive working environment at OutSystems that I was able to continuously improve my work. I

was lucky enough to find many people who provided valuable feedback, especially in the OutSystems AI

team. I am grateful for the academic collaboration opportunity that OutSystems has yielded with Instituto

Superior Técnico, mediated by Prof. Mário Figueiredo, and I hope this joint effort towards research work

continues more vastly in future.

A special thanks goes out to my friends and colleagues who have offered their support and confi-

dence during this journey, especially Nuno Calejo. This thesis was profoundly enriched by the amazing

research work into the unknown that Nuno first conducted in this specific application of computer vision.

I also owe a deep debt of gratitude to every single person who took some of their time to help me

with the crowdsourced task force of producing over fourteen thousand elements for the dataset. Your

unique hand-drawn sketches were decisive for the success of this thesis. Thank you very much.

Nobody has been more important to me in this journey than the members of my family. I would like to

thank my parents, sister, and brother, whose love, unrelenting encouragement, and continued support

are with me in whatever I pursue. You have always stood by me through all my travails.

I also owe a deep debt of gratitude to my cousins, uncles, and aunts for helping me whenever they

could, and always being a source of inspiration. Thank you for your love.

Last but not least, I would like to dedicate this thesis to my beloved grandparents Lisa and Zé, Roca

and João, for their endless love, embodied integrity, and learning joy that have always emboldened me.

Foremost in my mind is my paternal grandfather, Avô João, who passed away during the course of this

thesis. Always and forever, your memory lives with me and all of us.

v

vi

Resumo

Uma interface utilizador (IU) interativa e inteligı́vel resulta sempre de um processo de desenvolvimento

harmonioso. Corresponder às expetativas dos utilizadores relativamente à qualidade e funcionalidade

de uma IU não depende apenas de princı́pios teóricos do desenho de interfaces, mas sim da qualidade

de todas as fases de desenvolvimento que, tipicamente, são fastidiosas e requerem múltiplas iterações

de tarefas monótonas e morosas. Uma das primeiras fases consiste na elaboração de um protótipo

de baixa fidelidade. Essa fase é fulcral para o resultado final. A fim de tirar partido da agilidade e

eficiência que os esboços conferem a todo o processo, esta tese propõe uma ferramenta baseada

em aprendizagem automática que converte esboços feitos à mão de uma IU diretamente para código,

permitindo assim gerar interfaces reais. A solução proposta consiste numa ferramenta de software

que identifica os elementos desenhados utilizando visão computacional, avalia as respetivas posições

e a hierarquia e, por fim, gera a IU pronta a ser utilizada. De todos os modelos testados, a melhor

configuração obteve uma média de 98,7% de precisão média. Perante os resultados, concluiu-se que

a ferramenta proposta pode ser usada como chave para a geração automática de interfaces e, assim,

encurtar o ciclo de vida de desenvolvimento de sistemas. Permitir que programadores e designers

avaliem os resultados dos esboços em tempo real não só torna a gestão de projetos mais eficiente

como também reduz o tempo e os custos de colocação das aplicações no mercado, concebendo-se

soluções robustas num perı́odo de tempo mais reduzido.

Palavras-chave: Inteligência artificial, Aprendizagem automática, Aprendizagem profunda,

Visão computacional, Geração automática de código, Interface utilizador

vii

viii

Abstract

An interactive, straightforward user interface (UI) always derives from a seamless development process.

Meeting user expectations for a high quality and functional UI goes way beyond respecting state-of-the-

art design principles. It is the result of the whole design process, which tends to be unnecessarily la-

borious, requiring multiple iterations of unremarkable and time-consuming tasks. One of the first stages

consists of drafting a prototype that is a schematic image of the screens. This stage is the key for the

final result. Aiming to avail the agile and efficient experimentation afforded by hand-drawn sketches, this

thesis introduces an automatic tool, based on machine learning, that converts hand-made UI sketches

into code, and eventually generates the actual UI, maximizing the efficiency of the design process and

greatly accelerating it. The proposed solution pipeline consists of a software tool that identifies the

sketched elements using computer vision, evaluates both their position and hierarchy, and finally gen-

erates the corresponding UI, ready to be used. The top-performing testing fold setup scores 98.7% of

mean average precision (mAP). Thus, this thesis can be used as a master key to automatically gen-

erate real-world interfaces in real time, hence shortening the System Development Life Cycle (SDLC)

of software applications. Providing immediate feedback to developers and designers not only makes

the project management process more efficient, but also reduces the time-to-market of applications,

delivering meticulous and more substantial solutions in a shorter time.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Computer Vision, Auto-

matic Program Generation, User Interface

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

Nomenclature . xxi

Glossary . 1

1 Introduction 1

1.1 Motivation . 1

1.2 Topic Overview . 1

1.3 Objectives . 2

1.4 Thesis Outline . 3

2 Background 5

2.1 From Machine Learning to Deep Learning . 5

2.1.1 Machine Learning . 5

2.1.2 Machine Learning Approaches . 5

2.1.3 Neural Networks . 6

2.1.4 Activation Functions . 7

2.1.5 Backpropagation . 9

2.1.6 Deep Learning . 9

2.2 Convolutional Neural Networks . 9

2.2.1 Training . 11

2.2.2 From Image Classification to Object Detection . 12

2.2.3 You Only Look Once . 17

2.2.4 Evaluation metrics . 19

2.3 Dataset Generation . 23

2.3.1 Human-generated Dataset Approach . 23

2.3.2 Computer-generated Dataset Approaches . 24

2.3.3 Data Augmentation . 24

xi

2.3.4 Morphological Operations . 25

2.3.5 Cross-Validation . 26

2.4 Program Generation . 27

3 Implementation 29

3.1 Dataset . 29

3.1.1 Screen Templates and User Interface Elements . 30

3.1.2 Hand-drawn Representation of User Interface Elements 32

3.1.3 Human-generated Dataset . 35

3.1.4 Computer-generated Dataset . 41

3.2 Object Detection Model . 44

3.2.1 Installing YOLO and Importing a Dataset . 45

3.2.2 Configuring a Custom Object Detection Model . 46

3.2.3 Connecting Tensorboard and WandB . 47

3.2.4 Training a Custom Object Detection Model . 48

3.2.5 Validating and Testing a Custom Object Detection Model 49

3.3 Spatial Grouping Algorithm . 50

3.4 Code Generation . 52

3.5 Complete Pipeline . 54

4 Results 55

4.1 Quantitative Results . 56

4.1.1 Human-generated Dataset . 56

4.1.2 Computer-generated Dataset Results . 60

4.2 Qualitative Results . 63

5 Conclusions 67

5.1 Achievements . 67

5.2 Future Work . 69

Bibliography 71

A Crowdsourcing Instructions 77

B Object Detection Results 85

C Complete Pipeline Execution Example 91

C.1 Original Hand-drawn Sketch Example . 91

C.2 Pre-processed Example Result . 92

C.3 Object Detection Example Result . 92

C.4 Spatial Grouping Example Result . 93

C.5 Agnostic UIDL Example Generation . 95

xii

C.6 Code Generation Example Result . 96

C.7 Web App Example Result . 97

xiii

xiv

List of Tables

2.1 Binary confusion matrix using four kinds of results. 21

3.1 Summary of volunteer contributions per user during the crowdsourced process. 37

3.2 Dataset partitions holdout process for the 5-fold approach. 40

3.3 Distribution of volunteer contributions per calligraphy style. 40

3.4 Distribution of calligraphy categories per fold. 40

3.5 Total of hand-drawn representations cropped from the human-generated dataset per class. 41

3.6 Replaceable elements HTML and CSS attributes. 43

3.7 YOLOv5 backbone architecture summary. 46

3.8 Summary of our YOLOv5 customized hyperparameters. 47

3.9 Summary of UIDL keys supported per node type [65]. 52

4.1 Average 5-fold cross validation results for the human-generated validation set. 59

4.2 Average 5-fold cross validation results for the human-generated test set. 59

4.3 Detection results for the test set for the human-generated test set. 62

B.1 Object detection results for fold 1 human-generated test set. 86

B.2 Object detection results for fold 1 human-generated validation set. 86

B.3 Object detection results for fold 2 human-generated test set. 87

B.4 Object detection results for fold 2 human-generated validation set. 87

B.5 Object detection results for fold 3 human-generated test set. 88

B.6 Object detection results for fold 3 human-generated validation set. 88

B.7 Object detection results for fold 4 human-generated test set. 89

B.8 Object detection results for fold 4 human-generated validation set. 89

B.9 Object detection results for fold 5 human-generated test set. 90

B.10 Object detection results for fold 5 human-generated validation set. 90

xv

xvi

List of Figures

1.1 Conversion of a raw photo of a hand-drawn sketch (input) into a user interface (output). . 2

2.1 Schematic illustration of a neural network perceptron. 6

2.2 Example of a multilayer neural network. 7

2.3 Illustration of the LeNet-5 CNN architecture, containing an input layer and six processing

layers. Each plane is a feature map, i.e., a set of units whose weights are constrained to

be identical [18]. 10

2.4 Illustration of a 2D discrete convolution operation: (a) example of a 3 × 3 convolution

kernel, (b) convolution with kernel flipping, (c) convolution without kernel flipping [16]. . . 10

2.5 Overview of the dropout model [22]. (a) A standard neural network with 2 hidden layers.

(b) An example of a thinned network produced by applying dropout to the NN on the left.

Crossed units (⊗) have been dropped. 12

2.6 Overview of the proposed R-CNN object detection system [25], which (1) takes an input

image, (2) extracts around 2000 bottom-up region proposals, (3) computes features for

each proposal using a large CNN, and finally (4) classifies each region using class-specific

linear SVMs. 13

2.7 Illustration of the Fast R-CNN [27] architecture. A given input image and multiple regions

of interest are input into a CNN. Each region of interest is pooled into a fixed-size feature

map and mapped to a feature vector by fully connected layers. The network has two output

vectors per region of interest: the softmax probabilities and the bounding-box regression

offsets per each class. The architecture is trained end-to-end with a multi-task loss. . . . 14

2.8 Overview of the Faster R-CNN [28] architecture. Faster R-CNN is a unified network for

object detection composed of two modules. The first module is a deep fully convolutional

network that proposes regions, and the second module is the Fast R-CNN detector [27]

that uses the proposed regions. 15

2.9 Demonstration of the SSD framework. In this example, two default boxes would be

matched with the cat box and one with the dog box, which are treated as positives and

the rest as negatives. 16

2.10 Overview of the SSD architecture [29], containing several feature layers in the end of a

base network to predict the offsets of the default boxes with different scales and aspect

ratios, as well as the respective confidences. 16

xvii

2.11 Illustration of a YOLO [30] model applying a 7× 7 grid cell to an input image. 17

2.12 Illustration of the Fast R-CNN [27] architecture. A given input image and multiple regions

of interest are input into a CNN. Each region of interest is pooled into a fixed-size feature

map and mapped to a feature vector by fully connected layers. The network has two output

vectors per region of interest: the softmax probabilities and the bounding-box regression

offsets per each class. The architecture is trained end-to-end with a multi-task loss. . . . 18

2.13 Illustration of the intersection and union areas needed to compute the IoU evaluation

metric for a hand-drawn representation of a chart detection. 20

2.14 Illustration of a perfect detection, a true detection and a false detection for a chart element. 20

2.15 Precision-Recall correlation curve plots for ideal and expected scenarios. 22

2.16 Illustration of the sketchification approach [40]. The edge image EI , corresponding to the

input photo I, is merged with the part and object contours PI , derived from ground-truth

label CI , to obtain the final sketchified image SI . 24

2.17 Effects of common data augmentation techniques on the AgrilPlant dataset [42]. 25

2.18 Demonstration of the two base morphological operations. 26

2.19 Examples of sketches generated by the proposed BPD approach. The left image of each

row is the original hand-drawn sketch of the TU-Berlin dataset [46]. The other 6 samples

are deformed sketches generated by BPD. 26

2.20 Illustration of the k-fold cross-validation procedure [48]. 27

2.21 Illustration of a user interface described in a markup-like DSL [50]. 28

3.1 Breakdown of the Bulk Actions screen template into three illustrative user interface ele-

ments from the OutSystems UI framework. 30

3.2 Dashboards needed for the in-depth analysis of the OutSystems UI Framework. 31

3.3 Dashboards needed for the in-depth analysis of the OutSystems UI Framework. 32

3.4 Illustration of how different contributors have drawn different tables without noticing: (a)

example of a 5 × 4 grid representation with rectangular-shaped cells, (b) a 7 × 4 grid

representation with square-shaped cells, and (c) a 6× 3 grid representation with irregular

rectangular-shaped cells. 33

3.5 Analysis of tables’ aspect ratios across the sketches produced by the first batch of users. 33

3.6 Examples of alternative hand-drawn representations of the Table UI element. 34

3.7 Illustrative standard hand-drawn representations of prominent UI elements, which will be

used for human-generated elements. 35

3.8 Crowdsourced photo uploads and returned paper copies. 36

3.9 Resizing and binarization pre-processing results. 36

3.10 Screenshot of LabelImg, a graphical image annotation tool and label object bounding

boxes in images [57]. 37

3.11 Side by side comparison of Pascal VOC and YOLO formats for the same labeling annota-

tions. 38

xviii

3.12 Visual interpretation of the YOLO format normalized coordinates [58]. 38

3.13 Roboflow Dataset Health Check results [59]. 39

3.14 Illustration of the proposed approach for computer-generated sketches, where the ele-

ments of the Admin Dashboard screen template are replaced with their respective hand-

drawn representation. 41

3.15 Extracted hand-drawn UI elements from a pre-processed human-generated sketch. . . . 42

3.16 Attributes included in the DOMRect object returned by getBoundingClientRect() [61]. . 42

3.17 Pre-processed computer-generated sketch after CSS color modifications. 43

3.18 Dataset file tree structure preparation for YOLOv5. 45

3.19 Cloning Ultralytics’ YOLOv5 repository and importing our dataset. 45

3.20 Customizing YOLOv5 model configuration properties. 46

3.21 Comparison between Tensorboard and WandB for visualizing performance metrics. . . . 48

3.22 YOLOv5 train command line. 48

3.23 Validating YOLOv5 using the validation and test sets. 49

3.24 Detecting UI elements and printing the predicted bounding boxes. 49

3.25 Illustration of how native HTML elements without CSS can compromise the generation of

a UI from the correct object detection results. 50

3.26 Illustration of the spatial grouping algorithm: (a) Evaluating the original objects’ bounding

boxes. (b) Horizontally expanding and intersecting the first element’s bounding box edge

to edge. (c) Evaluating the final group of all horizontally aligned elements. (d) Finding ver-

tically aligned elements within the horizontal group by expanding and intersecting objects’

bounding boxes top to bottom. 51

3.27 Comparison of a (a) screenshot of a React web-generated app, with the detected contain-

ers marked with a dotted line and generic placeholders inside each UI element, with an

(b) image of a screen template using the OutSystems UI Framework CSS that matches

the same UI elements and page structure. 53

3.28 Proposed solution complete pipeline. 54

4.1 Google Colab hardware usage data and total train time for the human-generated dataset. 55

4.2 Performance plots for the human-generated dataset fold 1 model train losses, validation

losses, and all evaluation metrics. 57

4.3 Overlapped plots of train loss, validation loss, and performance metrics of all five folds. . . 57

4.4 Confusion matrix for all 16 classes and background false negatives of fold 1. 58

4.5 Distribution of the number of images per class, bounding boxes aspect ratios, and bound-

ing box center coordinates (x, y) for both datasets. 60

4.6 Confusion matrix for the model trained with a computer-generated dataset and tested with

the human-generated dataset. 61

4.7 Performance plots for the computer-generated dataset model train losses, validation losses,

and all evaluation metrics. 62

xix

4.8 Example of an accurate detection performed by the model. 63

4.9 Example of ground-truth and predicted labels qualitative evaluation in bulk. 63

4.10 Examples of unusually wide and deformed elements in sketches. 64

4.11 Example of detection issues due to pre-processing binarization. 65

C.1 Raw photo of a hand-drawn sketch taken with a smartphone camera (RGB color space,

4032 by 3024 pixels resolution, and JPEG file weighting 2.4 MB). 91

C.2 Pre-processed image corresponding to the binarized, resized, and masked version of the

original raw photo of a hand-drawn sketch taken with a smartphone camera (binary color

space, 1200 by 900 pixels resolution, and PNG file weighting 7 KB). 92

C.3 Pre-processed image corresponding to the binarized, resized, and masked version of the

original raw photo of a hand-drawn sketch taken with a smartphone camera (binary color

space, 1200 by 900 pixels resolution, and PNG file weighting 7 KB). 92

C.4 Comparison of a (a) screenshot of a React web-generated app, with the detected contain-

ers marked with a dotted line and generic placeholders inside each UI element, with an

(b) image of a screen template using the OutSystems UI Framework CSS that matches

the same UI elements and page structure. 97

xx

Nomenclature

AI Artificial Intelligence.

AP Average Precision.

CNN Convolutional Neural Network.

COCO Common Objects in Context.

CPU Central Processing Unit.

CSS Cascading Style Sheets.

CUDA Compute Unified Device Architecture.

CV Computer Vision.

DSL Domain Specific Language.

FN False Negative.

FP False Positive.

GIoU Generalized Intersection over Union.

GPU Graphics Processing Unit.

HTML HyperText Markup Language.

IDE Integrated Development Environments.

IoU Intersection over Union.

mAP Mean Average Precision.

NN Neural Network.

OCR Optical Character Recognition.

OS OutSystems.

ReLU Rectified Linear Unit.

RPN Region Proposal Network.

xxi

SDLC System Development Life Cycle.

SVM Support Vector Machine.

TN True Negative.

TP True Positive.

TS TypeScript.

UI User Interface.

UX User Experience.

VM Virtual Machine.

VOC Visual Object Challenge.

XML Extensible Markup Language.

YOLO You Only Look Once.

xxii

Chapter 1

Introduction

This Chapter provides an overview of this thesis by contextualizing its motivations and objectives. Sec-

tion 1.1 describes the main challenges posed by the user interface prototyping process that motivated

this thesis work. Section 1.2 is an overture of relevant related work, highlighting the limitations and

challenges faced by recently implemented solutions. Section 1.3 presents the main contributions of this

thesis work and the goals that the implemented solution aims to achieve. Finally, Section 1.4 outlines

the structure of this document.

1.1 Motivation

Traditionally, building a user interface (UI) is known to be a tedious, prone-to-error and detail-driven task.

Machine learning can be used to greatly accelerate front-end development by using more data and

algorithms, but requiring less coding. So, building an automatic tool that could interpret a hand-made

sketch and generate the actual UI would accelerate and improve the whole design process, providing

the developer immediate feedback on what is being generated and allowing for changes to be made in

real time.

A seamless, interactive, and straightforward design process would lead to a better user interface,

benefiting both the developers and the users. This would also positively impact the System Develop-

ment Life Cycle (SDLC) of software applications by reducing it. Further improving the manageability,

objectivity, and control of projects, would ultimately reduce the time-to-market and the cost-to-market

of applications, allowing developers and designers to deliver more accurate and tangible products in a

shorter time.

1.2 Topic Overview

Automatic UI generation has recently been building momentum in software development, as more de-

velopers find themselves working on unnecessarily laborious, unremarkable, and time-consuming tasks

that require multiple iterations and do not always lead to the very best result.

1

One of the first stages of building a UI consists of drafting a prototype that is a schematic image

of the screens. For this purpose, the most common UI design prototyping solutions lead developers

and designers to produce both hand-made and digital sketches. In order to accelerate this stage, some

modern integrated development environments (IDEs), such as Apple Xcode, Google Android Studio, and

Microsoft Visual Studio, provide built-in UI editors with standardized UI patterns and screen templates.

However, these solutions do not provide a seamless, immediate, and easy way to generate the UI code

based on the initial hand-made prototypes that often result from project brainstorming. That is because

connecting the abstract hand-drawn sketches and the production of consistent UI code, which is a task

usually performed by a specialized developer, is not linear. In fact, building a UI is more artistry and

handiwork, than a methodical and scientific work. Depending on the developer, the ways of structuring

the UI code can diverge a lot, even from the same desired output. This yields that establishing heuristics

to perform such a task is not viable, leading to the use of machine learning for automatic UI generation.

While this is a new field of research, it has been propelling the creation of new companies, such as

Uizard [1], and motivating new research and development projects in different companies, like OutSys-

tems [2], teleportHQ [3], Microsoft [4], and Airbnb [5].

1.3 Objectives

This thesis proposes a tool that converts hand-drawn sketches into real world user interfaces, as de-

picted in Figure 1.1. In order to achieve this, the tool recognizes the representation of each UI element,

infers their hierarchy and positions, and generates the corresponding user interface code.

Figure 1.1: Conversion of a raw photo of a hand-drawn sketch (input) into a user interface (output).

While the ultimate objective of this tool is to maximize the efficiency of prototyping tasks and accel-

erate the design process, specific objectives were set for all the intermediate stages of the implemented

solution pipeline, namely:

• Extract all relevant data from the input hand-drawn image.

– Train a computer vision model to detect hand-drawn UI elements, which requires producing

a dedicated dataset for the task at hand and conceiving the necessary tools for labeling and

data augmentation.

2

– Develop a pre-processing pipeline of steps to be applied to the input images before feeding

the data to the network.

• Generate the code for the UI.

– Analyze the extracted data to infer the hierarchical structure of the sketched UI elements in

order to preserve the designed layout when generating the code.

– Produce an agnostic structure with spatially grouped UI elements and correct potential errors

in the trace set.

– Generate the source code to be compiled and visualize the UI.

This thesis will cover how these objectives were pursued in each stage of the pipeline and how the

complete tool can be used to generate the most commonly designed user interfaces.

1.4 Thesis Outline

Throughout the five chapters of this thesis, the implemented solution is described in detail along with

the methodologies used. More specifically, Chapter 2 provides an overview of the background concepts

on machine learning, deep learning, and methods used for image analysis. Chapter 3 focuses on the

implemented solution, describing each stage of the pipeline in detail. Chapter 4 presents the results

obtained. And, finally, concluding remarks are presented in Chapter 5, along with multiple future work

possibilities.

3

4

Chapter 2

Background

Chapter 2 provides a brief top-down presentation of the core concepts that are essential to better un-

derstand the essence of the current state-of-the-art algorithms and tools used for object detection and

image classification. It also covers the two main architectures for hand-drawn sketch analysis, by speci-

fying the capabilities of the existing implementations and their limitations.

2.1 From Machine Learning to Deep Learning

The most common deep learning architectures used for computer vision and image analysis, such as

convolutional neural networks (CNNs), which will be covered in detail in this chapter, are part of a broader

family of machine learning methods. Thus, it is important to understand how they are related to each

other.

2.1.1 Machine Learning

The core objective of a learning machine is to generalize from its experience [6]. Detecting patterns

and adapting to new circumstances may not be possible using explicit instructions. This application of

artificial intelligence relies on patterns and inference by developing algorithms that can help a program

learn and identify patterns given a certain dataset [7].

In order to make predictions without being explicitly programmed to perform a task, machine learning

algorithms build a mathematical model based on training data. Presently, machine learning algorithms

are used for a wide variety of applications, including computer vision, many tasks of which would be

infeasible using conventional algorithms [8].

2.1.2 Machine Learning Approaches

Depending on the problem to be solved, different types of machine learning algorithms can be used.

The most important scenarios for this thesis work are:

5

• Supervised learning algorithms, which build a mathematical model from a pre-labelled dataset

containing both the inputs and the corresponding desired outputs. The model is then used to

predict new outputs for inputs that were not known before.

• Unsupervised learning algorithms, which do not use a labelled dataset for training. This approach

builds a mathematical model just from the inputs by finding structure in the data (i.e., grouping or

clustering data points).

• Semi-supervised learning algorithms, which fall in between the previous two cases, using datasets

where a small part of the data is labeled and the rest is not. These algorithms pursue the idea that

unlabeled data contains important information for the decision-making process [9].

2.1.3 Neural Networks

Neural networks (NNs) are a class of machine learning algorithms designed to recognize patterns [10].

These algorithms are inspired by the structure of the human brain and provide multiple ways of classi-

fying and clustering data. The central unit of any neural network is called perceptron, which classifies

an input vector by separating two different categories with an hyperplane. As described in Figure 2.1,

the input of a perceptron is typically a feature vector x, which is then multiplied by weights w, added to a

bias b, and passed through an activation function f , leading to the output y given by

y = f(w · x+ b), (2.1)

where w · x denotes the inner product between vectors w and x.

x2 w2 Σ f

Activation
function

y

Output

x1 w1

Weights

x3 w3

Bias
b

Inputs

Figure 2.1: Schematic illustration of a neural network perceptron.

The combination of multiple perceptrons aiming to solve more complex problems leads to multilayer

neural networks, which are typically grouped into three different types of layers: the input layer, the

hidden layers, and the output layer. Figure 2.2 illustrates an example of a multilayer neural network.

The input layer restructures the data to be processed by the rest of the network. The hidden layers,

between the input and output layers, perform most of the relevant computations, allowing the network to

learn the features of the data using linear projections and activation functions. Finally, the output layer

converts the output of the hidden layers into a meaningful output for the task in question.

6

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Output 1

Output 2

Figure 2.2: Example of a multilayer neural network.

2.1.4 Activation Functions

Neural networks are function-approximating models that can improve themselves with experience. In

order to work effectively, NNs rely on activation functions to transform the values between each layer [11].

Rectified Linear Unit

The ReLU is among the most used activation functions; mathematically, it is defined as

ReLU(x) = max(0, x). (2.2)

The ReLU is the linear identity of any positive value, and zero for any negative value. This makes ReLU

easy and fast to both compute and converge, considering that the slope does not plateau for a linear

function.

Sigmoid Function

Another frequently used activation function is the sigmoid function, mathematically defined by

σ(x) =
ex

1 + ex
. (2.3)

This activation function outputs a value between zero and one, making it especially convenient for prob-

lems involving probabilities.

Softmax Function

The softmax function normalizes an input vector of real values into a probability distribution with the same

dimension of the input vector. Softmax is often used in neural networks to map the non-normalized out-

put of a network into a probability distribution over predicted output classes (i.e., the vector components

will sum up to one, and none of the values can be negative or greater than one).

7

The softmax function is defined as

(Softmax(x))j =
exj∑
i e
xi

. (2.4)

Loss Functions

Optimizing the parameters of a neural network consists of improving how well the neural network models

the training data by minimizing the output result of a loss function that consecutively compares the target

values with predicted values. Then, the hyperparameters are updated to minimize the average loss,

formally given by

J(wT , b) =
1

m

m∑
i=1

L(ŷi, yi), (2.5)

where L is the difference between the ground-truth y value and the ŷ predicted value, considering the

wT weights and b biases that eventually minimize the value of J (average loss).

There are two main types of loss functions known as regression and classification loss functions,

which are purposeful for the two main types of neural networks. Regression loss functions, like the

mean squared error function, are used for regression neural networks, where given an input value the

model predicts the corresponding output value. On the other hand, classification loss functions, like

the cross-entropy function, are used in classification neural networks, where given an input value the

neural network produces a vector of probabilities of the input belonging to a set of given categories, thus

selecting the category with the highest probability.

Mean Squared Error

The mean squared error function computes the squared distances between a regression line and a given

set of points. The squaring operation is necessary to both ignore the sign of the error and emphasize

larger differences. In the context of neural networks, the distances represent the discrepancy between

the output and target values. Formally,

MSE =
1

n

n∑
i=1

(yi − ŷi)2. (2.6)

Cross-Entropy

The cross-entropy is the average number of bits needed to encode data coming from a source with

distribution p when using a model q [12]. Generally, considering a target or an underlying probability

distribution p, and an approximation of the target distribution q, the cross-entropy of q from p is given by

H(p, q) = −
∑
x∈χ

p(x) log q(x). (2.7)

8

2.1.5 Backpropagation

The backpropagation algorithm is the classical learning mechanism of multilayer neural networks [13].

The first step of this algorithm is to initialize the weights and biases of the network, for example, with

random values from a Gaussian distribution. Then, the input data is propagated forward through the

network. After the network processes the data, the obtained output is compared with the desired output

using the loss function, and the gradient, or error, is calculated. The gradient value is then propagated

back through the network and the gradients of the loss function with respect to the parameters of the

hidden layers are computed. Finally, the parameters of the network are updated based on the computa-

tion of its gradient and subtraction of a fraction of the gradient from the weights according to a specified

learning rate. This update is repeated until some convergence criterion is satisfied.

2.1.6 Deep Learning

Different problems require different machine learning approaches. Deep learning is a subset of ma-

chine learning that uses neural networks to exploit the unknown structure of an input. Deep learning

algorithms seek to discover good representations, often at multiple levels, with higher-level learned fea-

tures defined in terms of lower-level features (i.e., complex representations are represented in terms

of smaller representations). While extracting relevant features from an input with an unknown structure

can be a great challenge, deep learning algorithms often solve the representation learning problem by

representing complex concepts as multiple simpler concepts [14]. This is particularly useful for many

different fields, including computer vision, natural language processing, bioinformatics, and many oth-

ers. A deep learning model in the computer vision field may consist of a first visible layer that receives

an input image, a subsequent set of hidden layers that identify multiple simpler concepts that are useful

to establish relations between the data, and a final output layer that classifies the object found.

2.2 Convolutional Neural Networks

With the advancements in computer vision, it quickly became obvious that regular fully connected NNs

(i.e., where each neuron is connected to all the neurons of the next layer) would not be the solution to

perform all the necessary computations and avoid overfitting issues in a timely manner [15]. A CNN

is formed by multiple layers of convolutional filters, alternated with subsampling filters, followed by fully

connected layers [16]. The basis of the design of conventional CNNs, shown in Figure 2.3, was first

introduced by LeCun et al. [17] to tackle the challenges posed by computer vision. More particularly,

CNNs were created to solve a handwritten digit recognition problem.

When an input image is provided, a CNN does not know where the desired features are located in

the image, so it runs through the whole image looking for every possible location, thus creating a filter

that consists of a weighted average of all measurements, instead of the general matrix multiplication

used by regular NNs. This process, represented in Figure 2.4, corresponds to a convolution.

When dealing with numerous convolutions on large kernel sizes and on large datasets within multiple

9

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
84

Full connection
Full connection

Gaussian connections

OUTPUT
10

Figure 2.3: Illustration of the LeNet-5 CNN architecture, containing an input layer and six processing
layers. Each plane is a feature map, i.e., a set of units whose weights are constrained to be identical [18].

1 32
4 65
7 98

(a)

9 78
6 45
3 12

(b)

1 32
4 65
7 98

(c)

Figure 2.4: Illustration of a 2D discrete convolution operation: (a) example of a 3× 3 convolution kernel,
(b) convolution with kernel flipping, (c) convolution without kernel flipping [16].

training iterations, such as image analysis, replacing the convolution operation with cross-correlation

reduces the computational time in both feedforward and backward propagations [16].

Formally, the general form of a 2D discrete cross-relation is

Y (x, y) =

Kx∑
u=0

Ky∑
v=0

X(x+ u, y + v)w(u, v), (2.8)

where X is an input image, Y is the output image, w is the kernel, and Kx and Ky represent the width

and height of the convolutional kernel, respectively. The difference between a 2D discrete convolution

and a cross-relation is that the kernel weights are not flipped in the latter.

It is important to retain the three central stages of a CNN. The first stage consists of a layer that

performs several convolution operations in parallel for feature extraction, which replaces the regular

multiplication operations done in fully-connected NNs. The second stage is usually called “the detec-

tor stage” and corresponds to a feature map layer, where each linear activation function is run through

nonlinear activation functions. Finally, the third stage consists of applying a pooling operation to down-

sample the features into feature maps and create a summarized version of the features detected in the

input.

Convolutional Layers

Combining a set of convolutional filters forms a convolutional layer of the network. Because the filters

used in the convolution operations are spatially invariant of the image, the number of free parameters

needed is drastically reduced when compared to fully-connected NNs.

A convolutional layer of a CNN accepts a so-called tensor (i.e., a three-dimensional data cube) of

10

size Wi ×Hi ×Di, and requires four hyperparameters: the number of filters K, the size of the filters F ,

the stride S, and the padding P . The output is a tensor of size Wj ×Hj ×Dj , where

Wj =
Wi − F + 2P

S
+ 1, Hj =

Hi − F + 2P

S
+ 1, and Dj = K. (2.9)

Nonlinear Transformation

The output of each convolutional layer is passed through a nonlinear transform, e.g., ReLU(x), or the

hyperbolic tangent function, which will map input values to perform nontrivial computations using a small

set of nodes.

Pooling

Spatial pooling or downsampling techniques consist of grouping local features, such as per-pixel color

measurements, in order to reduce the dimension of each feature, while retaining the most important

information and avoiding overfitting. This technique is typically used to improve the robustness of objects

against slight deformations, which is extremely relevant in computer vision [19]. Two main types of spatial

pooling are applied: max pooling, which chooses the highest values from the selected pooling filter, and

average pooling, which computes the average of the selected filters. It is important to retain that spatial

pooling receives a tensor of size Wi ×Hi ×Di, requires two hyperparameters (the spatial extent F and

the stride S), and outputs a tensor of size Wj ×Hj ×Dj , where

Wj =
Wi − F

S
+ 1, Hj =

Hi − F
S

+ 1, and Dj = Di. (2.10)

2.2.1 Training

After setting a CNN structure, learning its parameters (i.e., weights and biases) requires training [20],

which typically consists of two phases. The first is a forward phase, where the input is passed through

the network end-to-end, and the second is a backward phase, where gradients are backpropagated

and the network weights are updated [21]. A supervised learning approach requires the CNN function

to learn its parameters based on a provided set of input-output examples, which is called the dataset.

Traditionally, training the network requires splitting the dataset into three different subsets: the training

set, the validation set, and the test set. The training set is usually the largest one, as it is used to

learn the weights and biases of the network. The validation set is used to verify which model and set

of hyperparameters lead to the best results. Finally, the test set is used to assess the classification

accuracy. In order to better train the network, a large number of labeled examples is required. Generally,

during the training process, the network receives an example from the training set, performs all the

necessary computations and, finally, compares the output of the network with the ground-truth label

provided from the dataset, in order to update the parameters of the network. Assessing the difference

between the predicted output and the correct label is crucial for improving the network. For that purpose,

loss functions described in Equations (2.6) and (2.7) are an intuitive parameter to compute the difference

11

(a) Standard neural network (b) Dropout approach

Figure 2.5: Overview of the dropout model [22]. (a) A standard neural network with 2 hidden layers. (b)
An example of a thinned network produced by applying dropout to the NN on the left. Crossed units (⊗)
have been dropped.

between the predicted output and the correct label. Updating the parameters is, then, an optimization

problem for which we can use the backpropagation algorithm. Generally, the idea is to use the gradient

of the loss function until some convergence criterion for a minimum value is satisfied. In order to use the

backpropagation for every parameter, it is necessary to use the chain rule to compute the gradients.

Pre-processing

Building an effective network requires careful consideration of the input data format. Typically, image

data input parameters are: total number of images, image height, image width, total number of channels,

and total number of levels per pixel. It is important to assure that the data dimensions are of the same

scale, in order to make the algorithm that receives the data more trainable. These parameters mean

and standard deviation should only be computed over the training set and then applied consistently

throughout the training, validation and test sets.

Regularization

Different model configurations are known to reduce overfitting, but require additional computational ex-

pense for training and maintaining different models. While CNNs avoid most overfitting issues of regular

fully connected NNs [15], generalizing the network to unseen examples is still a great challenge. Some

empirical techniques, known as regularization methods, are used to tackle this challenge. As an exam-

ple, the dropout model can be used to simulate having a large number of different network architectures

by randomly dropping out nodes during training [22].

2.2.2 From Image Classification to Object Detection

Image classification is an exemplary computer vision application that intends to appoint a label to a given

input image from a pre-set array of categories. Before the deep learning era, most image classification

methodologies were based on heuristics. Histograms of oriented gradient is a technique that counts the

12

occurrences of gradient orientation in localized portions of an image [23]. The detector window is tiled

with a grid of overlapping blocks in which histograms of oriented gradient feature vectors are extracted.

The combined vectors are fed to a linear SVM for object and non-object classification. The detection

window used by this technique is scanned across the image at all positions and scales, and conventional

non-maximum suppression is run on the output pyramid to detect object instances.

Object detection is an extension of image classification, consisting of detecting an object in an image

and identifying its position and size in the image, apart from the usual image classification task [23].

However, object detection is one of the most challenging problems as it is prone to localization and

classification errors. There are two main object detection approaches, which are reviewed next.

Region Proposals

One of the most common approaches is based on the technique of finding region proposals in order

to localize objects. Despite having very good performance, this approach is computationally expensive

due to having a large number of proposed regions [24].

The first research work to follow this approach is widely known by R-CNN [25], which proposed a

method that uses selective search for extracting approximately 2000 regions from an image, instead of

trying to classify a higher number of regions. These 2000 regions, called region proposals, are generated

using a greedy algorithm to recursively combine similar regions into larger ones and produce the final

candidate region proposals.

As depicted in Figure 2.6, the final candidates are warped into a square and fed into a CNN that

produces a 4096-dimensional feature vector as output, thus acting as a feature extractor. Finally, the

extracted features are fed into an support vector machine to classify the presence of the object within

each candidate region proposal.

This algorithm also predicts four offset values to adjust and increase the precision of the object

bounding box.

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 2.6: Overview of the proposed R-CNN object detection system [25], which (1) takes an input
image, (2) extracts around 2000 bottom-up region proposals, (3) computes features for each proposal
using a large CNN, and finally (4) classifies each region using class-specific linear SVMs.

However, R-CNN has some drawbacks, such as the time-consuming network training process to

classify 2000 region proposals per image, which is aggravated by the static selective search that does

not learn while selecting region proposals, ultimately leading to the generation of bad candidates. Also,

13

R-CNN cannot be used for real-time detections, as it takes approximately 47 seconds to test each single

image.

There have been several iterations after R-CNN, aiming to develop a high-confidence region-based

object detection framework using region proposals that boost up the classification performance with less

computational burden, reducing processing time [26].

Fast R-CNN [27] is an iteration of R-CNN that propelled a similar yet faster object detection algorithm.

This new approach consists of feeding the input image to the CNN to generate a convolutional feature

map, instead of feeding the region proposals to the CNN. Regions of proposals are then identified from

the convolutional feature map, warped into squares and reshaped into a fixed size using a region of

interest pooling layer, so that they can be fed into a fully connected layer. Finally, from the region of

interest feature vector, a softmax layer is used to predict the class of the proposed region and the offset

values to adjust the bounding box, as shown in Figure 2.7.

Deep
ConvNet

Conv
feature map

RoI
projection

RoI
pooling
layer FCs

RoI feature
vector

softmax
bbox

regressor

Outputs:

FC FC

For each RoI

Figure 2.7: Illustration of the Fast R-CNN [27] architecture. A given input image and multiple regions of
interest are input into a CNN. Each region of interest is pooled into a fixed-size feature map and mapped
to a feature vector by fully connected layers. The network has two output vectors per region of interest:
the softmax probabilities and the bounding-box regression offsets per each class. The architecture is
trained end-to-end with a multi-task loss.

The main reason why Fast R-CNN is less time-consuming than R-CNN is because the convolution

operation is done only once per image and a feature map is generated from it, rather than feeding 2000

region proposals to the CNN every time.

Even so, results show that including region proposals significantly slows down the algorithm [28].

Both R-CNN and Fast R-CNN use selective search to identify region proposals, thus affecting the per-

formance of the network.

In order to tackle this bottleneck, a third important approach was introduced aiming to eliminate the

selective search algorithm and let the network learn the region proposals, as shown in Figure 2.8.

Faster R-CNN is a similar approach to Fast R-CNN, yet consists of feeding an input image directly

to a CNN, which provides a convolutional feature map. Then, instead of using the selective search

algorithm on the feature map to identify region proposals, a separate network is used to predict the

region proposals. At last, the predicted region proposals are reshaped using a region of interest pooling

layer, which is then used to classify the image within the proposed region and predict the offset values

14

image

conv layers

feature maps
Region Proposal Network

proposals

classifier

RoI pooling

Figure 2.8: Overview of the Faster R-CNN [28] architecture. Faster R-CNN is a unified network for object
detection composed of two modules. The first module is a deep fully convolutional network that proposes
regions, and the second module is the Fast R-CNN detector [27] that uses the proposed regions.

for the bounding boxes.

While Faster R-CNN was proven to be significantly more efficient in test speeds when compared with

prior R-CNN approaches [27], it could only operate at 7 frames per second.

Therefore, this approach is still considered impracticable for real-time applications that require faster

detections.

While all of these approaches increased detection speeds, these improvements came only at the

cost of significantly decreased detection accuracy. Aiming to maintain high detection accuracy results,

another important research work led to a new Single Shot MultiBox Detector (SSD).

The SSD approach was the first deep-network-based object detector that did not resample pixels

or features for bounding box hypotheses and yet maintained the accuracy of approaches that do. It

produces a fixed-size collection of bounding boxes and scores for the presence of object class instances

in those boxes, followed by a non-maximum suppression step to produce the final detections [29].

SSD only needs an input image with the ground-truth bounding boxes for each object. First, a small

set of default boxes with different aspect ratios are evaluated at each location in several feature maps

with different scales (e.g., 8 × 8 and 4 × 4, as depicted in Figure 2.9). Both the shape offsets and the

confidences for all object categories are computed for each default box (e.g., (c1, c2, · · · , cp)). At training

time, these default boxes are matched to the ground truth boxes and the model loss is a weighted sum

between localization loss and confidence loss.

15

(a) Ground-truth boxes (b) 8× 8 feature map

loc: ∆ (cx, cy, w, h)
conf : (c1, c2, · · ·, cp)

(c) 4× 4 feature map

Figure 2.9: Demonstration of the SSD framework. In this example, two default boxes would be matched
with the cat box and one with the dog box, which are treated as positives and the rest as negatives.

300

300

3

VGG-16
through Pool5 layer

19

19

Conv7
(FC7)

1024

10

10

Conv8_2

512

5

5

Conv9_2

256
3

Conv10_2

256 256

38

38

Conv4_3

3

1

Image

Conv: 1x1x1024 Conv: 1x1x256
Conv: 3x3x512-s2

Conv: 1x1x128
Conv: 3x3x256-s2

Conv: 1x1x128
Conv: 3x3x256-s1

D
et

ec
tio

ns
:8

73
2

 p
er

 C
la

ss

Classifier : Conv: 3x3x(4x(Classes+4))

512 N
on

-M
ax

im
um

 S
up

pr
es

si
on

Conv11_2

74.3mAP
 59FPS

Classifier : Conv: 3x3x(6x(Classes+4))

19

19

Conv6
(FC6)

1024

Conv: 3x3x1024

S
S

D

Extra Feature Layers

Conv: 1x1x128
Conv: 3x3x256-s1

Conv: 3x3x(4x(Classes+4))

Figure 2.10: Overview of the SSD architecture [29], containing several feature layers in the end of a
base network to predict the offsets of the default boxes with different scales and aspect ratios, as well
as the respective confidences.

All in all, the SSD method is based on a feedforward convolutional network on which the early layers

are based on a standard architecture used for high quality image classification, which is called the base

network, and the final layers consist of an auxiliary structure, as depicted in Figure 2.10.

Regression

Another common approach to perform object detection is a one-step framework based in the regres-

sion task that consists of approximating input variables of a mapping function to a continuous output

variable. The idea is to map the pixels of the image directly to bounding box coordinates and class

probabilities. This approach achieves better performance when compared with frameworks based on

region proposals, as it avoids several interdependent stages.

As an example, the You Only Look Once (YOLO) algorithm [30] frames object detection as a re-

gression problem of spatially separated bounding boxes and associated class probabilities with a single

network. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly

on detection performance. YOLO is considered a milestone in the development of target detection algo-

rithms, such as RCNN, Faster-RCNN, and SSD, making it the most advanced real-time object detection

model.

16

S×S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2.11: Illustration of a YOLO [30] model applying a 7× 7 grid cell to an input image.

2.2.3 You Only Look Once

As aforementioned, YOLO is a real-time object detection algorithm that stands out from R-CNN by

classifying and predicting bounding boxes directly from the image’s pixels, instead of relying on region

proposals. For common usage problems, YOLO integrates the object bounding box prediction and the

object class judgment into a single neural network model, providing a significant speed improvement for

the detection task.

In addition, a class probability is calculated from a set of conditional probabilities computed for each

particular cell. Finally, the bounding boxes and their respective class probabilities are filtered to deter-

mine the final detections using a S × S × (C +B × 5) tensor that corresponds to the predictions of each

cell of the grid, where C corresponds to class probabilities.

When provided an image, YOLO divides it into a S × S grid of cells (default 7 × 7, as depicted in

Figure 2.11). Each grid cell predicts B bounding boxes, along with their respective position parameters,

and C class confidence scores for the objects whose centers are located in it. All other cells disregard

non-central parts of an object, even if seems to be visible across multiple cells.

The confidence score of each class reflects the probability of presence or absence of an object in

bounding box. The confidence score is calculated by multiplying the presence probability of an object

inside a cell and the intersection over union (IoU) of the object prediction box and the ground truth box.

Because the probability of an object being inside a cell can vary between 0 and 1, the confidence score

is close to 0 if an object does not exist in a cell.

Both during training and testing, YOLO can see the complete input image, thus making good use

of context information while performing the detection and avoiding predicting nonexistent classes in the

background.

Bounding boxes are the regions of interest (RoI) of the identified candidate objects, given by four

17

448

448

3

7

7

Conv. Layer
7x7x64-s-2

Maxpool Layer
2x2-s-2

3
3

112

112

192

3
3

56

56

256

Conn. Layer

4096

Conn. LayerConv. Layer
3x3x192

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x128
3x3x256
1x1x256
3x3x512

Maxpool Layer
2x2-s-2

3
3

28

28

512

Conv. Layers
1x1x256
3x3x512
1x1x512

3x3x1024
Maxpool Layer

2x2-s-2

3
3

14

14

1024

Conv. Layers
1x1x512

3x3x1024
3x3x1024

3x3x1024-s-2

3

3

7

7
1024

7

7
1024

7

7
30

} ×4 } ×2
Conv. Layers
3x3x1024
3x3x1024

Figure 2.12: Illustration of the Fast R-CNN [27] architecture. A given input image and multiple regions of
interest are input into a CNN. Each region of interest is pooled into a fixed-size feature map and mapped
to a feature vector by fully connected layers. The network has two output vectors per region of interest:
the softmax probabilities and the bounding-box regression offsets per each class. The architecture is
trained end-to-end with a multi-task loss.

parameters (x, y, w, h), which correspond to the center coordinatex x and y, along with the box width and

height, respectively. Combined with the confidence score aforementioned, each bounding box consists

of five parameters.

Thus, the final layer output of YOLO is a tensor with the shape of S × S × (5×B +C). For example,

when evaluating the YOLO model for the COCO dataset, which contains 80 classes, and considering

that each cell predicts 2 bounding boxes, the tensor output shape is 7× 7× (5× 2 + 80).

Because YOLO predicts multiple bounding boxes, it uses non-maximum suppression to ensure that

only one box is detected per object, merging overlapping bounding boxes of the same object into a single

one. This is achieved by discarding the boxes with low confidence scores and keeping the boxes with

highest confidence scores. Finally, any of the remaining boxes that has an intersection over union (IoU)

index higher than a certain threshold will also be discarded.

The YOLO model architecture, presented in Figure 2.12, namely the sequences of 1 × 1 and 3 × 3

convolutional layers, was inspired by the inception GoogLeNet model for image classification, which is

mainly a combination of convolution and maxpooling layers that help reduce the features space from pre-

ceding layers. Nevertheless, the final layer uses a linear activation function instead of a Leaky Rectified

Linear Unit (leaky ReLU) activation as all other layers.

Over time, YOLO has had several iterations and became faster and more reliable. Currently, there

are five main versions of YOLO, including YOLOv1, YOLOv2, YOLOv3, YOLOv4, and YOLOv5.

The first iteration, YOLOv1, was developed on the basis of the R-CNN region proposals approach. As

aforementioned, R-CNN uses a CNN for target detection and SVM for prediction classification, making

18

it computationally heavy and slow. However, the bounding boxes position detection and object classifi-

cation accuracy values were high.

All in all, YOLOv1 tried to tackle the R-CNN drawbacks by only processing the input images once

(thus the algorithm’s name), extracting different features through multiple convolutional layers, and shar-

ing convolution kernel parameters. This has improved image detection speeds, making it faster than

previous detection models and, therefore, ideal for real-time applications. However, YOLOv1 had the

disadvantage of recording a low accuracy score on position detections and ignoring small objects.

YOLOv2 [31] upgraded the YOLOv1 backbone network to use average pooling, softmax classification

and an anchor prediction box. Also, a combined training method of target classification and detection

is proposed. These improvements led to accuracy improvements, eespecially for the detection of small

objects.

YOLOv3 [32] introduced some improvements over YOLOv2, increasing the depth of the network and

to improve the model accuracy. Softmax classifiers were replaced with multiple logistic classifiers.

YOLOv4 [33] was presented in 2019, aiming to provide fast target detections that could be used in

a real-world work environment. This iteration also used data enhancements and introduced the latest

deep learning state-of-the-art activation functions, such as CutMix data enhancement, Swish and Mish

activation functions.

YOLOv5 [34] is currently the latest iteration of YOLO. This version introduced significant running

speed improvements, with the fastest speed reaching 140 frames per second. At the same time, the

size of YOLOv5 became smaller than previous iterations, with the weight file being nearly 90% lighter

than the weights of YOLOv4, allowing YOLOv5 to be deployed on embedded devices. YOLOv5 also has

a higher accuracy rate and even better capacities to identify small objects.

2.2.4 Evaluation metrics

Evaluating the performance of object detection algorithms requires a quantitative analysis of key per-

formance metrics. The most commonly used evaluation metric for object detection algorithms is mean

average precision (mAP), which relies on several important concepts which will be overviewed in this

section.

Intersection over Union

Measuring the intersection over union (IoU), also known as Jaccard index, of a given detection requires

considering two areas: the ground-truth bounding box (denoted by BBGT) and the bounding box pre-

dicted by the model (denoted by BBP), both illustrated in Figure 2.13.

19

(a) Chart ground-truth (green) and

predicted (red) bounding boxes.

(b) Area of intersection (yellow). (c) Area of union (blue).

Figure 2.13: Illustration of the intersection and union areas needed to compute the IoU evaluation metric
for a hand-drawn representation of a chart detection.

IoU is then calculated by dividing the intersection area of BBGT and BBP by the union area of BBGT

and BBP , as follows [35]:

IoU =
BBGT ∩BBP
BBGT ∪BBP

. (2.11)

True and false detections

Determining true and false detections is indispensable to assess the precision of a model. Applying an

IoU threshold against a set of predicted and ground-truth bounding boxes is the most common approach

to determine valid detections.

(a) Perfect detection, considering

that the ground-truth (green) and

predicted (red) bounding boxes

are coincident (IoU = 1) .

(b) True detection, where the IoU

score for the ground-truth and pre-

dicted bounding boxes is above

the 50% threshold.

(c) False detection, where the intersection over

union score for the ground-truth and predicted

bounding boxes is below the predefined 50%

threshold.

Figure 2.14: Illustration of a perfect detection, a true detection and a false detection for a chart element.

A detection is considered to be a true positive when the computed IoU index meets or exceeds the

predefined threshold, generally of 50%.

Contrarily, a false positive detection indicates that the predicted bounding box had no associated

ground-truth bounding box (e.g., an incorrect detection, where the predicted bounding box is exces-

sively deviated from the ground-truth bounding box, thus not meeting the IoU threshold). False negative

detections are also a possibility, meaning that a ground-truth bounding box is not associated to any

predicted bounding box (e.g., no element is detected).

20

Evaluating the performance of a classification model requires correlating the instances that belong

an actual class with the instances appointed for a predicted class.

A 2 × 2 confusion matrix, shown in Table 2.1, is a table layout that provides an intuitive visualization

of all four kinds of detections (true positives, false negatives, and false positives, described earlier, along

with true negatives, which correspond to any other detection of an empty background area).

Table 2.1: Binary confusion matrix using four kinds of results.

Predicted value

Positive Negative Total

Ground-truth value
Positive TP FN Actual positives

Negative FP TN Actual negatives

Total Positive predictions Negative predictions

Precision and Recall

While visualizing the results by comparing the predicted and ground-truth values is an intuitive way of

evaluating the performance of a model, it is also worthwhile to evaluate two metrics that characterize

any model. The metric that effectively describes the purity of our positive detections relatively to the

ground-truth values, which means the total of predictions had a matching ground truth annotation, is

Precision, described as:

Precision =
TP

TP + FP
. (2.12)

A perfect Precision score of 1.0 means that there is a high likelihood that a model prediction is

a correct prediction. Nevertheless, the precision of a model does not describe the completeness of

the positive predictions relatively to the ground-truth values. Evaluating how many actual objects were

actually predicted accordingly to their ground-truth values requires using Recall, which is given by:

Recall =
TP

TP + FN
. (2.13)

Likewise, a perfect Recall score of 1.0 means that a model will positively detect almost all value,

whence an ideal model with both high Precision and Recall would be a perfect object detector, capable

of correctly predicting all existing ground-truth values [36].

Although having a perfect model is not a realistic scenario, two pessimistic scenarios must be con-

sidered to better understand the correlation between both metrics. On one hand, having a high Recall

value and a low Precision scenario implies that most ground-truth values have been detected, but also

that most detections were incorrect (i.e., high number of false positives). On the other hand, having

a high Precision value and a low Recall value yields that all predicted values were correct, but most

ground-truth values have been missed (i.e., high number of false negatives).

21

Describing the correlation between both metrics results in a curve plot of precision and recall values

for all the detections with different confidence scores predicted by the model, as shown in Figure 2.15.

0

1

1
Recall

Precision

Ideal model

(a) Ideal Precision-Recall curve with 1.0 values.

0

1

1
Recall

Precision

Expected model

(b) Expected Precision-Recall curve.

Figure 2.15: Precision-Recall correlation curve plots for ideal and expected scenarios.

Average Precision (AP)

The correlation between Precision and Recall can also be described using AP [37]. The general defini-

tion of this metric is the area under the Precision-Recall curve, which can be calculated using:

AP =

∫ 1

0

Pinterpolated(r)dr. (2.14)

All in all, measuring Average Precision requires generating all prediction scores, converting those

scores into class labels, calculating the confusion matrix with TP, FP, TN, and FN values, computing the

precision and recall metrics, and finding the area under the precision-recall curve.

Precision and Recall are always between 0 and 1, so AP also ranges between 0 and 1. There are,

however, three different approaches to compute AP, namely a 11-point, 40-point, and all-point interpola-

tion method.

The 11-point interpolation method consists of plotting a Precision-Recall curve that summarizes the

average precision values across a set of 11 different recall values of R11 = {0, 0.1, 0.2, . . . , 1}. Similarly,

the 40-point interpolation approach consists of computing recall points at 40 equally spaced points of

R40 = { 1
40 ,

2
40 ,

3
40 , . . . , 1}, providing a clearer evaluation of the model. For both methods, AP is given by:

APR =
1

#R

∑
r∈R

Pinterpolated(r), where Pinterpolated(r) = max
r′≥r

P (r′). (2.15)

At each Recall level, each Precision value is replaced with the maximum Precision value to the right

of each Recall level, meaning that the maximum precision value at recall value greater than equal to r

is taken, rather than averaging over actual observed precision values through point r.

In the all-point interpolation method, the Precision vs. Recall curve is summarized by average preci-

sion values at all points instead of just eleven points.

22

APall =
∑
n

(rn+1 − rn)Pinterpolated(rn+1), where Pinterpolated(rn+1) = max
r′≥rn+1

P (r′). (2.16)

In this case, instead of using the precision observed at only few points, the AP is now obtained by

interpolating the precision at each level, taking the maximum precision whose recall value is greater or

equal than rn+1.

Mean Average Precision (mAP)

The mAP measures the accuracy of an object detector over all classes in a specific dataset. Usually,

mAP is just the average of AP for each class, which is given by:

mAP =
1

n

n∑
i=1

APi, for n classes. (2.17)

However, the interpretation of AP and mAP varies in different contexts. For instance, under the

COCO challenge evaluation, there is no difference between AP and mAP [38].

2.3 Dataset Generation

Common deep learning algorithms require labelled data in order to learn and generalize to unseen

scenarios. One of the challenges of training neural networks is to collect a large labelled dataset, which

is usually not available for many specific models. So, generating a large, varied, and realistic dataset

tends to be a laborious task, especially for hand-drawn sketches, considering that large amounts of

labelled data are not readily available.

This thesis work aims to develop a system that can recognize different hand-drawn UI elements and

screen templates, which means that a dedicated dataset for this specific task had to be developed. To

this end, there are different possible approaches.

2.3.1 Human-generated Dataset Approach

The first possible approach is to produce real hand-drawn sketches, manually scan them, and label one

by one, leading to a dataset with examples that best resemble the final application. However, handing

this task to a single person would be extremely laborious and unfit for the timeframe of the thesis work.

Several researchers believe that this is the best option, and so tried to tackle the time-consuming

disadvantage by crowdsourcing the drawing, scanning, and labelling tasks [39]. Therefore, the only

viable option to generate a large enough dataset is to challenge a community of volunteers and request

contributions to the dataset.

23

2.3.2 Computer-generated Dataset Approaches

Another possible approach is to sketchify real user interfaces and, based on the source code, extract

the necessary tags for the labelling task. This approach could be applied to this thesis work by building a

program that replaces the UI elements in the source code with their respective hand-drawn representa-

tion, in order to generate samples that look like real human hand-drawn sketches, and then infer the label

of each UI element by analyzing the original source code. Some researchers have committed to this

approach for simpler scenarios where there is a single object in an image, as shown in Figure 2.16 [40].

Figure 2.16: Illustration of the sketchification approach [40]. The edge image EI , corresponding to the
input photo I, is merged with the part and object contours PI , derived from ground-truth label CI , to
obtain the final sketchified image SI .

Other than sketchifying real user interfaces, a possible approach is to build a program that generates

simulated hand-drawn UI sketches. This option has the great advantage of producing a scalable dataset,

considering that a computer program can effortlessly generate different UI designs and the labelling task

can be done instantly. On the other hand, it is relatively hard for a computer to simulate human hand-

drawn sketches, due to their inherent abstract nature and variability.

2.3.3 Data Augmentation

Augmenting the training set by generating more samples has shown to improve object detection perfor-

mance [41]. For both human- and computer-generated datasets, common techniques of data augmen-

tation may be used to transform images, creating additional samples that are still realistic and can be

used in the training process.

Usually, using data augmentation consists of performing simple transformations, but there are more

ways to generate data by sampling images from models of the object to recognize. The most common

data augmentation operations consist of geometric manipulations, as shown in Figure 2.17, that can be

easily implemented.

24

Original Rotation Blur Contrast Scaling Illumination Projective

Figure 2.17: Effects of common data augmentation techniques on the AgrilPlant dataset [42].

Considering the variability intrinsic to hand-drawn sketches, morphological operations such as dila-

tion and erosion can be effective to produce additional realistic samples of the same sketch by varying

the stroke width, thus simulating the use of different pens.

However, it is important to retain that, in order to be impartial, the test set should only contain true

hand-drawn sketches, since this will be the scenario on which the system will ultimately be used in real

applications.

2.3.4 Morphological Operations

Nonlinear mathematical morphology is capable of providing more sophisticated image processing tech-

niques through morphological operations, offering greater flexibility and better results than traditional

data augmentation geometric manipulations [43]. However, optimizing the pipeline delay process and

reducing the latency of morphology operators is still an active research field [44].

Morphological image operators take advantage of a wide range of algorithms for edge detection,

noise removal, and image segmentation, producing image modifications based on the neighborhood of

a pixel. For any given input image, a morphological operation consists of applying a structuring element

that generates an output image of the same size, meaning that the value of each pixel in the output

image is based on a comparison of the corresponding pixel in the input image with its neighbors.

Any morphological image processing technique is composed of two base operations, dilation and

erosion, shown in Figure 2.18. The dilation operation increases forefront object boundaries, while the

erosion operation increases background object boundaries. These operations are dual, meaning that

dilating background objects is equivalent to erode foreground objects.

25

(a) Original image. (b) Dilation operation. (c) Erosion operation.

Figure 2.18: Demonstration of the two base morphological operations.

For sketches, other techniques can also be used, for example, by applying Bezier pivot deformation

(BPD), as shown in Figure 2.19, as well as morphological operations, namely dilation, erosion, small

rotations, mirroring, rescaling, among others, depicted in Figure 2.18 [45].

Figure 2.19: Examples of sketches generated by the proposed BPD approach. The left image of each
row is the original hand-drawn sketch of the TU-Berlin dataset [46]. The other 6 samples are deformed
sketches generated by BPD.

2.3.5 Cross-Validation

One of the most common techniques for model evaluation and model selection in machine learning

practice is k-fold cross-validation [47], sometimes referred to as the train/test holdout method.

The k-fold cross-validation consists of going through training and validation stages in successive

rounds for k times. The main idea is that each fold of a dataset must have the opportunity to be tested.

In each round, the dataset is splitted into k folds, 1 being used as a validation set, and the remaining

(k − 1) folds being merged and used as the training set, as shown in Figure 2.20 for a 5-fold cross-

validation example.

26

1st

2nd

3rd

4th

5th
K

 It
er

at
io

ns
 (K

-F
ol

ds
)

Validation
Fold

Training
Fold

Learning
Algorithm

 Hyperparameter
Values

Model

Training Fold Data

Training Fold Labels

Prediction

Performance
Model

Validation
Fold Data

Validation
Fold Labels

Performance

Performance

Performance

Performance

Performance

1

2

3

4

5

Performance
1
5

5

i = 1
Performance i=

A

B C

Figure 2.20: Illustration of the k-fold cross-validation procedure [48].

All in all, this approach consists of using a learning algorithm with fixed hyperparameters to fit the

object detection model to the training (k−1)-folds in each iteration. Considering a 5-fold cross-validation

scenario, this approach would result in five different models fit to different training subsets of the original

dataset, yet partly overlapped by other folds training subsets and evaluated by non-overlapping validation

subsets. The cross-validation performance is, then, the arithmetic mean over the k-fold performance

estimations for the validation sets.

Although this process is computationally expensive, it can be useful for small datasets, where with-

holding data from the training set would be too wasteful. For a crowdsourced human-generated dataset,

this is also a viable option, considering the crowdsourcing process limitations.

2.4 Program Generation

The perception of a need for domain-specific program generation is emerging [49]. So far, the main

aims of program generation have been programming convenience and reliability. Program generation

can substantially contribute to reduce the production cost and time-to-market of software development,

while at the same time improve the quality and stability of a system.

Although the generation of computer programs is an active research field, program generation from

visual inputs is still a nearly unexplored research area [50].

In this field, however, a straightforward approach is to use a domain specific language (DSL). The

versatility of a DSL makes it easy to be compiled and, ultimately, generate the code [51]. In this thesis

27

context, program generation is inextricably linked to the image analysis stage of the system. Once the

model outputs the drawing primitives, a domain-specific language (DSL) could take the outputs of the

object detection algorithm (e.g., the UI elements position, size, and class) and generate an agnostic

structure with all identified elements.

An illustrative example of a DSL approach describing a user interface image is represented in Fig-

ure 2.21, where, for instance, the footer is described as containing four different buttons and the first row

of the UI is described as containing two objects: a label, and a switch.

(a) UI screenshot (b) DSL code describing the UI

Figure 2.21: Illustration of a user interface described in a markup-like DSL [50].

As long as the image analysis stage does not output wrong or insufficient information to generate the

code, the simplicity of a DSL approach may lead to fewer mistakes. However, this is a narrow approach,

limited to the size of the defined DSL. It will not be able to identify or correct errors that the image

analysis stage may produce, nor infer features of the code to be generated.

A more sophisticated approach is to use a model that combines deep learning techniques and pro-

gram synthesis [52]. This approach learns a convolutional neural network that proposes drawing primi-

tives of an image and then learns a model that uses program synthesis techniques to recover a graphics

program from that specification. The main advantage of this approach is that, with a graphics program

in hand, it is possible to correct errors made by the network, measure similarity between drawings, and

extrapolate drawings.

28

Chapter 3

Implementation

Sustained by the core concepts presented in Chapter 2, and motivated by the state-of-the-art algorithms,

methodologies and tools described, a pipeline of multiple stages was developed to recognize hand-

drawn UI elements, infer their hierarchy, and generate the corresponding user interface.

While the central stage of the implemented pipeline is the object detection model, training it required

a large and varied dataset, leading to the development of multiple auxiliary stages. Generating the code

of the resulting sketched interface also required conceiving dedicated stages for both outputting the

hierarchy DSL and the code generation task.

All stages were developed following a modular approach and an agnostic implementation, allowing

for agile modifications, upgrades, and continuous tests and improvements. Thus, the ultimate result is

never compromised in any way, but rather constantly refined.

3.1 Dataset

The ultimate goal of the system is to identify different elements in a hand-drawn interface using computer

vision. Similarly to other deep learning algorithms, computer vision models require large amounts of

labelled data, which are not promptly available.

The abstract nature and high variability of hand-drawn sketches amplify the importance of having

a large dataset covering the most diverse styles of hand-drawing possible [53]. While collecting large

amounts of labeled hand-drawn sketches for a very specific use case can be a great challenge, combin-

ing both human- and computer-generated records lead to more realistic results.

Nevertheless, the essence of computer-generated records will always be human-generated samples,

regardless of the approach chosen from the examples covered in Chapter 2.

The complete dataset used is the result of an iterative process, but the first and most important step

was to define which UI elements would be considered. To do that, a detailed analysis to all screen

templates included in the OutSystems UI framework [54] was conducted.

29

3.1.1 Screen Templates and User Interface Elements

The OutSystems UI framework includes a wide variety of adaptive and interactive UI elements that

compose screen templates [55]. OutSystems has identified the most commonly designed user inter-

faces [54] and, using the 83 UI elements included in the OutSystems UI framework, set 17 different use

cases that were materialized in ready-to-use screen templates, such as the Bulk Actions screen shown

in Figure 3.1.

Figure 3.1: Breakdown of the Bulk Actions screen template into three illustrative user interface elements
from the OutSystems UI framework.

Deciding which UI patterns needed to be included in the dataset required a meticulous analysis of

the complete OutSystems UI library, matching each screen template with all the respective contained UI

elements.

This curation required not only an individual analysis of each screen template but also defining their

importance, identifying the corresponding main category and subcategory, and linking them to the avail-

able OutSystems documentation page. The individual analysis of each UI patterns also required a cat-

egorization by group, a purposefulness rank, all the potentially redundant elements and all the screen

templates using them.

Centralizing all of this information led to the development of two linked dashboards, as shown in

Figure 3.6, that could easily reflect the inextricable association between screen templates and UI pat-

terns. These dashboards also served as a centralized repository to prepare future work on subsequent

pipeline stages, namely extracting visual CSS attributes for the code generation stage.

After mapping all screen templates, a set of 16 prominent user interface elements was chosen based

on the number of uses and number of ambiguous and/or redundant elements. These criteria were fine-

tuned along with the dataset generation process progress, in order to achieve the best results.

While not all screen templates use all the 16 elements, they are simply different combinations of

these, meaning that this set of elements represent the 16 most used elements that can coexist in a user

interface in almost any imaginable way, amplifying the dataset reach.

30

Screen Templates Dashboard
Pre-assembled screens following industry best-practices using the standard OutSystems . UI Patterns Source »

New

Admin Dashboard High Columns Small Right
Columns 3 Counter
Card Sectioned Align Center
Table Button

Dashboards https://outsystemsui.outsystems.com/OutSystemsUIWebsite/AdminDashboard

Bulk Actions High Accordion Align Center
Pagination Table Button

Dashboards https://outsystemsui.outsystems.com/OutSystemsUIWebsite/BulkActions

Detail High Columns 2 Date Picker
Input Text Area Button

Dashboards https://outsystemsui.outsystems.com/OutSystemsUIWebsite/Detail

Four Column Gallery High Columns Small Right Gallery
Card Sectioned Pagination
Search Columns 2
Counter Badge Separator
Range Slider Interval

Details https://outsystemsui.outsystems.com/OutSystemsUIWebsite/FourColumnGallery

Horizontal Detail Medium Columns Medium Right Search
Button Group Accordion
Columns 4 Align Center
Tag Columns 2

Details Galleries https://outsystemsui.outsystems.com/OutSystemsUIWebsite/HorizontalDetail

Product Detail High Card Columns Medium Left
Card Sectioned
Columns Small Right
Columns 2 Align Center
Button Checkbox
Dropdown Input

Details Lists https://outsystemsui.outsystems.com/OutSystemsUIWebsite/ProductDetail

Master Detail Medium Master Detail
List Item Content User Avatar
Blank Slate Button

Details Lists https://outsystemsui.outsystems.com/OutSystemsUIWebsite/MasterDetail

Dashboard Medium Button Columns 3
Counter Columns 2
Card Sectioned
List Item Content Tag

Lists https://outsystemsui.outsystems.com/OutSystemsUIWebsite/Dashboard

List High Search Button Table
Pagination

Lists https://outsystemsui.outsystems.com/OutSystemsUIWebsite/List

Lists With Filter Medium Button Columns Small Left
Search Dropdown Table
Pagination

Lists https://outsystemsui.outsystems.com/OutSystemsUIWebsite/ListWithFilters

Calculate

Name Importance UI Patterns Group Secondary Group Link

View by Name View by Thumbnail View by Importance Add view Filter Sort New

🗺

Master's Degree /

📐

Master Project Wiki / Screen Templates Dashboard Share

?

(a) Screen templates dashboard screenshot.

UI Patterns Dashboard
Adaptive, interactive patterns and what are made up of. Screen Templates Source »

Interaction Date Picker High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=31Detail

Interaction Range Slider High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=60

Interaction Video High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=81

Widgets Button High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=11Bulk Actions Admin Dashboard Detail Product Detail Master Detail Dashboard List Lists With Filter

Widgets Checkbox High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=20Product Detail

Widgets Dropdown High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=33Product Detail Lists With Filter

Widgets Input High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=44Detail Product Detail

Widgets Link High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=47

Widgets Table High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=72Bulk Actions Admin Dashboard List Lists With Filter

Widgets Text Area High Input https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=75Detail

Interaction Image High https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=

Content Accordion Medium https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=1Bulk Actions Horizontal Detail

Interaction Sidebar Medium https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=67

Navigation Pagination Medium Button https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=54Bulk Actions Four Column Gallery List Lists With Filter

Utilities Separator Medium https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=66Four Column Gallery

Widgets Switch Medium Checkbox https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=71

Adaptive Columns 2 Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=21Detail Four Column Gallery Horizontal Detail Product Detail Dashboard

Adaptive Columns 3 Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=22Admin Dashboard Dashboard

Adaptive Columns 4 Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=23Horizontal Detail

Adaptive Columns 5 Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=24

Adaptive Columns 6 Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=25

Adaptive Columns Medium Left Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=26Product Detail

Adaptive Columns Medium Right Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=27Horizontal Detail

Adaptive Columns Small Left Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=28Lists With Filter

Adaptive Columns Small Right Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=29Admin Dashboard Four Column Gallery Product Detail

Adaptive Display On Device Low https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=32

Adaptive Gallery Low Image https://www.outsystems.com/OutSystemsUIWebsite/PatternDetail?PatternId=41Four Column Gallery
Calculate COUNT 84

Group Name Purposefulness Redundan… URL Used in (Screen Templates)

View by Group View by Purposefulness Add view Filter Sort New

🗺

Master's Degree /

📐

Master Project Wiki / UI Patterns Dashboard Share

?

(b) UI patterns dashboard screenshot.

Figure 3.2: Dashboards needed for the in-depth analysis of the OutSystems UI Framework.

31

3.1.2 Hand-drawn Representation of User Interface Elements

Following the curation process of the 83 UI patterns available in the OutSystems UI framework and

having the final goal of this project in mind, it was necessary to establish a hand-drawn representation

for each of the 16 relevant elements.

Setting a streamlined, intuitive, and distinct representation for each element was critically important.

The high variability of hand-drawn sketches naturally requires a large dataset covering the most diverse

styles of hand-drawing. Without restricting the number of admissible representations for each UI ele-

ment, the complex challenge of training the model to correctly identify each element would only be more

arduous.

Having a final representations catalogue was critical before launching the laborious task of building

a human-generated dataset. However, it was the result of an iterative process that occurred in parallel

with the development of two other important stages of the pipeline: the automatic dataset generator tool

and the object detection model.

While fine-tuning the hand-drawn representations of UI elements led to important improvements of

the dataset generator tool, it has also benefited from a preliminary analysis of the testing results using

a simpler implementations of YOLOv2 [30] and a smaller dataset using the standard representations

proposed by teleportHQ [3], depicted in Figure 3.3.

Before launching the crowdsourced effort of producing a human-generated dataset, it was critically

important to stabilize the hand-drawn representations of all UI elements, so that voluntary collaborators

did not have to repeat their sketches multiple times.

(a) List of teleportHQ’s standard rep-

resentations [3].

☒
☒
☒
☒
☒
☒
☒
☒
☒
☒
☒
☒
☒
☒
☒
☒

EA
E
EEEE

} }
} }
{ {
{} {

¥!:: :: : :: ::*: :::* :*
.

:* : "

.; ;;;; ;;iii.
±

:::#
⇒ ! :*! !

☒
→
→
-

I.
t.F
I/

|

(b) Exemplary paper sheet of mass-produced hand-drawn representations

to be used by the dataset generator tool.

Figure 3.3: Dashboards needed for the in-depth analysis of the OutSystems UI Framework.

One of the reasons why fine-tuning these representations led to improvements across multiple

pipeline stages, like the computer-generated dataset tool, was because the need to quickly evaluate

object detection results for different representations.

32

The Table UI element was one of the most challenging hand-drawn representations, requiring the

highest number of iterations before launching the crowdsourced effort to produce the dataset.

As shown in Figure 3.3, the first proposed representation was imported from teleportHQ’s proposed

standards list. While a simple 4 × 4 grid seemed to be the most straightforward way of representing

a table, the first batch of users that produced sketches for the human-generated dataset proved how

different contexts may lead to significantly different drawing, as shown in Figure 3.4.

(a) (b) (c)

Figure 3.4: Illustration of how different contributors have drawn different tables without noticing: (a)
example of a 5× 4 grid representation with rectangular-shaped cells, (b) a 7× 4 grid representation with
square-shaped cells, and (c) a 6× 3 grid representation with irregular rectangular-shaped cells.

While the most appealing solution to streamline these inconsistencies seemed to be the inclusion of

a warning in the instructions document, alerting contributors to respect the 4× 4 grid, it became evident

that this representation would still vary depending on each table aspect ratio, as shown in Figure 3.5.

Tables found

File name Width Height Aspect Ratio

BATCH_000001-USER_000001-SKETCH_000008 996 426 2.33802816901408

BATCH_000001-USER_000001-SKETCH_000020 1048 525 1.99619047619048

BATCH_000001-USER_000001-SKETCH_000035 1003 508 1.9744094488189

BATCH_000001-USER_000001-SKETCH_000009 1018 502 2.02788844621514

BATCH_000001-USER_000001-SKETCH_000037 1031 472 2.18432203389831

BATCH_000001-USER_000001-SKETCH_000023 991 489 2.02658486707566

BATCH_000001-USER_000004-SKETCH_000020 543 261 2.08045977011494

BATCH_000001-USER_000004-SKETCH_000008 880 170 5.17647058823529

BATCH_000001-USER_000001-SKETCH_000022 983 432 2.27546296296296

BATCH_000001-USER_000001-SKETCH_000032 1046 496 2.10887096774194

BATCH_000001-USER_000001-SKETCH_000026 1051 489 2.14928425357873

BATCH_000001-USER_000003-SKETCH_000009 836 304 2.75

BATCH_000001-USER_000002-SKETCH_000027 1012 389 2.60154241645244

BATCH_000001-USER_000001-SKETCH_000040 980 424 2.31132075471698

BATCH_000001-USER_000002-SKETCH_000018 914 459 1.99128540305011

BATCH_000001-USER_000002-SKETCH_000030 993 483 2.05590062111801

BATCH_000001-USER_000002-SKETCH_000008 797 202 3.94554455445545

BATCH_000001-USER_000002-SKETCH_000009 955 502 1.90239043824701

BATCH_000001-USER_000003-SKETCH_000015 805 162 4.96913580246914

BATCH_000001-USER_000002-SKETCH_000013 896 431 2.07888631090487

BATCH_000001-USER_000002-SKETCH_000012 930 484 1.92148760330579

BATCH_000001-USER_000003-SKETCH_000002 702 337 2.08308605341246

BATCH_000001-USER_000002-SKETCH_000010 428 279 1.53405017921147

BATCH_000001-USER_000002-SKETCH_000011 428 281 1.52313167259786

BATCH_000001-USER_000003-SKETCH_000003 716 390 1.83589743589744

BATCH_000001-USER_000002-SKETCH_000005 871 190 4.58421052631579

BATCH_000001-USER_000002-SKETCH_000029 942 458 2.05676855895197

BATCH_000001-USER_000002-SKETCH_000014 988 522 1.89272030651341

BATCH_000001-USER_000003-SKETCH_000006 828 282 2.93617021276596

BATCH_000001-USER_000002-SKETCH_000028 963 402 2.3955223880597

BATCH_000001-USER_000003-SKETCH_000010 895 314 2.85031847133758

BATCH_000001-USER_000002-SKETCH_000017 1037 548 1.89233576642336

BATCH_000001-USER_000003-SKETCH_000011 525 277 1.89530685920578

BATCH_000001-USER_000001-SKETCH_000015 1063 458 2.32096069868996

BATCH_000001-USER_000004-SKETCH_000003 981 401 2.44638403990025

BATCH_000001-USER_000001-SKETCH_000003 590 314 1.87898089171975

BATCH_000001-USER_000001-SKETCH_000013 1037 498 2.08232931726908

BATCH_000001-USER_000001-SKETCH_000007 984 448 2.19642857142857

BATCH_000001-USER_000004-SKETCH_000010 837 424 1.97405660377358

BATCH_000001-USER_000004-SKETCH_000004 511 320 1.596875

BATCH_000001-USER_000004-SKETCH_000011 1053 568 1.85387323943662

BATCH_000001-USER_000001-SKETCH_000012 1040 486 2.13991769547325

BATCH_000001-USER_000001-SKETCH_000004 553 317 1.74447949526814

BATCH_000001-USER_000001-SKETCH_000010 1010 506 1.99604743083004

BATCH_000001-USER_000001-SKETCH_000038 1018 239 4.25941422594142

BATCH_000001-USER_000004-SKETCH_000007 945 445 2.12359550561798

BATCH_000001-USER_000004-SKETCH_000013 1117 490 2.27959183673469

BATCH_000001-USER_000004-SKETCH_000006 1041 430 2.42093023255814

BATCH_000001-USER_000001-SKETCH_000039 1047 244 4.29098360655738 0

1.5

3

4.5

6

Figure 3.5: Analysis of tables’ aspect ratios across the sketches produced by the first batch of users.

Considering the available OutSystems UI framework screen templates, it turns out that tables serve

different purposes across different user interfaces, ranging from a preponderant role with nearly full-

screen sizes in dashboards, to significantly smaller instances with small previews of charts data.

33

These dimensional differences make users unconsciously draw more or less columns and rows.

Therefore, several alternative hand-drawn representations were tested for the Table UI element, includ-

ing a more complex shadowed design, in order to force users to be more careful while representing a

table and inducing them to count how many rows and columns needed to be shadowed, as shown in

Figure 3.6.

All the alternative representations led to more accurate object detection results and less inconsisten-

cies among users. Nevertheless, as explained earlier, the hand-drawn representations must be simple

and straightforward, avoiding any compromises during the informal sketching process to convey ideas.

Having this priority in mind, Figure 3.6 b) representation was chosen.

(a) Representation #1. (b) Representation #2.

(c) Representation #3. (d) Representation #4.

Figure 3.6: Examples of alternative hand-drawn representations of the Table UI element.

In order to avoid repeating the collection of hand-drawn sketches among the first batch of dataset

contributors for each new representation, a custom Python script was developed to make this process

more seamless. All in all, this auxiliary script finds all drawn tables from the annotations file and overlaps

them with an alternative representation sample from a mass-produced collection similar to the paper

sheet shown in Figure 3.3.

After multiple iterations, the result was the intended streamlined, intuitive, and distinct catalogue of

hand-drawn representations for each of the 16 chosen elements, as shown in the examples of Figure 3.7

and in page 2 of Appendix A.

34

UI pattern Hand-drawn representation UI pattern Hand-drawn representation UI pattern Hand-drawn representation

UI pattern Hand-drawn representation UI pattern Hand-drawn representation UI pattern Hand-drawn representation

Figure 3.7: Illustrative standard hand-drawn representations of prominent UI elements, which will be
used for human-generated elements.

3.1.3 Human-generated Dataset

As aforementioned, one of the most difficult challenges posed by neural networks is collecting large

amounts of relevant and labeled elements for the dataset. Considering that the final goal of this project

is to convert any hand-made sketch into actual code, having a significant number of diverse hand-drawn

sketches in the dataset is critically important. This means that the core of the dataset has to be made of

real and diverse human-generated records.

While there are no particularly efficient methods to crowdsource the production of a human-generated

dataset, we started by designing a straightforward contribution process to promote remote contributions.

This was inspired by the previous in-person dataset generation sessions organized during the previous

thesis work supported by OutSystems [2].

Appendix A contains the instructions document that was sent to the volunteers. The main purpose

of this document was to concisely present the thesis work motivation, provide the list of correct repre-

sentations for the supported UI elements, and illustrate 17 examples of valid user interfaces that could

potentially be used as an inspiration for their own sketches. The document is written in European Por-

tuguese, which was the native language of all participating volunteers.

The particular task of gathering a vast human-generated dataset required a considerable effort from

24 volunteers who signed up to draw up to 51 user interfaces, take photos of their sketches, and upload

those pictures using the contributions uploader form shown in Figure 3.8.

For this thesis work, we required contributors to return their paper copies in case something went

wrong with the photo-taking task that was requested. This cautious request proved to be appropriate,

considering that the returned physical copies of hand-drawn sketches were used to fine-tune the pre-

processing tool, as will be explained later on.

35

(a) Online contributions uploader. (b) Returned physical copies of all hand-drawn sketches.

Figure 3.8: Crowdsourced photo uploads and returned paper copies.

After receiving photos from all volunteers, we summarized all contributions by assigning a unique

ID to each volunteer and counting the total of sketches uploaded. This summary was then used to

organize our human-generated dataset. All uploaded images were renamed following the same hierar-

chical rational of batch, user ID, and sketch ID (e.g., BATCH 000001-USER 000019-SKETCH 000037.png).

Streamlined, structured and clear filenames are crucial for many of the tools implemented throughout

the pipeline.

Having the human-generated dataset organized by batch, user, and sketch, we proceeded with a

sequence of two pre-processing steps before the labeling task. First, all photos were rescaled to a

standard size of 1200 by 900 pixels, which corresponds to the average OutSystems UI screen template

resolution.

Secondly, a binarization step was embedded into the pre-processing script using the method by

Sauvola [56], in an attempt to remove noise and preserve a pure white background where the hand-

drawn lines are black, as depicted in Figure 3.9.

(a) Sixth photo submitted by volunteer #5 using the contribu-

tions uploader (file name: IMG 1405.jpeg).

(b) Pre-processed photo after resizing and binarization (file

name: BATCH 000002-USER 000005-SKETCH 000006.png).

Figure 3.9: Resizing and binarization pre-processing results.

36

Finally, after all contributions were organized and pre-processed, it was possible to proceed with the

labeling task using a graphical image annotation tool called LabelImg [57], which is written in Python

and uses Qt for its graphical interface, shown in Figure 3.10.

Figure 3.10: Screenshot of LabelImg, a graphical image annotation tool and label object bounding boxes
in images [57].

Labeling a dataset using this tool consists of opening each image from the dataset, drawing a bound-

ing box around each object, and selecting the corresponding class. After saving the annotated images,

a XML file is created following the Pascal Visual Object Classes (VOC) format.

After the labeling task was completed, a summary of all volunteer contributions was prepared,

containing the total amount of produced and labeled sketches per volunteer, adding up to over 1000

sketches.

Table 3.1: Summary of volunteer contributions per user during the crowdsourced process.

Volunteer ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Batch 1 1 1 1 2
Sketches 40 30 16 24 51 51 51 51 51 51 51 51 51 51 51 51 51 51 51 24 21 9 28 32

However, the latest YOLOv5 version, used in this thesis, only supports the state-of-the-art YOLO

annotations standard, which provides an individual text file per image with the same name corresponding

to the intended image. The specifications of the YOLO format are as follows:

• each line in the annotations text file corresponds to a single object.

• each line follows the same attributes pattern: class x center y center width height.

• class names are not explicitly in the annotations, but rather an integer corresponding ID.

• x center, y center, width, height must be normalized values (ranging from 0 to 1).

37

(a) Pascal VOC annotations XML file. (b) YOLO annotations TXT file.

Figure 3.11: Side by side comparison of Pascal VOC and YOLO formats for the same labeling annota-
tions.

In order to convert LabelImg Pascal VOC annotations into the YOLO format, we used a Python script

that requires a class.txt file describing all classes and converts XML annotations exported by LabelImg

(on which all bounding boxes are given by <xmin>, <ymin>, <xmax>, and <ymax>) into TXT files following

the YOLO format (given by x center, y center, width, and height) using the following formulas:

xcenter =
((xmax + xmin)/2)

w
and ycenter =

((ymax + ymin)/2)

h
, and (3.1)

width =
(xmax − xmin)

w
and height =

ymax − ymin
h

. (3.2)

The YOLO format only requires a single easily parsable TXT file (with the same file name and in the

same directory) defining all objects in an image, each object corresponding to a single line. After running

this Python script, no images in the dataset are not modified, but rather a TXT file is generated with the

corresponding normalized coordinates, as shown in Figures 3.11 and 3.12.

Figure 3.12: Visual interpretation of the YOLO format normalized coordinates [58].

38

After converting all annotations into the YOLO format, a review of the labeling process was con-

ducted by inspecting each annotated sample using a tooled called Roboflow [59]. This tool provided an

important insight for this thesis work using its Dataset Health Check feature, which shows how many

elements of each class there are and provides an intuitive visualization of class balance or imbalance.!"#$%!%&'$'#"$%("')$*%+*",-

!"#$%&

'())*
!+)+",&&,-$+#--./#/,.-&
!+)+-011+%2#"31%&

4--./#/,.-&

'5(56'
!+'575+3%8+,"#$%+9#:%8#$%;
"+#<8.&&+'=+<1#&&%&

4:%8#$%+!"#$%+>,?%

'7)@+"3
!+A8."+!"#$%&'
!+/.+!"#$%&'

B%C,#-+!"#$%+D#/,.

'E))F6))
#+G,C%

H1#&&+I#1#-<%

!"#$ 5(6E* .:%8+8%38%&%-/%C
%"&'"()* '(J5=
+,$$-. '(=K5
/0&1" '()6E
%"&'"()2 66K
/3-. 6')
/.4,$)$"#$ J6E
!&56" 5EE 0-C%8+8%38%&%-/%C
78&($ 5'6 0-C%8+8%38%&%-/%C
9:.; *'J 0-C%8+8%38%&%-/%C
<(-4'-=. E6* 0-C%8+8%38%&%-/%C
!"#$&("& EE) 0-C%8+8%38%&%-/%C
>6:'"(E'5 0-C%8+8%38%&%-/%C
?&1:.&$:-. 'J@ 0-C%8+8%38%&%-/%C
78"3;5-# '=J 0-C%8+8%38%&%-/%C
@:'"- '56 0-C%8+8%38%&%-/%C

L,"%-&,.-+!-&,$M/&

>,?%+L,&/8,N0/,.-

411+,"#$%&+#8%+/M%+&#"%+&,?%(+'E))F6))7

4&3%</+D#/,.+L,&/8,N0/,.-

G,C% '())*

'E))32

6))32

4--./#/,.-+O%#/"#3

()) + O%#C%8P'+Q66KR + !-30/P/%2/+QJ6ER + L8.3C.G-+QE6*R

I0//.-+Q'(=K5R + S%2/+Q5(6E*R + T#$,-#/,.-+Q'J@R + S#N1%+Q5EER

!<.-+Q6')R + O%#C%8PE+Q'(J5=R + U,-V+Q*'JR + !"#$%+Q'()6ER

S%2/#8%#+QEE)R + HM%<VN.2+Q'=JR + HM#8/+Q5'6R + W,C%.+Q'56R

>1,C%8+QE'5R

" # ! " ! ! !

Figure 3.13: Roboflow Dataset Health Check results [59].

By analyzing the chart shown in Figure 3.13, several ideas emerged to balance the number of ele-

ments of each class in the dataset. Nevertheless, the evident imbalance was not unexpected, consider-

ing that some UI elements are knowingly predominant across all sketches. As an example, the Text UI

element is represented multiple times in all screen templates, while the Video UI element is only present

in the Product Feature screen template shown in Appendix A.

This chart was also relevant for the next object detection stage in the pipeline. Splitting the dataset

without carefully analyzing the data we had could compromise the unbiased assessment of the training

process performance.

While the most traditional division ratio tends to be around 70%, 20%, and 10% for train, validation,

and test, respectively, our 1000-sample dataset is not large enough. As explained in Section 2.3.5, k-fold

cross-validation is one possible approach when the dataset is not abundant.

For this human-generated dataset, we used 5-fold cross-validation to repeat the training and vali-

dation processes on different subsets of the complete dataset, thus avoiding biased evaluations of the

object detection model performance on unseen data.

As depicted on Table 3.2, this method consists of splitting the dataset into 5 different groups and

perform individual training processes using three subsets and the remaining two subsets are used for

validating and testing the model’s performance.

39

Table 3.2: Dataset partitions holdout process for the 5-fold approach.

Dataset

Iterations

Fold 1 Test Val Train Train Train

Fold 2 Train Test Val Train Train

Fold 3 Train Train Test Val Train

Fold 4 Train Train Train Test Val

Fold 5 Val Train Train Train Test

For the particular circumstances of this thesis work, instead of randomizing the samples that go into

the five groups iteratively assigned to train, validation, and test subsets, we decided to organize the

dataset into five pre-set categories, all with an equivalent number of sketches. This was mainly to avoid

an overfitting scenario where the high variability of handwriting could contaminate the train process for

the actual graphical representation of certain elements that include characters (e.g., Button, Header-1,

etc.), as will be explained on Chapter 4.

All five style reflect the calligraphy letterform of all volunteers, namely the ones with a rounded cursive

style, a sharp cursive style, a rounded script style, a sharp script style, and a hybrid style (i.e., the

volunteer mixes cursive and script styles). The final arrangement of sketches is shown in Table 3.3.

Table 3.3: Distribution of volunteer contributions per calligraphy style.

Calligraphy style User IDs

Category A 1, 5, 16, 17, 18, 23, 24
Category B 2, 7, 13, 15
Category C 9, 11, 12, 19
Category D 3, 4, 6, 8, 14
Category E 10, 20, 21, 22

Considering that we identified five major calligraphy styles and our cross-validation method consists

of five folds, the distribution of sketches for the train, test, and validation subsets was intuitive, as shown

in Table 3.4.

Table 3.4: Distribution of calligraphy categories per fold.

Fold # Train subset Validation subset Test subset

Fold 1 C, D, E B A
Fold 2 A, D, E C B
Fold 3 A, B, E D C
Fold 4 A, B, C E D
Fold 5 B, C, D A E

40

3.1.4 Computer-generated Dataset

While producing a human-generated dataset is key to achieve the best object detection results, creating

a larger and realistic dataset in a timely manner requires an automatic dataset generation tool. After

the laborious task of collecting over 1000 unique hand-drawn sketches, and manually labeling over

14,000 elements one by one, a dataset generator was developed following the sketchification approach

described in Section 2.16, with slight contextual adjustments.

The general idea of this approach, shown in Figure 3.14, is to take advantage of the cumbersome

labeling task, by replacing the elements in the UI with their correct hand-drawn representation.

Figure 3.14: Illustration of the proposed approach for computer-generated sketches, where the elements
of the Admin Dashboard screen template are replaced with their respective hand-drawn representation.

Eventually, the sketchification approach can also be combined with data augmentation techniques

and morphological operations. The higher the number of labeled hand-drawn UI elements from the

human-generated dataset, the higher the number of possible combinations in new computer-generated

screen templates. By randomly combining different sources of UI elements in each screen template, a

more distinct and realistic dataset can be generated.

After having a significant number of representations for each UI element, which were hand-drawn by

different people, it is possible to massively generate realistic dataset samples. Table 3.5 shows the total

of hand-drawn samples available for each of the 16 classes supported by our object detector.

Table 3.5: Total of hand-drawn representations cropped from the human-generated dataset per class.

Classes Text Header-2 Button Image Header-1 Icon Input-text Table Chart Link Dropdown Textarea Slider Pagination Checkbox Video

Representations 4, 923 1, 746 1, 654 1, 092 995 910 792 422 419 317 293 220 214 178 167 149

Therefore, our implementation of this dataset generator starts with an element cropper that extracts

each labeled UI element from the human-generated dataset and organizes them into folders, each

corresponding to a single class. Figure 3.17 shows the result of applying this Python script, extracting 1

samples of a Header-1, 5 samples of Button, 6 samples of Text, 3 samples of Input-text, and 1 sample

of Textarea.

41

(a) Pre-processed original human-generated sketch. (b) Extracted human hand-drawn UI elements.

Figure 3.15: Extracted hand-drawn UI elements from a pre-processed human-generated sketch.

The core task of our dataset generator tool is to produce a ready-to-train dataset, with realistic

computer-generated sketches and their respective annotations in the YOLO format, with no need to

perform extra steps after the generation.

Our tool replaces all UI elements in real user interfaces with an image of their respective hand-

drawn representation, which was previously cropped out of the labeled human-generated dataset. This

replacement process must assure that the real UI element is replaced by hand-drawn representation

with the same size and in the same location.

In order to achieve this, we developed a dataset generator written in Python and JavaScript that

uses Selenium [60] to automate the dataset generation by modifying the DOM structure of OutSystems

UI screen templates, which are available as Web applications written in HTML. Nevertheless, not all

UI elements are identifiable in the DOM structure by the same type of arguments, so we started by

analyzing OutSystems UI [55] and gathered a small list of HTML and CSS attributes that allow our

dataset to find all supported elements on the screen, as summarized in Table 3.6.

Depending on the attributes of each UI element, our dataset generator uses three JavaScript func-

tions, namely getElementsByClassName(), getElementsByTagName(), and getElementById(), to re-

trieve their DOM objects. A fourth JavaScript function was used, getBoundingClientRect(), to log the

original UI element size and position, shown in Figure 3.16, and use them for the image replacement.

Figure 3.16: Attributes included in the DOMRect object returned by getBoundingClientRect() [61].

42

Table 3.6: Replaceable elements HTML and CSS attributes.

UI element CSS Class HTML Tag HTML ID HTML Type

Image × × ×
Video × <video> × ×
Icon radius-round-i <i> × ×
Table table × × ×

Checkbox checkbox <input> × checkbox

Input-text search-input <input> PageTitle text

Textarea × <textarea> × ×
Button btn <button> Button ×

Header-1 header-1 <h1> × ×
Header-2 header-2 <h1> × ×
Dropdown dropdown-container × × ×

Text × <label> × ×
Link × <a> × ×

Slider range-slider × × ×
Pagination pagination-container × × ×

Chart os-chart × × ×

During the development process of our dataset generator tool, the pre-processing script developed

during the human-generated dataset stage had to be embedded into the generator itself, but also rewrit-

ten to accommodate the particularities of a computer-generated dataset.

Instead of pre-processing images after being generated, we decided to implement a fixed set of CSS

modifications that remove any container or background color that could compromise the final result, as

shown in Figure 3.17. Hence, after all elements have been replaced by their respective hand-drawn

representation, we proceed to implement slight modifications to the page CSS before screenshotting it

for the dataset.

(a) UI after all elements have been replaced. (b) UI after CSS is modified to remove colors.

Figure 3.17: Pre-processed computer-generated sketch after CSS color modifications.

43

3.2 Object Detection Model

All in all, our object detection model serves a simple role in the implemented pipeline: it receives a

hand-drawn sketch as input and extracts all the features of the image, namely the class and position

of the objects. Therefore, the object detection stage is the central stage of the implemented solution,

considering that all further pipeline stages rely on its output.

Chapter 2 exhaustively addresses how the current state-of-the-art algorithms, methodologies, and

tools could be used in this thesis work, also covering core background concepts and examples of related

work. While region proposals are one of the most common approaches to localize objects and has very

good performance, it requires multiple stages, such as generating region proposals, extracting features

with a CNN, classifying, and generating bounding boxes, making it computationally expensive.

The You Only Look Once (YOLO) algorithm follows a one-step framework approach, which usually

allows significantly more efficient computing times and maintains high accuracy levels.

This approach consists of feeding a given hand-drawn sketch into the YOLO network, which then

outputs a set of bounding boxes coordinates associated with their respective class and confidence level

for each detected object. From its first iteration, YOLOv1, which was based on Darknet and built into C,

to its fifth and fastest iteration yet, YOLOv5, YOLO has improved its architecture, currently providing the

highest detection accuracy and the fastest inference speed of all iterations, making it the ideal choice for

our pipeline. In addition, YOLOv5 is written in Python instead of C, making the installation and integration

processes easier from the official Ultralytics’ GitHub repository [62].

However, this is only a baseline architecture that can be configured by researchers and customized

to achieve the best results depending on their problems. By cloning and editing the YOLOv5 architec-

ture configuration, researchers can add layers, remove blocks, customize image processing operations,

optimize activation functions, and more.

Training and testing YOLOv5 for a breakthrough project requires a custom and labeled dataset,

splitted to be used for train, test, and validation purposes. As covered in Section 3.1, we produced

two datasets: a human-generated dataset with 1003 unique hand-drawn sketches, containing 14,491

UI elements labeled one by one, and a computer-generated dataset with 2,000 hand-drawn sketches,

automatically labeled by our dataset generator tool.

All images are in .png format and their respective annotation files are plain .txt files. These files

specify the location and size of the UI elements with labels in the corresponding image. In order to be

compatible with YOLOv5, all data files were moved to their respective folder, depending on their train,

test, or validation purpose, and then organized into two sub-folders according to the file type (images

and labels), as shown in file tree structure depicted in Figure 3.18.

Our YOLOv5 implemented pipeline includes all necessary steps to build, train, and test our model.

Essentially, it consists of five main steps implemented in Google Colaboratory that will be reviewed in this

section: 1) install YOLO and import our dataset from the previous pipeline stage, 2) configure our custom

model, 3) connecting Tensorboard and WandB to plot metrics, 4) train our model, and 5) validate and

test our model’s accuracy and perform detections on unseen samples for further qualitative analyses.

44

dataset/

train/

images/

labels/

test/

images/

labels/

valid/

images/

labels/

data.yaml

Figure 3.18: Dataset file tree structure preparation for YOLOv5.

Google Colaboratory is an online Integrated Development Environment (IDE) that supports academic

research and learning on AI. Colab provides a code environment similar to Jupyter Notebook, and sup-

ports Graphics Processing Unit (GPU) acceleration. It also supports the most important libraries for

deep learning research work, such as PyTorch, TensorFlow, Keras, and OpenCV.

Because machine learning tasks and deep learning algorithms require good hardware processing

power (usually based on GPU), most desktop computers are not ideal to train a model. However, the

Colab’s GPU acceleration (Tesla T4 architecture) is an undeniable offer, considering that these are some

of the highest performing GPUs.

3.2.1 Installing YOLO and Importing a Dataset

The first step in our object detection Colab consists of installing YOLOv5 and several Python dependen-

cies and libraries for matrix operations, plotting, and file handling, which are listed in a requirements.txt

file in the YOLOv5 directory, as shown in Figure 3.19.Cópia de UIGen - Object Detection - YOLOv5 - Fold 4
All changes savedFile Edit View Insert Runtime Tools Help

Comment Share

Code Text Connect Editing

Clone YOLOv5 Ultralytics repo from GitHub, install PyTorch dependencies and check status for both PyTorch and GPU.

(GPU Acceleration: Runtime > Change Runtime Type > Hardware accelerator > GPU)

Also, download dataset for the corresponding fold. YOLOv5 requires a YAML Rle deRning where our dataset is. ZIP Rle will be extracted into

train, test and validation sets, as well as the data.yaml Rle.

1. Setup YOLO and Prepare Dataset

[] !git clone https://github.com/ultralytics/yolov5 # clone repo
%cd yolov5
%pip install -qr requirements.txt # install dependencies

import torch
from IPython.display import Image, clear_output # to display images

clear_output()
print(f"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")

!git clone https://github.com/ultralytics/yolov5 # clone repo

Setup complete. Using torch 1.9.0+cu102 (Tesla T4)

[] from google.colab import drive
drive.mount('/content/gdrive')

!unzip "/content/gdrive/My Drive/UIGen/dataset.zip" -d "/content"

!ls

!unzip "/content/gdrive/My Drive/UIGen/dataset.zip" -d "/content"

This section allows us to automatically generate a YAML script that deRnes the parameters for our model like the number of classes, anchors,

and each layer.

1. ConRgure Model

Set number of classes based on YAML
%cd /content
import yaml
with open("data.yaml", 'r') as stream:
 num_classes = str(yaml.safe_load(stream)['nc'])

Set number of classes based on YAML

Figure 3.19: Cloning Ultralytics’ YOLOv5 repository and importing our dataset.

Considering that Colab is an isolated environment that runs in the cloud, the dataset must be up-

loaded before training the model. After uploading the dataset to Google Drive, Colab needs to import it.

This first step includes all the necessary code to mount Google Drive and unzip the dataset folders.

45

3.2.2 Configuring a Custom Object Detection Model

After downloading the dataset to the isolated Colaboratory environment, custom changes have to be

made to YOLOv5, namely, adjusting the number of classes being used, considering that we are training

a custom object detector. Figure 3.20 shows how some of these adjustments were made.
Cópia de UIGen - Object Detection - YOLOv5 - Fold 4

All changes savedFile Edit View Insert Runtime Tools Help

Comment Share

Code Text Connect Editing

This section allows us to automatically generate a YAML script that deCnes the parameters for our model like the number of classes, anchors,

and each layer.

2. ConCgure Model

[] # Set number of classes based on YAML
%cd /content
import yaml
with open("data.yaml", 'r') as stream:
 num_classes = str(yaml.safe_load(stream)['nc'])

Set number of classes based on YAML

/content

[] # Customize iPython writefile
from IPython.core.magic import register_line_cell_magic

@register_line_cell_magic
def writetemplate(line, cell):
 with open(line, 'w') as f:
 f.write(cell.format(**globals()))

Customize iPython writefile

[] YOLOv5s%%writetemplate /content/yolov5/models/custom_yolov5s.yaml

parameters
nc: {num_classes} # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple

anchors
anchors:
 - [10,13, 16,30, 33,23] # P3/8
 - [30,61, 62,45, 59,119] # P4/16
 - [116,90, 156,198, 373,326] # P5/32

YOLOv5 backbone
backbone:
 # [from, number, module, args]
 [[-1, 1, Focus, [64, 3]], # 0-P1/2
 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
 [-1, 3, BottleneckCSP, [128]],

YOLOv5s%%writetemplate /content/yolov5/models/custom_yolov5s.yaml

Figure 3.20: Customizing YOLOv5 model configuration properties.

We use the YOLOv5 backbone, which is summarized in Table 3.7 and mainly includes Cross Stage

Partial Network (CSPNet) [63] and Focus modules.

Table 3.7: YOLOv5 backbone architecture summary.

Number Module Filter Size

1x Focus 64 3x3
1x Convolutional 128 3x3/2
3x CSP 128 1x1
1x Convolutional 256 3x3/2
9x CSP 256 1x1
1x Convolutional 512 3x3/2
9x CSP 512 1x1
1x Convolutional 1024 3x3/2
1x SPP 1024 1x1
3x CSP 1024 1x1

The CSPNet module is applied to first split the feature map of the beginning layer into two branches

and then unite them through a hierarchical structure, reducing the calculation amount while ensuring

accuracy. The Focus module is meant to perform a slicing operation of the feature map. The remaining

3x3/2 convolution layers are mainly for downsampling.

YOLOv5 also comes with standard hyperparameters for training with the COCO dataset that do not

apply to our custom object detector.

46

Therefore, all standard augmentation operations, such as image hue, saturation, and value augmen-

tation, as well as image rotation, translation, scale, shear, perspective, flip up-down, flip left-right, mosaic

effect, and mix-up, were disabled, as summarized in Table 3.8. We kept other hyperparameters values

from YOLOv5 repository, such as initial learning rate of 0.01, box loss weight of 0.05 and class loss gain

of 0.5. We use Stochastic Gradient Descent (SGD) as optimization method.

Table 3.8: Summary of our YOLOv5 customized hyperparameters.

Hyperparameters Values Descriptions

lr0 0.01 Initial learning rate (SGD= 1−2, Adam = 1−3)
lrf 0.2 Final OneCycleLR learning rate (lr0 * lrf)
momentum 0.937 SGD momentum/Adam beta1
weight decay 0.0005 Optimizer weight decay 5−4

warmup epochs 3.0 Warmup epoch
warmup momentum 0.8 Warmup initial momentum
warmup bias lr 0.1 Warmup initial bias lr
box 0.05 Box loss gain
cls 0.5 Cls loss gain
cls pw 1.0 Cls BCELoss positive weight
obj 1.0 Obj loss gain (scale with pixels)
obj pw 1.0 Obj BCELoss positive weight
iou t 0.20 IoU training threshold
anchor t 4.0 Anchor-multiple threshold
anchors 0 Anchors per output grid (0 to ignore)
fl gamma 0.0 Focal loss gamma (efficientDet default gamma = 1.5)
hsv h 0.0 Image HSV-Hue augmentation (fraction)
hsv s 0.0 Image HSV-Saturation augmentation (fraction)
hsv v 0.0 Image HSV-Value augmentation (fraction)
degrees 5.0 Image rotation (+/- deg)
translate 0.05 Image translation (+/- fraction)
scale 0.02 Image scale (+/- gain)
shear 0.0 Image shear (+/- deg)
perspective 0.00001 Image perspective (+/- fraction), range 0-0.001
flipud 0.0 Image flip up-down (probability)
fliplr 0.0 Image flip left-right (probability)
mosaic 0.5 Image mosaic (probability)
mixup 0.0 Image mixup (probability)

3.2.3 Connecting Tensorboard and WandB

Fine-tuning our model and analyzing our results required using two different visualization tools that

helped us control train, validation, and test on the go. For this end, Tensorboard and WandB were used.

While Tensorboard provides great insights right into Google Colab, WandB allowed us to analyze and

compare different sessions in a more versatile way, thus benefiting the performance metrics analysis in

Chapter 4. Figure 3.21 shows how both tools were used by our model.

47

Cópia de UIGen - Object Detection - YOLOv5 - Fold 4
All changes savedFile Edit View Insert Runtime Tools Help

Comment Share

Code Text Connect Editing

All training results are being saved to Google Drive under UIGen/weightsBackups/fold1 !

3. Tensorboard and WNB

Reusing TensorBoard on port 6007 (pid 2894), started 0:20:36 ago. (Use '!kill 2894' to kill it.)

Tooltip sorting method:

Show data download links

Ignore outliers in chart scaling

default

Smoothing

0.6

Horizontal Axis

STEP RELATIVE WALL

Runs

../gdrive/MyDrive/UIGen/weightsBackups/
fold4

Write a regex to Olter runs

.

TOGGLE ALL RUNS

metrics 4

metrics/mAP_0.5
tag: metrics/mAP_0.5

metrics/mAP_0.5:0.95
tag: metrics/mAP_0.5:0.95

metrics/precision
tag: metrics/precision

metrics/recall
tag: metrics/recall

Filter tags (regular expressions supported)

0.1

0.3

0.5

0.7

0.9

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0 20 40 60 80 100 120

0.7

0.8

0.9

0.6

0.8

TensorBoard INACTIVESCALARS IMAGES GRAPHS TIME SERIES

[] # Tensorboard
%reload_ext tensorboard
%tensorboard --logdir ../gdrive/MyDrive/UIGen/weightsBackups/fold1

Tensorboard

(a) Tensorboard built into Google Colab.

Add Panel

Add Panel

Add Panel

Add a section

train 3

!

"

train/cls_loss
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

$ % & '
train/obj_loss

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

0.12

$ % & '
train/box_loss

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

$ % & '

Bounding Box Debugger 1!

Media 4!

metrics 4

!

"

metrics/recall
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '
metrics/precision

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '
metrics/mAP_0.5:0.95

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

$ % & '

metrics/mAP_0.5
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '

val 3!

x 3!

System 14
!

"

GPU Power Usage (W)
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

$ % & '
GPU Power Usage (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '
GPU Memory Allocated (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '

GPU Time Spent Accessing Memory (%)
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '
GPU Temp (℃)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

$ % & '
GPU Utilization (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '

Hidden Panels 0!

1-6 of 14

(!

Create reportSearch panels, - . / 0Runs (25) !)

Config 1, *

1 2 3

'4 " Config 1 - Fold 5 - 200E

4 " Config 1 - Fold 3 - 200E

4 " Config 1 - Fold 4 - 200E

4 " Config 1 - Fold 2 - 200E

4 " Config 1 - Fold 1 - 200E

5 Name (5 visualized)

1-5 of 5 (!

Changes saved automaticallyMy Workspace !

Create Team +goncalocdm Projects weightsBackups! ! 6,

Add Panel

Add Panel

Add Panel

Add a section

train 3

!

"

train/cls_loss
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

$ % & '
train/obj_loss

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

0.12

$ % & '
train/box_loss

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

$ % & '

Bounding Box Debugger 1!

Media 4!

metrics 4

!

"

metrics/recall
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '
metrics/precision

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '
metrics/mAP_0.5:0.95

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

$ % & '

metrics/mAP_0.5
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '

val 3!

x 3!

System 14
!

"

GPU Power Usage (W)
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

$ % & '
GPU Power Usage (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '
GPU Memory Allocated (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '

GPU Time Spent Accessing Memory (%)
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '
GPU Temp (℃)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

$ % & '
GPU Utilization (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '

Hidden Panels 0!

1-6 of 14

(!

Create reportSearch panels, - . / 0!)

Config 1 *

1-5 of 5 (!

Changes saved automaticallyMy Workspace !

Create Team +,

Add Panel

Add Panel

Add Panel

Add a section

train 3

!

"

train/cls_loss
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

$ % & '
train/obj_loss

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

0.12

$ % & '
train/box_loss

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

$ % & '

Bounding Box Debugger 1!

Media 4!

metrics 4

!

"

metrics/recall
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '
metrics/precision

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '
metrics/mAP_0.5:0.95

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

$ % & '

metrics/mAP_0.5
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

$ % & '

val 3!

x 3!

System 14

!

"

GPU Power Usage (W)
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

$ % & '
GPU Power Usage (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '
GPU Memory Allocated (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '

GPU Time Spent Accessing Memory (%)
Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '
GPU Temp (℃)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

$ % & '
GPU Utilization (%)

Config 1 - Fold 5 - 200E Config 1 - Fold 3 - 200E
Config 1 - Fold 4 - 200E Config 1 - Fold 2 - 200E

Config 1 - Fold 1 - 200E

#
#

#

10 20 30

Time (minutes)
0

20

40

60

80

100

$ % & '

Hidden Panels 0!

1-6 of 14

(!

Create reportSearch panels!)

Config 1 *

1-5 of 5 (!

Changes saved automaticallyMy Workspace !

Create Team +,

(b) WandB dashboard for five runs.

Figure 3.21: Comparison between Tensorboard and WandB for visualizing performance metrics.

3.2.4 Training a Custom Object Detection Model

After customizing YOLOv5 and connecting two visualization tools, the train implementation was quite

simple, requiring a single command line with several arguments.
Cópia de UIGen - Object Detection - YOLOv5 - Fold 4

All changes savedFile Edit View Insert Runtime Tools Help
Comment Share

Code Text Connect Editing

4. Train Model

[] # Train YOLOv5s on COCO128 for 3 epochs
!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache

train yolov5s on custom data for 100 epochs
time its performance
%%time
%cd /content/yolov5/
!python train.py --img 1200 --rect --batch 16 --epochs 120 --data '../data.yaml' --cfg ./models/custom_yolov5s.yaml --name yolov5s_results --cache --hyp

Train YOLOv5s on COCO128 for 3 epochs

/content/yolov5
train: weights=yolov5s.pt, cfg=./models/custom_yolov5s.yaml, data=../data.yaml, hyp=data/custom_hyp.yaml, epochs=120, batch_size=16, imgsz=1200, rect=True, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=../gdrive/MyDrive/UIGen/weightsBackups, entity=None, name=fold4, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias=latest, local_rank=-1, freeze=0
github: up to date with https://github.com/ultralytics/yolov5

✅

YOLOv5

"

 v5.0-345-g2d99063 torch 1.9.0+cu102 CUDA:0 (Tesla T4, 15109.75MB)

hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.0, hsv_s=0.0, hsv_v=0.0, degrees=5.0, translate=0.05, scale=0.02, shear=0.0, perspective=1e-05, flipud=0.0, fliplr=0.0, mosaic=0.5, mixup=0.0
TensorBoard: Start with 'tensorboard --logdir ../gdrive/MyDrive/UIGen/weightsBackups', view at http://localhost:6006/
2021-08-02 18:54:25.988351: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
wandb: Currently logged in as: goncalocdm (use `wandb login --relogin` to force relogin)
2021-08-02 18:54:28.389050: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
wandb: Tracking run with wandb version 0.11.1
wandb: Syncing run fold4
wandb:

⭐

 View project at https://wandb.ai/goncalocdm/weightsBackups
wandb:

"

 View run at https://wandb.ai/goncalocdm/weightsBackups/runs/1tgqrhvi
wandb: Run data is saved locally in /content/yolov5/wandb/run-20210802_185427-1tgqrhvi
wandb: Run `wandb offline` to turn off syncing.

Downloading https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 35.0MB/s]

 from n params module arguments
 0 -1 1 3520 models.common.Focus [3, 32, 3]
 1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
 2 -1 1 19904 models.common.BottleneckCSP [64, 64, 1]
 3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
 4 -1 1 161152 models.common.BottleneckCSP [128, 128, 3]
 5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
 6 -1 1 641792 models.common.BottleneckCSP [256, 256, 3]
 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
 8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]]
 9 -1 1 1248768 models.common.BottleneckCSP [512, 512, 1, False]
 10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']

Figure 3.22: YOLOv5 train command line.

All in all, the model will be trained by compiling and running the train.py file according with the

following configurable arguments:

• Image size: 1200 (width).

• Rectangular images: True.

• Batch size: 16.

• Epochs: the number of training iterations.

• --data: dataset description path ../data.yaml.

• --cfg: configuration of our model described in a YAML model configuration file.

• --name: model name to be displayed and eventually saved.

48

3.2.5 Validating and Testing a Custom Object Detection Model

After finishing the training process, trained weights are saved and can be used to validate the model

accuracy for new and unseen samples of our dataset, namely the validation and test sets. Using the

commands shown in Figure 3.23, the val.py script will be compiled to export three key performance

metrics: Precision (P), Recall (R), and two Mean Average Precision (mAP) values over different IoU

thresholds (up to 0.5 and from 0.5 to 0.95).
Cópia de UIGen - Object Detection - YOLOv5 - Fold 4

All changes savedFile Edit View Insert Runtime Tools Help
Comment Share

Code Text Connect Editing

Validate our model's accuracy for both the validation set (/valid/) and the test set (/test/).

5. Validate

[] # VALIDATION SET: Run test.py script results (per class) and save to /testResultsBackups/fold4
%cd /content/yolov5/
!python val.py --weights ../gdrive/MyDrive/UIGen/weightsBackups/fold4/weights/best.pt --data '../data.yaml' --img 1200 --iou 0.65 --verbose > ../gdrive/MyDrive/UIGen/testResultsBackups/fold4/val

VALIDATION SET: Run test.py script results (per class) and save to /testResultsBackups/fold4

/content/yolov5
YOLOv5

!

 v5.0-345-g2d99063 torch 1.9.0+cu102 CUDA:0 (Tesla T4, 15109.75MB)

Fusing layers...
Model Summary: 232 layers, 7286973 parameters, 0 gradients, 16.9 GFLOPs
val: Scanning '../valid/labels.cache' images and labels... 193 found, 0 missing, 0 empty, 0 corrupted: 100% 193/193 [00:00<00:00, 2130264.93it/s]
 Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 7/7 [00:10<00:00, 1.53s/it]

[] %%writetemplate /content/data.yaml

train: ../train/images
val: ../test/images

nc: 16
names: ['Image', 'Video', 'Icon', 'Table', 'Input-text', 'Checkbox', 'Textarea', 'Button', 'Header-1', 'Header-2', 'Dropdown', 'Text', 'Link', 'Slider'

%%writetemplate /content/data.yaml

[] # TEST SET: Run test.py script results (per class) and save to /testResultsBackups/fold4
%cd /content/yolov5/
!python val.py --weights ../gdrive/MyDrive/UIGen/weightsBackups/fold4/weights/best.pt --data '../data.yaml' --img 1200 --iou 0.65 --verbose > ../gdrive/MyDrive/UIGen/testResultsBackups/fold4/val

TEST SET: Run test.py script results (per class) and save to /testResultsBackups/fold4

/content/yolov5
YOLOv5

!

 v5.0-345-g2d99063 torch 1.9.0+cu102 CUDA:0 (Tesla T4, 15109.75MB)

Fusing layers...
Model Summary: 232 layers, 7286973 parameters, 0 gradients, 16.9 GFLOPs
val: Scanning '../test/labels' images and labels...204 found, 0 missing, 0 empty, 0 corrupted: 100% 204/204 [00:00<00:00, 1158.14it/s]
val: New cache created: ../test/labels.cache
 Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 7/7 [00:11<00:00, 1.62s/it]

[] %cp -av "/content/yolov5/runs/val" "/content/gdrive/MyDrive/UIGen/testResultsBackups/fold4/"%cp -av "/content/yolov5/runs/val" "/content/gdrive/MyDrive/UIGen/testResultsBackups/fold4/"

'/content/yolov5/runs/val' -> '/content/gdrive/MyDrive/UIGen/testResultsBackups/fold4/val'
'/content/yolov5/runs/val/exp' -> '/content/gdrive/MyDrive/UIGen/testResultsBackups/fold4/val/exp'

Figure 3.23: Validating YOLOv5 using the validation and test sets.

After the validation process and quantitative metrics are saved, it is important to perform a qualitative

evaluation by printing the predicted bounding boxes that cover the detected UI elements. As shown

in Figure 3.24, this script draws all bounding boxes onto each image from the validation and test sets.

Then, we display the results in the Colab user interface using IPython display. All the images are saved

in the same folder containing the results from the training phase.
Cópia de UIGen - Object Detection - YOLOv5 - Fold 4

All changes savedFile Edit View Insert Runtime Tools Help
Comment Share

Code Text Connect Editing

[] # Preview predicted labels (bounding boxes) on ALL test images

import glob
from IPython.display import Image, display

for imageName in glob.glob('/content/yolov5/runs/detect/exp/*.png'):
 display(Image(filename=imageName))

Preview predicted labels (bounding boxes) on ALL test images

Figure 3.24: Detecting UI elements and printing the predicted bounding boxes.

49

3.3 Spatial Grouping Algorithm

The ultimate goal of the implemented pipeline is to generate the code of a sketched interface that re-

spects the principles of the OutSystems UI framework [64], a low-code framework for web and mobile

applications.

A flexible and effective approach is to leverage the established web standards for creating user

interfaces. With HTML and CSS, it is possible to build any layout for an app, making it responsive and

user-friendly. User interfaces created with HTML and CSS look usually sharper than their counterparts

thanks to the specialized rasterization engines of modern web browsers. This approach is especially

important not only because our model supports media UI elements such as images, videos, and charts,

but also because styling the generated app according to OutSystems UI framework requires us to match

the established design of each UI element.

Once the model outputs the detection results containing classes and positions of all elements in a

sketch, generating the corresponding UI requires a code generation step that transforms the drawing

primitives into a purposeful and spatially organized mock-up. A simple approach would be to straightly

generate each UI element as a floating HTML element. However, this approach would compromise the

appearance and overall functionality of the generated web app.

The nature of HTML and CSS formatting entails several visual deformations due to the lack of a

hierarchical structure in the object detection model output. In order to display the UI elements correctly,

for instance a Header-1 and an Image side by side, they first need to be embedded into a container, so

that CSS properties can be changed to position elements accordingly. Figure 3.25 shows how the same

correct drawing primitives outputted by the object detection model can lead to different results if HTML

and CSS are not used properly.

(a) Original sketch.

Header-1
Lorem ipsum dolor sit amet

(b) Native HTML-exclusive generation.

Header 1
Lorem ipsum dolor sit amet

(c) HTML and CSS-based generation.

Figure 3.25: Illustration of how native HTML elements without CSS can compromise the generation of a
UI from the correct object detection results.

The four main steps of our spatial grouping algorithm are illustrated in Figure 3.26. This algorithm

starts by sorting the sketched UI elements from left to right, top to bottom, and then proceeds with two

main phases.

The first phase consists of testing horizontal intersections with edge-to-edge bounding boxes. If no

intersection is possible the edge-to-edge group is closed, we conclude that there are no elements side

by side and proceed to check with all other UI elements. In case an intersection is found, then we create

a group and try to intersect it as a whole with other horizontally aligned elements, if any.

50

During the second phase of this algorithm, we proceed to test vertical intersections within major hor-

izontal groups, so that vertically aligned elements can coexist properly. This is evaluated by expanding

each element’s bounding box from top to bottom and intersecting it with all other elements in the hor-

izontal group. If no intersection is found, then we close the group, save it and proceed to find groups

with the next UI elements. Otherwise, we adjust the CSS flex property to align the elements within the

identified group.

(a) Original objects bounding boxes. (b) First stage horizontally expanded bounding boxes.

(c) Final group of all horizontally aligned objects. (d) Final stage vertically expanded bounding box.

Figure 3.26: Illustration of the spatial grouping algorithm: (a) Evaluating the original objects’ bounding
boxes. (b) Horizontally expanding and intersecting the first element’s bounding box edge to edge. (c)
Evaluating the final group of all horizontally aligned elements. (d) Finding vertically aligned elements
within the horizontal group by expanding and intersecting objects’ bounding boxes top to bottom.

Considering that previewing and hard coding all possible combinations of elements positions would

be infeasible, we followed an agnostic approach and implemented a versatile spatial grouping algorithm

that focuses on passing its hierarchical inference to the code generation stage.

Therefore, this stage outputs a domain-specific language (DSL) containing an agnostic and hierarchi-

cal structure with all identified elements that will be used by the code generator. Despite the increased

complexity of this approach, it does have some significant advantages, such as the versatility of a DSL

and the ability to correct potential errors in the trace set, modelling similarity between drawings, but also

being able to extrapolate figures based on the source code.

In fact, using a DSL to output the hierarchical structure allows us to plug in all pipeline stages im-

plemented so far into any code generator or other tools, no matter the goal or programming language it

supports. Parsing the arguments and the structure of the DSL is enough to make sure that all previous

pipeline stages outputs are preserved and ready to be used.

51

3.4 Code Generation

The last stage of this thesis is a code generator, which will allow us to render the sketched user interface

after going through all pipeline stages. As covered in the previous section, once our object detection

model outputs the drawing primitives and a hierarchy is inferred by our spatial grouping algorithm, a

domain-specific language (DSL) will be generated. Listing 3.1 shows an input example for a simple UI

that contains a single Header-1 element.

1 export default {
2 children: [
3 {
4 id: 0,
5 top: 0,
6 left: 0,
7 width: 168.0 ,
8 height: 40.0,
9 type: "Header -1",

10 value: "Header -1"
11 }
12]
13 type: "root",
14 parsingDirection: "vertical",
15 top: 0,
16 left: 0,
17 width: 1200,
18 height: 900,
19 id: "0",
20 passes: 0
21 }

Listing 3.1: Input example of a single major container of 1200 × 900, containing a single Header-1
element, which was exported by our spatial grouping algorithm.

Our code generator, written in React and Typescript, parses the DSL and generates the same struc-

ture following teleportHQ’s User Interface Definition Language (UIDL) [65].

This UIDL is also a universal format that can describe all the possible scenarios for a given user inter-

face, thus allowing us to generate the same user interface with various tools and frameworks, transition

technologies without effort, and provide programmatic manipulation. All in all, it is a human-readable

JSON document, which is supported natively by most programming languages.

The first building block of the UIDL structure is called a UIDLNode, which serves as a root for fur-

ther nodes. Depending on each element’s purpose, the node may be static, dynamic, element,

conditional, repeat, slot, and nested-style. Table 3.9 shows the attributes supported by each

type of node.

Table 3.9: Summary of UIDL keys supported per node type [65].

Root Node Children Attribute Style Conditional References Repeat

static value × × × × ×
dynamic reference × × × × × ×
element node × ×

conditional node × ×
repeat node × ×
slot node ×

52

As the UIDL is being traversed, the nodes are interpreted and translated into lines of code, so a

static node becomes plain text (e.g., the Text UI element) and element nodes become HTML tags.

The content of each node in the UIDL represents all the information that the node holds. Listing 3.2

shows a code snippet of the UIDL generated from the DSL on Listing 3.1.

1 >style: Object (...)

2 fontFamily: "’Cabin ’, sans -serif"

3 flexDirection: "row"

4 justifyContent: "space -between"

5 alignItems: "center"

6 padding: "5px"

7

8 >children: Array (1)

9 >children: Array (1)

10 >0: Object

11 type: "element"

12 >content: Object

13 elementType: "h1"

14 >style: Object (...)

15 color: "black"

16 width: "168px"

Listing 3.2: Generated UIDL for a user interface containing a single Header-1 element.

One of the key aspects when generating a user interface is to keep a consistent graphical appear-

ance that matches OutSystems UI framework principles. Therefore, our UIDL generator imports the

corresponding CSS style attributes of each element to the corresponding style key, which is supported

by both static and dynamic nodes.

Finally, the UIDL is plugged into teleportHQ’s React code generator, and a web application is ren-

dered. This is the last step of the implemented pipeline, reflecting the result of early pipeline stages as

a whole.

(a) Generated user interface using React. (b) Real screen template of OutSystems UI.

Figure 3.27: Comparison of a (a) screenshot of a React web-generated app, with the detected containers
marked with a dotted line and generic placeholders inside each UI element, with an (b) image of a
screen template using the OutSystems UI Framework CSS that matches the same UI elements and
page structure.

53

3.5 Complete Pipeline

Having described each stage inner workings individually, it is important to explain how they will be

chained. The complete pipeline of the proposed solution, represented in Figure 3.28, shows that the

system takes a hand-drawn UI sketch as input, which is pre-processed in the first stage of the algorithm.

Then, in the second stage, the UI sketch is passed through the object detection algorithm and, in the

third stage, the spatial grouping algorithm generates an agnostic structure of the sketch. Finally, using

that information, a code generator produces the sketch corresponding source code.

Image pre-processing

Object detection

Spatial grouping

Code generation

Figure 3.28: Proposed solution complete pipeline.

54

Chapter 4

Results

This chapter exhibits the overall performance of the implemented pipeline, focusing on the object de-

tection performance metrics. The analysis of the results covers different experiments with our YOLOv5

model for human- and computer-generated datasets and also dives into the impact of early pipeline

stages on the object detection results.

Both datasets are structured to be used for train, test, and validation using YOLOv5, as explained in

Chapter 3. Google Colab provides access to powerful GPUs, which is critically important to accelerate

the train, so we decided to implement our model in Colab, following the existing Ultralytics notebook [62].

A suitable number of training epochs was chosen to train our model with a custom dataset without

exceeding Google Colab’s usage quotas. Figure 4.1 shows that each fold took 27 to 39 minutes to train.

GPU Power Usage (W)

10 20 30

Time (minutes)
0

20

40

60

GPU Power Usage (%)

10 20 30

Time (minutes)
0

20

40

60

80

100
GPU Memory Allocated (%)

10 20 30

Time (minutes)
0

20

40

60

80

100

GPU Time Accessing Memory (%)

10 20 30

Time (minutes)
0

20

40

60

80

100
GPU Temp (ºC)

10 20 30

Time (minutes)
0

20

40

60

80
GPU Utilization (%)

10 20 30

Time (minutes)
0

20

40

60

80

100

Figure 4.1: Google Colab hardware usage data and total train time for the human-generated dataset.

55

Due to the training time constraints imposed, the parameters of training the YOLOv5 model were

limited to an image size of 1200 pixels, a batch size of 30 samples, and a total of 200 epochs. The hard-

ware usage data presented in Figure 4.1 corresponds to the training conditions described in Chapter 3

and it was plotted using WandB [66].

In order to provide a fair comparison between the performance of different folds of the human-

generated dataset, the splitting task followed the same consistent approach, focusing on the importance

of keeping the most diverse styles of handwriting and hand-drawing apart, thus avoiding overfitting sce-

narios.

The detailed and individual performance results for each fold of the human-generated dataset are

provided in Appendix B, while the average of all folds is presented in this chapter. As for the computer-

generated dataset, a straightforward 60%, 20%, and 20% split of samples was assigned for train, test,

and validation, respectively.

Accordingly, the following sections focus on quantitative and qualitative object detection results, thus

providing a better understanding of the final results and a reliable perception of our model’s performance

for both human- and computer-generated datasets.

4.1 Quantitative Results

A quantitative analysis of key performance metrics is crucial to evaluate our model’s performance. The

most relevant and commonly used evaluation metric for object detection algorithms is mean average

precision (mAP), which relies on several important concepts that were overview in Chapter 2.

In this section, we present the results for both the validation and the test sets of our human- and

computer-generated datasets. For the 5-fold cross validation approach we present the accuracy results

for the average of all folds.

We considered three different types of loss from YOLO: box loss, objectness loss and classification

loss. The box loss represents how well the model can locate the center of a UI element and how well

the predicted bounding box covers the entire hand-drawn representation. Objectness loss is a measure

of the probability that an object exists in a proposed region of interest. If the objectivity is high, it means

that the image window is likely to contain a UI element. Finally, classification loss evaluates how well the

model predicts the correct class of the sketched UI elements.

We used early stopping to select the best weights. All bounding box losses are calculated by mean

square loss, and the classification loss is calculated by cross-entropy loss. The x-axis represents epochs

in all figures and the y-axis corresponds to the title of each sub-figure.

4.1.1 Human-generated Dataset

For the five folds of our human-generated dataset, the model improved swiftly in terms of precision,

recall, and mean average precision before plateauing after about 200 epochs. The box, objectness and

classification losses of the validation data also showed a rapid decline until around epoch 200.

56

Figure 4.2 presents the plots of box loss, objectness loss, classification loss, precision, recall, and

mean average precision over the 200 training epochs of our human-generated dataset first fold.

Figure 4.2: Performance plots for the human-generated dataset fold 1 model train losses, validation
losses, and all evaluation metrics.

These plots were generated within Google Colab and were monitored during the train of the model

using Tensorboard. However, as explained in Subsection 3.2.3, WandB was also used to compare

different sessions in a more versatile way, allowing us to compare the behavior of different folds, as

shown Figure 4.3.

train/cls_loss

0 50 100 150

Step
0

0.02

0.04

0.06

train/obj_loss

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

0.12

train/box_loss

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

val/box_loss

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

val/cls_loss

0 50 100 150

Step
0

0.02

0.04

0.06

val/obj_loss

0 50 100 150

Step
0

0.02

0.04

0.06

0.08

0.1

metrics/recall

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

metrics/precision

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

metrics/mAP_0.5:0.95

0 50 100 150

Step
0

0.2

0.4

0.6

metrics/mAP_0.5

0 50 100 150

Step
0

0.2

0.4

0.6

0.8

Figure 4.3: Overlapped plots of train loss, validation loss, and performance metrics of all five folds.

Besides analyzing the overall results for all folds, it is important to discuss the element-wise perfor-

mance of the model to understand which elements are leading to better results or hurting the perfor-

mance. The confusion matrix shown in Figure 4.4 is representative of the element-wise performance of

the trained networks.

57

Figure 4.4: Confusion matrix for all 16 classes and background false negatives of fold 1.

The confusion matrix shows that most elements have excellent performance, considering that the

predictions are correct between 91% and 100%. This specific visualization was extremely useful for

fine-tuning UI elements representations. The overall scenario was significantly different when represen-

tations were not distinctive enough.

One of the issues that was identified earlier was related with images noise after the pre-processing

binarization operation. Sometimes, little scratches or even shadows from the back-page are visible and

binarized as Text elements.

This means that our model predicts a significant amount of Text elements where, in fact, there are

no elements drawn at all (nearly 72% of image background false positives). The detailed analysis of this

issue is mainly qualitative, so we will cover it in the next section.

Tables 4.1 and 4.2 present the results for the 5-fold approach followed for the human-generated

dataset. These tables present the accuracy results for both the validation and test set, respectively.

We focused on three key performance metrics: precision, recall, and two mean average precision

(mAP) values over different IoU thresholds (up to 0.5 and from 0.5 to 0.95). We also included how many

samples of the 1,003 human-generated samples were present in the validation and test set (considering

that they represent around one-fifth of the dataset, as explained in Section 3.1.3) and how many samples

of each UI element are present in those images. In spite of the overall good results, it is clear that

underrepresented elements show inferior results (e.g. Slider and Checkbox).

58

Table 4.1: Average 5-fold cross validation results for the human-generated validation set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 219 243 0.9402 0.975 0.990 0.856

Video 219 30 0.9594 0.7962 0.8528 0.649

Icon 219 200 0.959 0.9898 0.992 0.6526

Table 219 92 0.9818 0.8168 0.966 0.694

Input-text 219 174 0.888 0.9852 0.958 0.7386

Checkbox 219 33 0.919 0.8518 0.969 0.665

Textarea 219 47 0.987 0.9192 0.9502 0.769

Button 219 363 0.9838 0.9974 0.993 0.7734

Header-1 219 218 0.987 0.968 0.990 0.665

Header-2 219 386 0.954 0.9836 0.984 0.663

Dropdown 219 63 0.9706 0.8874 0.926 0.733

Text 219 1086 0.9558 0.996 0.995 0.636

Link 219 68 0.9332 0.9374 0.978 0.715

Slider 219 44 0.9142 0.59676 0.723 0.5162

Chart 219 88 0.947 0.976 0.9822 0.7638

Pagination 219 38 0.9136 0.821 0.8382 0.55

All Classes 219 3173 0.9496 0.9062 0.943 0.6898

Table 4.2: Average 5-fold cross validation results for the human-generated test set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 201 218 0.9568 0.9782 0.988 0.837

Video 201 30 0.9182 0.7096 0.814 0.584

Icon 201 182 0.965 0.9908 0.990 0.650

Table 201 84 0.99 0.8234 0.966 0.679

Input-text 201 158 0.899 0.9806 0.9534 0.715

Checkbox 201 33 0.878 0.9274 0.960 0.635

Textarea 201 44 0.9754 0.9168 0.9558 0.771

Button 201 331 0.9908 0.9976 0.994 0.776

Header-1 201 199 0.977 0.9644 0.9884 0.628

Header-2 201 349 0.9566 0.984 0.984 0.6316

Dropdown 201 59 0.928 0.874 0.9094 0.6974

Text 201 985 0.955 0.9878 0.990 0.613

Link 201 63 0.885 0.9846 0.982 0.709

Slider 201 43 0.8164 0.5533 0.714 0.507

Chart 201 84 0.928 0.9792 0.982 0.7494

Pagination 201 36 0.9152 0.8156 0.850 0.5394

All Classes 201 2898 0.933 0.9042 0.939 0.6704

59

4.1.2 Computer-generated Dataset Results

The main issues with the human-generated dataset results are the pen scratches identified as Text

elements and the underrepresented classes, like the Slider and Checkbox elements, that are more rare

in the dataset.

The dataset generator tool conceived for this thesis has many possible applications, but we focused

on overcoming the main drawbacks of the human-generated dataset by using it to create a better equilib-

rium between element classes and perform more data augmentation operations with elements cropped

from the original dataset.

Figure 4.5 shows the main differences between human- and computer-generated datasets when it

comes to the distribution of the number of images per class, the distribution of bounding boxes aspect

ratios, and the distribution of bounding boxes center coordinates (x, y) for both datasets.

The computer-generated dataset allowed us to create a more even distribution of elements, thus

duplicating the human-generated dataset size to a total of 2000 samples.

The total of elements per class, however, was not duplicated across the board, as we used Out-

Systems UI screen templates to create these samples, as covered in Chapter 3, and some classes are

naturally more present in real-world user interfaces, sometimes appearing repeatedly in an application.

(a) Class image count, bounding boxes aspect ratios, and center distribution for the human-generated dataset.

(b) Class image count and bounding boxes aspect ratios, and center distribution for the computer-generated dataset.

Figure 4.5: Distribution of the number of images per class, bounding boxes aspect ratios, and bounding
box center coordinates (x, y) for both datasets.

60

Besides adjusting the number of represented classes, the use of a dataset generator based on

screen templates compromised the diversity of bounding boxes aspect ratios and their distribution.

The confusion matrix in Figure 4.6 shows that the issue with background false detections as Text

elements reduced by over 55%, as the computer-generated samples do not include as much noise as

real human hand-drawn samples.

Figure 4.6: Confusion matrix for the model trained with a computer-generated dataset and tested with
the human-generated dataset.

This was an important breakthrough to our model, but the overall accuracy was still not perfect and

the results suggest that the class equilibrium need to be improved. All underrepresented classes, like

the Pagination, Slider, and Video UI elements, still have inferior results to over-represented classes.

While data augmentation operations were used to increase the representations and worked bril-

liantly for some, they are not as effective for some representations. As an example, the straightforward

representation of the Icon element can be easily augmented with several data augmentation operations

without compromising its legibility. However, more meticulous representations that include text and small

details are more difficult to augment.

The solution to improve the results for both datasets is, thus, collect more human-generated samples

and manually label them. It is important to retain that the computer-generated dataset benefits from

a larger human-generated dataset in double, considering that the human-generated dataset is used to

feed the repository of hand-drawn representations that will be used by our dataset generator.

61

As for the detailed plots of evaluation metrics, this model also improved swiftly in terms of precision,

recall, and mean average precision before plateauing after about 200 epochs.

The box, objectness and classification losses of the validation data also showed a rapid decline until

around epoch 200. Figure 4.7 presents the detailed plots of losses, precision, recall, and mean average

precision over the 200 training epochs of our computer-generated dataset.

Figure 4.7: Performance plots for the computer-generated dataset model train losses, validation losses,
and all evaluation metrics.

Table 4.3 presents the performance metrics of precision, recall, and two mAP values over different

IoU thresholds (up to 0.5 and from 0.5 to 0.95) for this model trained with computer-generated samples

and tested with human-generated sketches.

Table 4.3: Detection results for the test set for the human-generated test set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 400 529 0.971 1 0.995 0.877
Video 400 10 0.964 0.9 0.986 0.689
Icon 400 1088 0.996 1 0.996 0.85
Table 400 184 1 0.979 0.995 0.855
Input-text 400 366 0.987 0.992 0.993 0.798
Checkbox 400 12 0.993 1 0.995 0.759
Textarea 400 137 0.996 0.993 0.995 0.868
Button 400 459 0.994 0.989 0.995 0.813
Header-1 400 299 0.979 0.983 0.992 0.769
Header-2 400 368 0.953 1 0.994 0.671
Dropdown 400 135 0.993 0.993 0.995 0.756
Text 400 1568 0.964 0.998 0.996 0.665
Link 400 146 0.934 1 0.995 0.821
Slider 400 12 1 0.804 0.938 0.562
Chart 400 169 0.973 0.994 0.991 0.66
Pagination 400 24 1 0.667 0.932 0.642

All Classes 400 5506 0.981 0.956 0.986 0.753

62

4.2 Qualitative Results

Evaluating the performance of our model required more than discussing and analyzing YOLO’s quan-

titative metrics. In fact, qualitative results were just as important to find opportunities for improving our

model, fine-tune our elements representations, adjust the model hyperparameters, and modify our data

augmentation stages.

Throughout the implementation of this thesis, a continuous qualitative evaluation was pursued to

better perceive the performance of our object detector in real-world scenarios. This section covers how

this qualitative analysis was conducted, namely the most frequently identified issues and how they were

addressed.

As described in Section 3.2, the approach followed to evaluate the qualitative results consisted of

exporting the predicted labels by printing the model primitives as bounding boxes onto with their corre-

sponding class onto the image. As shown in Figures 4.8 and 4.9, this was done individually and in bulk,

by comparing the ground-truth labels printed onto the input images and the predicted labels.

(a) Original photo took and uploaded by the user. (b) Object detection model output.

Figure 4.8: Example of an accurate detection performed by the model.

(a) Mosaic with ground-truth labels. (b) Mosaic with corresponding predicted labels.

Figure 4.9: Example of ground-truth and predicted labels qualitative evaluation in bulk.

63

The qualitative analysis of our object detection results shows that there are two important issues to

be considered. The first is related to the aspect ratio of the represented UI elements and the second

is related to the pre-processing stage of the implemented pipeline. Figure 4.10 illustrates the first and

most common issue of our detections. The Image, Textarea, and Table elements drawn in the first three

sketches are not labeled due to the low confidence score of the detections being below 0.5.

This low confidence score is due to the aspect ratio variability of these three elements in the depicted

hand-drawn sketches, which are not similar to any OutSystems UI screen template. Although it may

seem straightforward to match a very wide representation of an element with a regular one, it requires

more training over more diverse sketches and, thus, a larger dataset.

Also, the implementation followed for the human-generated dataset split aggravates this specific

issue. While it was important to isolate users with different calligraphy styles to avoid overfitting, we also

ended up segregating the sketches of volunteers that invented their own user interfaces from the ground

up and the volunteers that were inspired by OutSystems UI screen templates. The fourth example

shown in Figure 4.10 presents a lower confidence score for the Table element, but it is still high enough

to surpass the 0.5 threshold. This slightly higher score is due to the fact that this sketch was inspired by

the Transactions Dashboard screen template, making this specific aspect ratio more common.

(a) Example of an unusually wide Image element. (b) Example of an unusually wide Textarea element.

(c) Example of a deformed Table element. (d) Example of an unusually wide Table element.

Figure 4.10: Examples of unusually wide and deformed elements in sketches.

64

Figure 4.11 shows the second issue of some of our detections, which is related with the low quality of

the input image. The first example shows a low confidence score for the Table element and the second

example shows that the Button and Table elements are almost imperceptible, making the confidence

score below the 0.5 threshold.

This issue is due to the discrepancy of light, brilliance, shades, and saturation across different users’

photos. In these specific cases, the original photos were shaded, meaning that a significant image

brightness decrease from the center to the corners was present, therefore influencing the image quality

by creating unwanted dark or shaded edges that the pre-processing algorithm is then unable to binarize

correctly.

A significant variation of colors over the imaging field may occur due to the camera used by the

user having a small sensor, which was demonstrating by analyzing the exchangeable image file format

metadata of the uploaded photos.

In order to achieve better results, several approaches were tested during the implementation of our

pipeline, namely skeletonization and reconstruction based on graph morphological transformations [67],

but these techniques were only successful in a limited small group of images that did not present too

much noise.

(a) Poor performance detecting a Table. (b) No detection of a Button and an Image.

Figure 4.11: Example of detection issues due to pre-processing binarization.

65

66

Chapter 5

Conclusions

This thesis was developed on the premise of conducting a successful pioneering research project to

introduce a novel approach which explores how the state-of-the-art computer vision algorithms can be

used for code generation from hand-drawn UI sketches.

The structure of the chapters in this thesis was conceived to answer the pre-set aims of reviewing

background literature, exploring the state-of-the-art methodologies to follow, proposing a solution for the

task at hand, and finally analyze the obtained results.

These concluding remarks provide an overture to the achievements and main contributions of this

thesis, but also yield a reflection on the effectiveness of the proposed solution, aiming to encourage

future improvements and possible directions, in order to pursue the full potential of this thesis.

5.1 Achievements

This thesis proposes an automatic tool, based on machine learning, that converts hand-drawn UI

sketches into code and eventually generates the actual UI, hence availing the agile experimentation

afforded by hand-made sketches.

During the literature and related work review, it became clear that this thesis could introduce a novel,

broader approach to the task at hand, by supporting the largest number of different UI elements possible

and converting the hand-drawn sketches straight into the real-world UI, preparing all the intermediate

steps to work seamlessly.

More specifically, the proposed solution pipeline consists of a software tool that identifies the sketched

elements using computer vision, evaluates their hierarchy, and finally generates the corresponding UI.

The proposed solution maximizes the efficiency of the design process and consequently shortens

the SDLC of software applications, which not only improves the manageability, objectivity, and control of

projects, but also reduces time-to-market and cost-to-market of applications, delivering meticulous and

more substantial solutions in a shorter time.

In order to achieve the ultimate objectives of this thesis, significant milestones were accomplished

throughout the multiple stages described in Chapter 3, namely:

67

• Extracting all relevant data from the input hand-drawn image, using a computer vision model to

detect hand-drawn UI elements, which required:

– Disambiguating UI elements representations, merging redundant elements and setting a

unique pattern for all elements included in the OutSystems UI Framework [55].

– Producing a dedicated human-generated dataset with over fourteen thousand UI elements

for the task at hand, by organizing a major crowdsourced effort and manually labeling the

contributions.

– Developing a dataset generator tool inspired by the sketchifying approach [40], taking ad-

vantage of data augmentation techniques to further expand the number of samples in the

dataset.

– Conceiving a pre-processing pipeline of steps to be applied to the input images before feeding

the data to the network.

– Creating a new dataset splitter that could accommodate the specific file formats and absolute

coordinates systems of all stages, in order to generate the train, test, and validation sets from

the complete dataset.

– Programming a straightforward cloud-based pipeline to evaluate the results of YOLOv5 [34]

for train, test and validation.

• Converting the computer vision model primitives into a real-world UI, by generating its source code,

which required:

– Establishing heuristics to predict groups of elements and implementing clustering techniques,

such as quadtrees for image processing, mesh generation, and collision detection.

– Developing a tool to infer the hierarchical structure of the sketched UI elements from the

model primitives, in order to preserve the designed layout when generating the code.

– Producing files with the agnostic structure of spatially grouped UI elements to be interpreted

while the UI is rendered.

– Creating a code generation pipeline to ultimately compile and render the source code pro-

duced from the computer vision model primitives and the inferred structure, aiming to visualize

the final UI.

A paper was produced during the UI elements representations disambiguation study, covering the

analysis of results that was performed to disambiguate and create unique hand-drawn representations,

which will be submitted to a future conference.

Considering the different programming languages used and the diverse inner workings of each stage,

another important achievement of this thesis was finding a way to integrate all intermediate steps,

by matching the produced outputs with the expected inputs. This was accomplished by following a

language-agnostic API rationale throughout the thesis, which will allow future research projects in this

area to modify or easily upgrade any stage, without compromising the dataset produced or any methods

developed.

68

5.2 Future Work

Automatic UI generation has been building momentum in software development and continues to drive

start-ups focused on this field of research. However, it is far from mature.

As more developers and designers find themselves working on laborious, unremarkable, and time-

consuming tasks that require multiple iterations and do not always lead to the best result, it becomes

more evident that this field of research will continue to expand its amplitude.

Having highlighted the most substantial achievements of this thesis, it is important to retain that

further improvements are possible. Some ideas, which emerged from the development of the proposed

solution, might encourage future pioneering research projects in this field, namely:

• Evolving the YOLOv5 hyperparameters to control the training, avoid overfitting, and find optimal

values, hence improving the computer vision results.

• Testing and analyzing the results of YOLOv5 for video frames coming from a continuous stream,

in order to take full advantage of real-time automatic UI generation.

• Improving the heuristics to better infer the hierarchical structure of hand-drawn UI elements from

absolute positions identified by the computer vision model.

• Exploring more code generators and APIs that take an agnostic hierarchy of spatially arranged

elements to generate a final UI.

• Implementing an optical character recognition system to avoid static placeholders (e.g. buttons

action text, search field suggestion placeholders, text labels, headers, etc.).

69

70

Bibliography

[1] Uizard. Uizard. https://uizard.io/, 2019. [Online; accessed October 23, 2019].

[2] N. M. C. Alves. From mockup to ui. Master’s thesis, Instituto Superior Técnico, January 2019.

[3] teleportHQ. The Second Version of Our Vision API. https://teleporthq.io/blog/

new-vision-api, 2019. [Online; accessed October 13, 2019].

[4] Microsoft. Sketch2Code. https://github.com/Microsoft/ailab/tree/master/Sketch2Code/,

2018. [Online; accessed October 23, 2019].

[5] Airbnb. Sketching Interfaces. https://airbnb.design/sketching-interfaces/, 2019. [Online;

accessed October 23, 2019].

[6] C. M. Bishop and N. M. Nasrabadi. Pattern Recognition and Machine Learning. J. Electronic Imag-

ing, 16(4):049901, 2007. doi: 10.1117/1.2819119. URL https://doi.org/10.1117/1.2819119.

[7] E. Alpaydin. Introduction to machine learning. Adaptive computation and machine learning. MIT

Press, 2004. ISBN 978-0-262-01211-9.

[8] T. M. Mitchell. Machine Learning, International Edition. McGraw-Hill Series in Computer Science.

McGraw-Hill, 1997. ISBN 0071154671. URL http://www.worldcat.org/oclc/61321007.

[9] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian fields and

harmonic functions. In Machine Learning, Proceedings of the Twentieth International Conference

(ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 912–919, 2003. URL http:

//www.aaai.org/Library/ICML/2003/icml03-118.php.

[10] M. Anthony and P. L. Bartlett. Neural Network Learning - Theoretical Foundations. Cambridge Uni-

versity Press, 2002. ISBN 978-0-521-57353-5. URL http://www.cambridge.org/gb/knowledge/

isbn/item1154061/?site_locale=en_GB.

[11] M. Manavazhahan. A Study of Activation Functions for Neural Networks. Computer Science and

Computer Engineering Undergraduate Honors Theses, 2017.

[12] K. P. Murphy. Machine learning - a probabilistic perspective. Adaptive computation and machine

learning series. MIT Press, 2012. ISBN 0262018020.

71

https://uizard.io/
https://teleporthq.io/blog/new-vision-api
https://teleporthq.io/blog/new-vision-api
https://github.com/Microsoft/ailab/tree/master/Sketch2Code/
https://airbnb.design/sketching-interfaces/
https://doi.org/10.1117/1.2819119
http://www.worldcat.org/oclc/61321007
http://www.aaai.org/Library/ICML/2003/icml03-118.php
http://www.aaai.org/Library/ICML/2003/icml03-118.php
http://www.cambridge.org/gb/knowledge/isbn/item1154061/?site_locale=en_GB
http://www.cambridge.org/gb/knowledge/isbn/item1154061/?site_locale=en_GB

[13] C. Goller and A. Küchler. Learning task-dependent distributed representations by backpropaga-

tion through structure. In Proceedings of International Conference on Neural Networks (ICNN’96),

Washington, DC, USA, June 3-6, 1996, pages 347–352, 1996. doi: 10.1109/ICNN.1996.548916.

URL https://doi.org/10.1109/ICNN.1996.548916.

[14] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and Trends in Signal

Processing, 7(3-4):197–387, 2014. doi: 10.1561/2000000039. URL https://doi.org/10.1561/

2000000039.

[15] H. Unger, K. Kyamakya, and J. Kacprzyk, editors. Autonomous Systems: Developments

and Trends, volume 391 of Studies in Computational Intelligence. Springer, 2012. ISBN

978-3-642-24805-4. doi: 10.1007/978-3-642-24806-1. URL https://doi.org/10.1007/

978-3-642-24806-1.

[16] S. S. Liew, M. Khalil-Hani, F. Radzi, and R. Bakhteri. Gender classification: A convolutional neural

network approach. Turkish Journal of Electrical Engineering and Computer Sciences, 24:1248–

1264, 03 2016. doi: 10.3906/elk-1311-58.

[17] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–44, 05 2015. doi: 10.1038/

nature14539.

[18] Y. LeCun, S. Chopra, M. Ranzato, and F. J. Huang. Energy-based models in document recogni-

tion and computer vision. In 9th International Conference on Document Analysis and Recognition

(ICDAR 2007), 23-26 September, Curitiba, Paraná, Brazil, pages 337–341. IEEE Computer So-

ciety, 2007. doi: 10.1109/ICDAR.2007.4378728. URL https://doi.org/10.1109/ICDAR.2007.

4378728.

[19] Y. Boureau, N. L. Roux, F. R. Bach, J. Ponce, and Y. LeCun. Ask the locals: Multi-way lo-

cal pooling for image recognition. In IEEE International Conference on Computer Vision, ICCV

2011, Barcelona, Spain, November 6-13, 2011, pages 2651–2658, 2011. doi: 10.1109/ICCV.2011.

6126555. URL https://doi.org/10.1109/ICCV.2011.6126555.

[20] I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. Adaptive computation and machine

learning. MIT Press, 2016. ISBN 978-0-262-03561-3. URL http://www.deeplearningbook.org/.

[21] T. Liu, S. Fang, Y. Zhao, P. Wang, and J. Zhang. Implementation of training convolutional neural

networks. CoRR, abs/1506.01195, 2015. URL http://arxiv.org/abs/1506.01195.

[22] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple

way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, 2014.

URL http://dl.acm.org/citation.cfm?id=2670313.

[23] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20-26

72

https://doi.org/10.1109/ICNN.1996.548916
https://doi.org/10.1561/2000000039
https://doi.org/10.1561/2000000039
https://doi.org/10.1007/978-3-642-24806-1
https://doi.org/10.1007/978-3-642-24806-1
https://doi.org/10.1109/ICDAR.2007.4378728
https://doi.org/10.1109/ICDAR.2007.4378728
https://doi.org/10.1109/ICCV.2011.6126555
http://www.deeplearningbook.org/
http://arxiv.org/abs/1506.01195
http://dl.acm.org/citation.cfm?id=2670313

June 2005, San Diego, CA, USA, pages 886–893, 2005. doi: 10.1109/CVPR.2005.177. URL

https://doi.org/10.1109/CVPR.2005.177.

[24] J. H. Bappy and A. K. Roy-Chowdhury. CNN based region proposals for efficient object detec-

tion. In 2016 IEEE International Conference on Image Processing, ICIP 2016, Phoenix, AZ,

USA, September 25-28, 2016, pages 3658–3662, 2016. doi: 10.1109/ICIP.2016.7533042. URL

https://doi.org/10.1109/ICIP.2016.7533042.

[25] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object

detection and semantic segmentation. CoRR, abs/1311.2524, 2013. URL http://arxiv.org/

abs/1311.2524.

[26] P. Dong and W. Wang. Better region proposals for pedestrian detection with R-CNN. In 2016 Visual

Communications and Image Processing, VCIP 2016, Chengdu, China, November 27-30, 2016,

pages 1–4, 2016. doi: 10.1109/VCIP.2016.7805452. URL https://doi.org/10.1109/VCIP.2016.

7805452.

[27] R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015. URL http://arxiv.org/abs/1504.

08083.

[28] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object detection with

region proposal networks. CoRR, abs/1506.01497, 2015. URL http://arxiv.org/abs/1506.

01497.

[29] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg. SSD: single shot

multibox detector. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, Computer Vision - ECCV

2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceed-

ings, Part I, volume 9905 of Lecture Notes in Computer Science, pages 21–37. Springer, 2016. doi:

10.1007/978-3-319-46448-0\ 2. URL https://doi.org/10.1007/978-3-319-46448-0_2.

[30] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only look once: Unified, real-time

object detection. CoRR, abs/1506.02640, 2015. URL http://arxiv.org/abs/1506.02640.

[31] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. CoRR, abs/1612.08242, 2016.

URL http://arxiv.org/abs/1612.08242.

[32] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767, 2018.

URL http://arxiv.org/abs/1804.02767.

[33] A. Bochkovskiy, C. Wang, and H. M. Liao. Yolov4: Optimal speed and accuracy of object detection.

CoRR, abs/2004.10934, 2020. URL https://arxiv.org/abs/2004.10934.

[34] G. Jocher, A. Stoken, J. Borovec, NanoCode012, ChristopherSTAN, L. Changyu, Laughing, tkianai,

yxNONG, A. Hogan, lorenzomammana, AlexWang1900, A. Chaurasia, L. Diaconu, Marc, wang-

haoyang0106, ml5ah, Doug, Durgesh, F. Ingham, Frederik, Guilhen, A. Colmagro, H. Ye, Ja-

cobsolawetz, J. Poznanski, J. Fang, J. Kim, K. Doan, and L. Y. . ultralytics/yolov5: v4.0 -

73

https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/ICIP.2016.7533042
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://doi.org/10.1109/VCIP.2016.7805452
https://doi.org/10.1109/VCIP.2016.7805452
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2004.10934

nn.SiLU() activations, Weights & Biases logging, PyTorch Hub integration, Jan. 2021. URL

https://doi.org/10.5281/zenodo.4418161.

[35] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. D. Reid, and S. Savarese. Generalized in-

tersection over union: A metric and a loss for bounding box regression. In IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-

20, 2019, pages 658–666. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.

2019.00075. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Rezatofighi_

Generalized_Intersection_Over_Union_A_Metric_and_a_Loss_for_CVPR_2019_paper.html.

[36] R. Padilla, S. L. Netto, and E. A. B. da Silva. A survey on performance metrics for object-detection

algorithms. In 2020 International Conference on Systems, Signals and Image Processing, IWSSIP

2020, Niterói, Brazil, July 1-3, 2020, pages 237–242. IEEE, 2020. doi: 10.1109/IWSSIP48289.

2020.9145130. URL https://doi.org/10.1109/IWSSIP48289.2020.9145130.

[37] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill Book Company,

1984. ISBN 0-07-054484-0.

[38] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisserman. The pascal vi-

sual object classes (VOC) challenge. Int. J. Comput. Vis., 88(2):303–338, 2010. doi: 10.1007/

s11263-009-0275-4. URL https://doi.org/10.1007/s11263-009-0275-4.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. Commun. ACM, 60(6):84–90, 2017. doi: 10.1145/3065386. URL http://doi.acm.org/

10.1145/3065386.

[40] R. K. Sarvadevabhatla, I. Dwivedi, A. Biswas, S. Manocha, and V. B. R. Sketchparse: Towards rich

descriptions for poorly drawn sketches using multi-task hierarchical deep networks. In Proceedings

of the 2017 ACM on Multimedia Conference, MM 2017, Mountain View, CA, USA, October 23-

27, 2017, pages 10–18, 2017. doi: 10.1145/3123266.3123270. URL https://doi.org/10.1145/

3123266.3123270.

[41] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-

tion. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representa-

tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL

http://arxiv.org/abs/1409.1556.

[42] P. Pawara, E. Okafor, L. Schomaker, and M. A. Wiering. Data augmentation for plant classi-

fication. In J. Blanc-Talon, R. Penne, W. Philips, D. C. Popescu, and P. Scheunders, editors,

Advanced Concepts for Intelligent Vision Systems - 18th International Conference, ACIVS 2017,

Antwerp, Belgium, September 18-21, 2017, Proceedings, volume 10617 of Lecture Notes in Com-

puter Science, pages 615–626. Springer, 2017. doi: 10.1007/978-3-319-70353-4\ 52. URL

https://doi.org/10.1007/978-3-319-70353-4_52.

74

https://doi.org/10.5281/zenodo.4418161
http://openaccess.thecvf.com/content_CVPR_2019/html/Rezatofighi_Generalized_Intersection_Over_Union_A_Metric_and_a_Loss_for_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Rezatofighi_Generalized_Intersection_Over_Union_A_Metric_and_a_Loss_for_CVPR_2019_paper.html
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1007/s11263-009-0275-4
http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386
https://doi.org/10.1145/3123266.3123270
https://doi.org/10.1145/3123266.3123270
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-319-70353-4_52

[43] R. M. Gibson, A. Ahmadinia, S. G. McMeekin, N. C. Strang, and G. Morison. A reconfigurable

real-time morphological system for augmented vision. EURASIP J. Adv. Signal Process., 2013:134,

2013. doi: 10.1186/1687-6180-2013-134. URL https://doi.org/10.1186/1687-6180-2013-134.

[44] M. Holzer, F. Schumacher, T. Greiner, and W. Rosenstiel. Optimized hardware architecture of a

smart camera with novel cyclic image line storage structures for morphological raster scan image

processing. In 2012 IEEE International Conference on Emerging Signal Processing Applications,

ESPA 2012, Las Vegas, NV, USA, January 12-14, 2012, pages 83–86. IEEE, 2012. doi: 10.1109/

ESPA.2012.6152451. URL https://doi.org/10.1109/ESPA.2012.6152451.

[45] Y. Zheng, H. Yao, X. Sun, S. Zhang, S. Zhao, and F. Porikli. Sketch-specific data augmentation for

freehand sketch recognition. CoRR, abs/1910.06038, 2019. URL http://arxiv.org/abs/1910.

06038.

[46] M. Eitz, J. Hays, and M. Alexa. How do humans sketch objects? ACM Trans. Graph., 31(4):44:1–

44:10, 2012. doi: 10.1145/2185520.2185540. URL https://doi.org/10.1145/2185520.2185540.

[47] S. Bethu, B. S. Babu, K. Madhavi, and P. G. Krishna. Algorithm selection and model evaluation

in application design using machine learning. In S. Boumerdassi, É. Renault, and P. Mühlethaler,

editors, Machine Learning for Networking - Second IFIP TC 6 International Conference, MLN 2019,

Paris, France, December 3-5, 2019, Revised Selected Papers, volume 12081 of Lecture Notes in

Computer Science, pages 175–195. Springer, 2019. doi: 10.1007/978-3-030-45778-5\ 12. URL

https://doi.org/10.1007/978-3-030-45778-5_12.

[48] S. Raschka. Model evaluation, model selection, and algorithm selection in machine learning. CoRR,

abs/1811.12808, 2018. URL http://arxiv.org/abs/1811.12808.

[49] C. Lengauer, D. S. Batory, C. Consel, and M. Odersky, editors. Domain-Specific Program Gen-

eration, International Seminar, Dagstuhl Castle, Germany, March 23-28, 2003, Revised Papers,

volume 3016 of Lecture Notes in Computer Science, 2004. Springer. ISBN 3-540-22119-0. doi:

10.1007/b98156. URL https://doi.org/10.1007/b98156.

[50] T. Beltramelli. pix2code: Generating code from a graphical user interface screenshot. CoRR,

abs/1705.07962, 2017. URL http://arxiv.org/abs/1705.07962.

[51] M. Fowler. Domain-Specific Languages. The Addison-Wesley signature series. Addison-Wesley,

2011. ISBN 978-0-321-71294-3. URL http://vig.pearsoned.com/store/product/1,1207,

store-12521_isbn-0321712943,00.html.

[52] K. Ellis, D. Ritchie, A. Solar-Lezama, and J. B. Tenenbaum. Learning to infer graphics programs

from hand-drawn images. CoRR, abs/1707.09627, 2017. URL http://arxiv.org/abs/1707.

09627.

[53] P. Koiran and E. D. Sontag. Vapnik-chervonenkis dimension of recurrent neural networks. Discrete

Applied Mathematics, 86(1):63–79, 1998. doi: 10.1016/S0166-218X(98)00014-6. URL https:

//doi.org/10.1016/S0166-218X(98)00014-6.

75

https://doi.org/10.1186/1687-6180-2013-134
https://doi.org/10.1109/ESPA.2012.6152451
http://arxiv.org/abs/1910.06038
http://arxiv.org/abs/1910.06038
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1007/978-3-030-45778-5_12
http://arxiv.org/abs/1811.12808
https://doi.org/10.1007/b98156
http://arxiv.org/abs/1705.07962
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0321712943,00.html
http://arxiv.org/abs/1707.09627
http://arxiv.org/abs/1707.09627
https://doi.org/10.1016/S0166-218X(98)00014-6
https://doi.org/10.1016/S0166-218X(98)00014-6

[54] OutSystems. OutSystems UI Framework Screen Templates Support Documentation. https:

//outsystemsui.outsystems.com/OutSystemsUIWebsite/ScreenOverview, 2019. [Online; ac-

cessed December 18, 2019].

[55] OutSystems. OutSystems UI Framework Patterns Support Documentation. https://

outsystemsui.outsystems.com/OutSystemsUIWebsite/PatternOverview, 2019. [Online; ac-

cessed December 18, 2019].

[56] J. Sauvola and M. Pietikäinen. Adaptive document image binarization. Pattern Recognition, 33

(2):225–236, 2000. ISSN 0031-3203. doi: https://doi.org/10.1016/S0031-3203(99)00055-2. URL

https://www.sciencedirect.com/science/article/pii/S0031320399000552.

[57] LabelImg. Labelimg. https://github.com/tzutalin/labelImg, 2020. [Online; accessed Novem-

ber 3, 2020].

[58] Ultralytics. YOLOv5 wiki with tutorials, environments, and the current repository status. https:

//github.com/ultralytics/yolov5/wiki, 2019. [Online; accessed November 3, 2020].

[59] Roboflow. Label Training Images and Export To Any Format. https://roboflow.com/annotate,

2019. [Online; accessed October 13, 2019].

[60] S. F. Conservancy. Selenium: Automating Web Browsers. https://www.selenium.dev/about/,

2019. [Online; accessed April 23, 2020].

[61] M. Corporation. Mdn web docs: Element.getboundingclientrect. https://developer.mozilla.

org/en-US/docs/Web/API/Element/getBoundingClientRect, 2019. [Online; accessed October

23, 2019].

[62] Ultralytics. A family of object detection architectures and models. https://ultralytics.com/

yolov5, 2019. [Online; accessed October 13, 2019].

[63] C. Wang, H. M. Liao, I. Yeh, Y. Wu, P. Chen, and J. Hsieh. Cspnet: A new backbone that can

enhance learning capability of CNN. CoRR, abs/1911.11929, 2019. URL http://arxiv.org/abs/

1911.11929.

[64] OutSystems. OutSystems UI Framework. https://outsystemsui.outsystems.com/, 2019. [On-

line; accessed December 18, 2019].

[65] teleportHQ. User Interface Definition Language. https://docs.teleporthq.io/uidl/, 2019. [On-

line; accessed October 13, 2019].

[66] L. Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.

Software available from wandb.com.

[67] H. M. Sharifipour, B. Yousefi, and X. P. V. Maldague. Skeletonization and reconstruction based on

graph morphological transformations. CoRR, abs/2009.07970, 2020. URL https://arxiv.org/

abs/2009.07970.

76

https://outsystemsui.outsystems.com/OutSystemsUIWebsite/ScreenOverview
https://outsystemsui.outsystems.com/OutSystemsUIWebsite/ScreenOverview
https://outsystemsui.outsystems.com/OutSystemsUIWebsite/PatternOverview
https://outsystemsui.outsystems.com/OutSystemsUIWebsite/PatternOverview
https://www.sciencedirect.com/science/article/pii/S0031320399000552
https://github.com/tzutalin/labelImg
https://github.com/ultralytics/yolov5/wiki
https://github.com/ultralytics/yolov5/wiki
https://roboflow.com/annotate
https://www.selenium.dev/about/
https://developer.mozilla.org/en-US/docs/Web/API/Element/getBoundingClientRect
https://developer.mozilla.org/en-US/docs/Web/API/Element/getBoundingClientRect
https://ultralytics.com/yolov5
https://ultralytics.com/yolov5
http://arxiv.org/abs/1911.11929
http://arxiv.org/abs/1911.11929
https://outsystemsui.outsystems.com/
https://docs.teleporthq.io/uidl/
https://www.wandb.com/
https://arxiv.org/abs/2009.07970
https://arxiv.org/abs/2009.07970

Appendix A

Crowdsourcing Instructions

This Appendix contains the instructions document that was sent to the volunteers that contributed with

unique hand-drawn sketches for the human generated dataset described in Chapter 3. The main pur-

pose of this document was to concisely present the thesis work motivation, provide the list of correct

representations for the supported UI elements, and illustrate 17 examples of valid user interfaces that

could potentially be used as an inspiration for their own sketches. The document is written in European

Portuguese, which was the native language of all participating volunteers.

77

Página 1 de 7

Dataset Crowdsourcing
UI Gen: Desenhar para gerar uma interface
Dissertação • Ano Letivo 2019/2020 • 2.º Semestre
Gonçalo Correia de Matos

 Qual é o objetivo?
O objetivo final da Tese é gerar o código-fonte da interface de uma aplicação a partir
de uma simples fotografia de um esboço feito à mão.

Para isso, serão usados algoritmos de Machine Learning que conseguirão identificar
os elementos desenhados à mão.

Vê, por exemplo, o resultado final para este esboço:

CURIOSIDADE
Para tornar um modelo
de Object Detection e-
ficaz, é necessário trei-
ná-lo com um dataset
que reúna a maior vari-
edade de estilos possí-
vel.

 Em que é que podes ajudar?
Os estilos de desenho variam significativamente de pessoa para pessoa.

Para tornar os algoritmos de Machine Learning eficazes, é necessário treiná-los para
que reconheçam a maior diversidade de estilos possível.

Preciso da tua ajuda para reunir um dataset grande, variado e representativo dos
vários estilos de desenho.

NOTA IMPORTANTE
A representação de ca-
da elemento tem de
ser inequívoca. Por is-
so, deve corresponder
ao padrão de represen-
tação de elementos a-
dotado.

 Como deves proceder?
Só tens de copiar 1 a 3 vezes cada uma das interfaces para uma folha de papel e tirar
uma fotografia. Para isso, deves:

1. Desenhar todas as “Interfaces a desenhar”, das páginas 3 a 7, numa folha de
papel, respeitando as representações dos elementos.

2. Fotografar com o telemóvel cada uma das interfaces que desenhaste, sem
cortar nenhum elemento da interface.

3. Enviar-me as fotografias dos teus desenhos através do Google Forms disponível
em bit.ly/uigoncalo. Podes submeter até 10 fotografias de cada vez.

INFORMAÇÃO
Se desenhares mais de
uma interface por fo-
lha, certifica-te de que
envias uma fotografia
individual para cada.

UI Gen
VERSÃO DIGITAL

Página 2 de 7

Padrão de representação dos elementos
Por haver inúmeras formas de representar elementos, foi necessário definir um
padrão de representação que permite identificá-los facilmente. De preferência,
usa cada elemento pelo menos uma vez entre todos os teus esboços!

CHECKLIST

Não esquecer…
Podes usar esta checklist para
verificares se estás a usar todos
os elementos.

Elemento Padrão de representação Resultado final

Imagem

 Imagem

Vídeo

 Vídeo

Gráfico

 Gráfico

Tabela

 Tabela

Área de texto

 Área de texto

Checkbox Checkbox

Botão
 Botão

Título de nível 1

 Título de nível 1

Título de nível 2
 Título de nível 2

Dropdown
 Dropdown

Texto

 Texto

Link

 Link

Slider

 Slider

Campo de texto

 Campo de texto

Ícone

 Ícone

Paginação

 Paginação

Página 3 de 7

Interfaces a desenhar
A framework OutSystems UI inclui 17 modelos de interfaces prontos a usar nas aplicações. Estas miniaturas ilustram a
representação desenhada de cada um desses modelos, respeitando os padrões de representação dos elementos
incluídos em cada interface, conforme descrito na página anterior.

RECOMENDAÇÃO
Para simplificar e acelerar a tarefa de contribuição para o dataset, a melhor forma de colaborar é copiar para uma
folha cada um destes exemplos, pelo menos, uma vez. Podes desenhar várias vezes por folha, mantendo a proporção.

Representações desenhadas Interfaces geradas

 Admin Dashboard

 Bulk Actions

 Dashboard

Página 4 de 7

 Requests Management

 Transactions Dashboard

 Request Detail

 Detail

Página 5 de 7

 Product Detail

 Request Creation

 Four Column Gallery

 Product Catalog

Página 6 de 7

 Horizontal Detail

 List

 List with Filters

 Onboarding Animation

Página 7 de 7

 Product Feature

Appendix B

Object Detection Results

This Appendix contains the results obtained from the YOLOv5-based object detection model described

in Chapter 3. The tables included in this Appendix refer to different models, trained and testes with

different train, test, and validation sets, according to the 5-fold approach followed. The presented values

reflect the precision, recall and mAP score at different IoU thresholds (for scores greater than 0.5 and

for scores from 0.5 to 0.95, i.e. mAP@.5 and mAP@.5:.95).

85

Table B.1: Object detection results for fold 1 human-generated test set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 304 295 0.879 0.959 0.971 0.849

Video 304 111 0.962 0.228 0.588 0.378

Icon 304 241 0.944 1 0.995 0.631

Table 304 133 0.972 0.78 0.961 0.693

Input-text 304 213 0.651 0.958 0.806 0.581

Checkbox 304 123 1 0.806 0.992 0.709

Textarea 304 87 0.96 0.827 0.894 0.688

Button 304 439 0.976 1 0.994 0.766

Header-1 304 301 0.997 0.96 0.987 0.555

Header-2 304 463 0.96 1 0.984 0.617

Dropdown 304 171 0.901 0.428 0.604 0.412

Text 304 1217 0.983 0.999 0.996 0.616

Link 304 156 0.775 0.992 0.974 0.712

Slider 304 173 1 0.0115 0.403 0.227

Chart 304 159 0.813 0.962 0.975 0.768

Pagination 304 83 0.96 0.878 0.936 0.59

All Classes 304 4365 0.921 0.799 0.879 0.612

Table B.2: Object detection results for fold 1 human-generated validation set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 200 229 0.993 1 0.995 0.89

Video 200 10 0.946 0.9 0.966 0.778

Icon 200 188 0.996 1 0.995 0.622

Table 200 84 1 0.849 0.967 0.621

Input-text 200 166 0.971 0.997 0.989 0.76

Checkbox 200 12 0.937 1 0.995 0.649

Textarea 200 37 0.982 0.946 0.975 0.822

Button 200 359 0.996 0.989 0.989 0.74

Header-1 200 199 0.995 0.925 0.987 0.664

Header-2 200 368 0.92 1 0.983 0.635

Dropdown 200 35 0.985 1 0.995 0.821

Text 200 1068 0.889 0.998 0.996 0.588

Link 200 46 0.88 1 0.993 0.698

Slider 200 12 1 0.333 0.533 0.31

Chart 200 69 0.937 1 0.96 0.762

Pagination 200 24 0.973 1 0.995 0.708

All Classes 200 2906 0.962 0.934 0.957 0.692

86

Table B.3: Object detection results for fold 2 human-generated test set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 102 102 0.953 0.98 0.985 0.795

Video 102 7 0.731 0.714 0.797 0.5

Icon 102 101 0.939 0.97 0.977 0.622

Table 102 43 1 0.899 0.976 0.656

Input-text 102 84 0.881 1 0.992 0.752

Checkbox 102 10 1 0.999 0.995 0.674

Textarea 102 22 0.969 0.864 0.97 0.773

Button 102 168 0.993 1 0.996 0.764

Header-1 102 96 0.946 0.99 0.994 0.654

Header-2 102 183 0.94 0.967 0.984 0.599

Dropdown 102 16 0.915 1 0.995 0.767

Text 102 515 0.921 0.95 0.968 0.516

Link 102 21 0.836 0.973 0.989 0.686

Slider 102 7 0.418 0.119 0.394 0.301

Chart 102 49 0.906 0.959 0.969 0.714

Pagination 102 13 0.769 0.692 0.787 0.527

All Classes 102 1437 0.882 0.88 0.923 0.644

Table B.4: Object detection results for fold 2 human-generated validation set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 304 295 0.751 0.959 0.972 0.853

Video 304 111 0.876 0.192 0.388 0.232

Icon 304 241 0.866 0.996 0.995 0.64

Table 304 133 0.924 0.94 0.959 0.689

Input-text 304 213 0.503 0.986 0.832 0.617

Checkbox 304 123 1 0.342 0.937 0.582

Textarea 304 87 0.96 0.819 0.89 0.721

Button 304 439 0.94 0.998 0.993 0.774

Header-1 304 301 0.983 0.987 0.993 0.575

Header-2 304 463 0.947 0.994 0.995 0.636

Dropdown 304 171 1 0.5 0.661 0.494

Text 304 1217 0.95 0.998 0.995 0.653

Link 304 156 0.891 0.941 0.976 0.678

Slider 304 173 1 0.0148 0.301 0.181

Chart 304 159 0.858 0.951 0.983 0.789

Pagination 304 83 0.818 0.928 0.944 0.632

All Classes 304 4365 0.892 0.784 0.863 0.609

87

Table B.5: Object detection results for fold 3 human-generated test set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 193 225 0.957 0.99 0.993 0.848

Video 193 9 1 0.889 0.92 0.732

Icon 193 189 0.975 0.984 0.987 0.705

Table 193 79 1 0.808 0.963 0.712

Input-text 193 163 0.982 0.99 0.987 0.771

Checkbox 193 10 0.838 1 0.995 0.733

Textarea 193 38 1 0.92 0.945 0.778

Button 193 330 0.998 1 0.996 0.802

Header-1 193 193 0.964 0.964 0.991 0.691

Header-2 193 365 0.945 0.962 0.965 0.708

Dropdown 193 36 0.911 1 0.995 0.763

Text 193 1024 0.965 0.997 0.994 0.656

Link 193 45 0.906 0.978 0.975 0.733

Slider 193 11 0.836 1 0.988 0.804

Chart 193 70 0.966 0.986 0.994 0.74

Pagination 193 23 0.913 0.565 0.562 0.338

All Classes 193 2810 0.947 0.94 0.953 0.72

Table B.6: Object detection results for fold 3 human-generated validation set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 102 102 0.971 0.98 0.994 0.809

Video 102 7 0.794 0.857 0.856 0.611

Icon 102 101 0.965 0.941 0.981 0.569

Table 102 43 1 0.635 0.978 0.71

Input-text 102 84 0.984 0.976 0.987 0.746

Checkbox 102 10 0.74 1 0.995 0.727

Textarea 102 22 1 0.848 0.896 0.77

Button 102 168 0.995 0.994 0.995 0.778

Header-1 102 96 0.93 0.835 0.946 0.587

Header-2 102 183 0.994 0.954 0.987 0.648

Dropdown 102 16 0.895 1 0.995 0.758

Text 102 515 0.975 0.891 0.95 0.552

Link 102 21 0.841 0.952 0.972 0.712

Slider 102 7 0.621 1 0.718 0.534

Chart 102 49 0.985 0.939 0.973 0.749

Pagination 102 13 0.94 0.692 0.801 0.556

All Classes 102 1437 0.915 0.906 0.939 0.676

88

Table B.7: Object detection results for fold 4 human-generated test set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 204 241 1 0.962 0.994 0.827

Video 204 12 0.928 0.917 0.952 0.657

Icon 204 191 0.967 1 0.995 0.623

Table 204 83 0.978 0.88 0.986 0.692

Input-text 204 166 0.988 0.969 0.992 0.723

Checkbox 204 12 0.588 0.832 0.823 0.523

Textarea 204 36 0.977 1 0.995 0.809

Button 204 358 0.987 1 0.993 0.771

Header-1 204 206 0.985 0.976 0.98 0.623

Header-2 204 367 0.99 0.992 0.996 0.594

Dropdown 204 35 0.921 0.971 0.96 0.75

Text 204 1099 0.964 0.995 0.995 0.641

Link 204 49 0.92 0.98 0.976 0.713

Slider 204 11 0.829 0.636 0.789 0.495

Chart 204 72 1 0.989 0.995 0.784

Pagination 204 35 0.943 0.943 0.972 0.651

All Classes 204 2973 0.935 0.94 0.962 0.68

Table B.8: Object detection results for fold 4 human-generated validation set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 193 225 1 0.963 0.995 0.848

Video 193 9 0.983 1 0.995 0.682

Icon 193 189 0.971 0.974 0.992 0.727

Table 193 79 1 0.692 0.951 0.677

Input-text 193 163 0.988 0.982 0.986 0.766

Checkbox 193 10 0.939 1 0.995 0.738

Textarea 193 38 1 0.911 0.946 0.734

Button 193 330 0.997 1 0.996 0.773

Header-1 193 193 0.995 0.989 0.995 0.743

Header-2 193 365 0.97 0.967 0.981 0.711

Dropdown 193 36 0.987 1 0.995 0.812

Text 193 1024 0.988 0.993 0.992 0.658

Link 193 45 1 0.829 0.972 0.743

Slider 193 11 0.96 0.909 0.967 0.665

Chart 193 70 0.982 0.971 0.979 0.759

Pagination 193 23 0.864 0.652 0.7 0.38

All Classes 193 2810 0.977 0.927 0.965 0.713

89

Table B.9: Object detection results for fold 5 human-generated test set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 200 229 0.995 1 0.995 0.868

Video 200 10 0.97 0.8 0.813 0.653

Icon 200 188 1 1 0.995 0.671

Table 200 84 1 0.75 0.946 0.643

Input-text 200 166 0.994 0.986 0.99 0.747

Checkbox 200 12 0.964 1 0.995 0.536

Textarea 200 37 0.971 0.973 0.975 0.805

Button 200 359 1 0.988 0.989 0.778

Header-1 200 199 0.995 0.932 0.99 0.617

Header-2 200 368 0.948 0.999 0.992 0.64

Dropdown 200 35 0.991 0.971 0.993 0.795

Text 200 1068 0.944 0.998 0.996 0.636

Link 200 46 0.988 1 0.995 0.703

Slider 200 12 0.999 1 0.995 0.709

Chart 200 69 0.955 1 0.977 0.741

Pagination 200 24 0.991 1 0.995 0.591

All Classes 200 2906 0.982 0.962 0.977 0.696

Table B.10: Object detection results for fold 5 human-generated validation set.

Classes Images Labels Precision Recall mAP@.5 mAP@.5:.95

Image 204 241 1 0.963 0.994 0.841

Video 204 12 0.992 1 0.995 0.821

Icon 204 191 0.986 0.995 0.991 0.569

Table 204 83 0.985 0.795 0.991 0.772

Input-text 204 166 0.994 0.971 0.995 0.779

Checkbox 204 12 0.881 0.917 0.925 0.621

Textarea 204 36 0.993 1 0.995 0.788

Button 204 358 0.988 1 0.989 0.778

Header-1 204 206 0.999 0.976 0.983 0.653

Header-2 204 367 0.988 0.995 0.996 0.623

Dropdown 204 35 0.97 0.937 0.983 0.773

Text 204 1099 0.987 0.995 0.996 0.626

Link 204 49 0.989 0.939 0.976 0.721

Slider 204 11 0.775 0.727 0.826 0.621

Chart 204 72 0.994 0.972 0.995 0.769

Pagination 204 35 1 0.96 0.99 0.692

All Classes 204 2973 0.97 0.946 0.976 0.715

90

Appendix C

Complete Pipeline Execution Example

This Appendix contains a complete pipeline execution example, presenting the inputs and outputs of all

intermediate stages, hence demonstrating how this thesis integrates all stages seamless, even though

different programming languages had to be used.

The diverse inner workings of each stage are also shown. This was accomplished by following a

language-agnostic API rationale throughout the thesis, which will allow future research projects in this

area to modify or easily upgrade any stage, without compromising the dataset produced or any methods

developed.

Considering that the ultimate objective of this thesis is to convert a hand-drawn UI sketch straight

into code, and eventually generate a real-world UI, observing Sections C.1 and C.7 illustrate the input

and output of the implemented solution pipeline, respectively.

C.1 Original Hand-drawn Sketch Example

Figure C.1: Raw photo of a hand-drawn sketch taken with a smartphone camera (RGB color space,
4032 by 3024 pixels resolution, and JPEG file weighting 2.4 MB).

91

C.2 Pre-processed Example Result

Figure C.2: Pre-processed image corresponding to the binarized, resized, and masked version of the
original raw photo of a hand-drawn sketch taken with a smartphone camera (binary color space, 1200
by 900 pixels resolution, and PNG file weighting 7 KB).

C.3 Object Detection Example Result

(a)

8 0.112917 0.179444 0.129167 0.081111
4 0.686667 0.168333 0.288333 0.072222
7 0.901667 0.152222 0.118333 0.080000
3 0.502500 0.532778 0.875000 0.578889
15 0.862917 0.806111 0.120833 0.070000
11 0.149167 0.893333 0.123333 0.037778

(b)

Figure C.3: Pre-processed image corresponding to the binarized, resized, and masked version of the
original raw photo of a hand-drawn sketch taken with a smartphone camera (binary color space, 1200
by 900 pixels resolution, and PNG file weighting 7 KB).

92

C.4 Spatial Grouping Example Result

1 export default {

2 children: [

3 {

4 children: [

5 {

6 id: 0,

7 top: 0,

8 left: 0,

9 width: 168.0 ,

10 height: 40.0,

11 type: "Header -1",

12 value: "Header -1"

13 },

14 {

15 children: [

16 {

17 id: 0,

18 top: 0,

19 left: 0,

20 width: 179.0 ,

21 height: 40.0,

22 type: "Input -text",

23 value: "Input -text"

24 },

25 {

26 id: 0,

27 top: 0,

28 left: 0,

29 width: 150.0 ,

30 height: 40.0,

31 type: "Button",

32 value: "Button"

33 }

34],

35 type: "generatedContainer",

36 parsingDirection: "horizontal",

37 top: 102,

38 left: 49,

39 width: 500,

40 height: 102,

41 id: "dd6ca2a5 -98dd -4c3d -b148 -e9ec77a2984b",

42 passes: 0,

43 section: true

44 }

45],

46 type: "generatedContainer",

47 parsingDirection: "horizontal",

48 top: 102,

49 left: 49,

50 width: 500,

51 height: 102,

52 id: "dd6ca2a5 -98dd -4c3d -b148 -e9ec77a2984b",

53 passes: 0,

54 section: true

55 },

56 {

93

57 id: 0,

58 top: 0,

59 left: 0,

60 width: 1120.0 ,

61 height: 532.0,

62 type: "Table",

63 value: "Table"

64 },

65 {

66 children: [

67 {

68 id: 0,

69 top: 0,

70 left: 0,

71 width: 228.0 ,

72 height: 21.0,

73 type: "Text",

74 value: "Text"

75 },

76 {

77 id: 0,

78 top: 0,

79 left: 0,

80 width: 150.0 ,

81 height: 40.0,

82 type: "Pagination",

83 value: "Pagination"

84 }

85],

86 type: "generatedContainer",

87 parsingDirection: "horizontal",

88 top: 102,

89 left: 49,

90 width: 500,

91 height: 102,

92 id: "dd6ca2a5 -98dd -4c3d -b148 -e9ec77a2984b",

93 passes: 0,

94 section: true

95 }

96],

97 type: "root",

98 parsingDirection: "vertical",

99 top: 0,

100 left: 0,

101 width: 1200,

102 height: 900,

103 id: "0",

104 passes: 0

105 };

94

C.5 Agnostic UIDL Example Generation

1 {type: "element", content: Object}

2 elementType: "div"

3

4 >style: Object (...)

5 fontFamily: "’Cabin ’, sans -serif"

6 flexDirection: "row"

7 justifyContent: "space -between"

8 alignItems: "center"

9 padding: "5px"

10

11 >children: Array (3)

12 >children: Array (2)

13 >0: Object

14 type: "element"

15 >content: Object

16 elementType: "h1"

17 >style: Object (...)

18 color: "black"

19 width: "50px"

20

21 >children: Array (2)

22 >0: Object

23 type: "element"

24 >content: Object

25 elementType: "input"

26 >style: Object (...)

27 height: "38px"

28 borderRadius: "5px"

29

30 >1: Object

31 type: "element"

32 >content: Object

33 elementType: "button"

34 >style: Object (...)

35 height: "40"

36 borderRadius: "6px"

37

38 >children: Array (1)

39 >0: Object

40 type: "element"

41 >content: Object

42 elementType: "table"

43 >style: Object (...)

44 width: "100%"

45 display: "block"

46

47 >children: Array (2)

48 >0: Object

49 type: "static"

50 content: "Text"

51

52 >1: Object

53 type: "element"

54 >content: Object

55 elementType: "pagination"

56 >style: Object (...)

95

C.6 Code Generation Example Result

1 <div style="flex -direction: row; justify -content: space -between; align -

items: center; border: 1px dashed rgb(204, 204, 204); outline -offset:

-1px; padding: 5px;">

2 div

3

4 <div style="display: flex; flex -direction: row; justify -content:

space -between; align -items: center; border: 1px dashed rgb(204, 204,

204); outline -offset: -1px; padding: 5px;">

5 div

6

7 <h1 style="color: black; width: 253px;">Header 1</h1>

8 <div style="flex -direction: row; justify -content: space -between;

align -items: center; border: 1px dashed rgb(204, 204, 204); outline -

offset: -1px; padding: 5px;">

9 div

10

11 <input style="height: 38px; border -top -left -radius: 5px;

border -top -right -radius: 5px; border -bottom -right -radius: 5px; border

-bottom -left -radius: 5px;"></input >

12 <button style="color: white; background -color: rgb(16, 104,

235); cursor: pointer; line -height: 1; height: 40px; display: inline -

flex; margin: 0px 10px; padding: 0px 16px; border -top -left -radius: 6

px; border -top -right -radius: 6px; border -bottom -right -radius: 6px;

border -bottom -left -radius: 6px;">Button </button >

13 </div>

14 </div>

15

16 table

17 <table style="border -collapse: collapse; width: 100%;">

18 <style>td , th { border: 1px solid #dddddd; text -align: left;

padding: 8px; } tr:nth -child(even) { background -color: #dddddd; }</

style >

19 <tr>

20 <th>Table</th>

21 <th>Column </th> (...)

22 </tr>

23 <tr>

24 <td>Row</td>

25 <td>-</td> (...)

26 </tr>

27 (...)

28 </table>

29

30 <div style="display: flex; flex -direction: row; justify -content:

space -between; align -items: center; border: 1px dashed rgb(204, 204,

204); outline -offset: -1px; padding: 5px;">

31 div

32 Text

33 <div>

34 pagination

35 <a>1

36 <a>2

37 <a>3

38 </div>

39 </div>

40 </div>

96

C.7 Web App Example Result

(a)

(b)

Figure C.4: Comparison of a (a) screenshot of a React web-generated app, with the detected containers
marked with a dotted line and generic placeholders inside each UI element, with an (b) image of a
screen template using the OutSystems UI Framework CSS that matches the same UI elements and
page structure.

97

98

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Topic Overview
	1.3 Objectives
	1.4 Thesis Outline

	2 Background
	2.1 From Machine Learning to Deep Learning
	2.1.1 Machine Learning
	2.1.2 Machine Learning Approaches
	2.1.3 Neural Networks
	2.1.4 Activation Functions
	2.1.5 Backpropagation
	2.1.6 Deep Learning

	2.2 Convolutional Neural Networks
	2.2.1 Training
	2.2.2 From Image Classification to Object Detection
	2.2.3 You Only Look Once
	2.2.4 Evaluation metrics

	2.3 Dataset Generation
	2.3.1 Human-generated Dataset Approach
	2.3.2 Computer-generated Dataset Approaches
	2.3.3 Data Augmentation
	2.3.4 Morphological Operations
	2.3.5 Cross-Validation

	2.4 Program Generation

	3 Implementation
	3.1 Dataset
	3.1.1 Screen Templates and User Interface Elements
	3.1.2 Hand-drawn Representation of User Interface Elements
	3.1.3 Human-generated Dataset
	3.1.4 Computer-generated Dataset

	3.2 Object Detection Model
	3.2.1 Installing YOLO and Importing a Dataset
	3.2.2 Configuring a Custom Object Detection Model
	3.2.3 Connecting Tensorboard and WandB
	3.2.4 Training a Custom Object Detection Model
	3.2.5 Validating and Testing a Custom Object Detection Model

	3.3 Spatial Grouping Algorithm
	3.4 Code Generation
	3.5 Complete Pipeline

	4 Results
	4.1 Quantitative Results
	4.1.1 Human-generated Dataset
	4.1.2 Computer-generated Dataset Results

	4.2 Qualitative Results

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography
	A Crowdsourcing Instructions
	B Object Detection Results
	C Complete Pipeline Execution Example
	C.1 Original Hand-drawn Sketch Example
	C.2 Pre-processed Example Result
	C.3 Object Detection Example Result
	C.4 Spatial Grouping Example Result
	C.5 Agnostic UIDL Example Generation
	C.6 Code Generation Example Result
	C.7 Web App Example Result

