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Abstract

An interactive, straightforward user interface (UI) always derives from a seamless development
process. Meeting user expectations for a high quality and functional UI goes way beyond respecting
state-of-the-art design principles. It is the result of the whole design process, which tends to be
unnecessarily laborious, requiring multiple iterations of unremarkable and time-consuming tasks. One
of the first stages consists of drafting a prototype that is a schematic image of the screens. This
stage is the key for the final result. Aiming to avail the agile and efficient experimentation afforded
by hand-drawn sketches, this thesis introduces an automatic tool, based on machine learning, that
converts hand-made UI sketches into code, and eventually generates the actual Ul, maximizing the
efficiency of the design process and greatly accelerating it. The proposed solution pipeline consists of a
software tool that identifies the sketched elements using computer vision, evaluates both their position
and hierarchy, and finally generates the corresponding UI, ready to be used. The top-performing
testing fold setup scores 98.7% of mean average precision (mAP). Thus, this thesis can be used as a
master key to automatically generate real-world interfaces in real time, hence shortening the System
Development Life Cycle (SDLC) of software applications. Providing immediate feedback to developers
and designers not only makes the project management process more efficient, but also reduces the
time-to-market of applications, delivering meticulous and more substantial solutions in a shorter time.
Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Image Analysis, Computer
Vision, Automatic Program Generation, User Interface

1. Introduction

Traditionally, building a user interface (UI) is
known to be a tedious, prone-to-error and detail-
driven task. Machine learning can be used to
greatly accelerate front-end development by using
more data and algorithms, but requiring less cod-
ing. So, building an automatic tool that could in-
terpret a hand-made sketch and generate the actual
UI would accelerate and improve the whole design
process, providing the developer immediate feed-
back on what is being generated and allowing for
changes to be made in real time.

A seamless, interactive, and straightforward de-
sign process would lead to a better user interface,
benefiting both the developers and the users. This
would also positively impact the System Develop-
ment Life Cycle (SDLC) of software applications by
reducing it.

Further improving the manageability, objectivity,
and control of projects, would ultimately reduce the
time-to-market and the cost-to-market of applica-
tions, allowing developers and designers to deliver
more accurate and tangible products in a shorter
time.

Automatic Ul generation has recently been build-
ing momentum in software development, as more
developers find themselves working on unnecessarily
laborious, unremarkable, and time-consuming tasks
that require multiple iterations and do not always
lead to the very best result.

This new field of research has been propelling
the creation of new companies, such as Uizard, and
motivating new research and development projects
in different companies, like teleportHQ, Microsoft,
and Airbnb.

This thesis proposes a tool that converts hand-
drawn sketches into real world user interfaces. In
order to achieve this, the tool recognizes the repre-
sentation of each Ul element, infers their hierarchy
and positions, and generates the corresponding user
interface code.

While the ultimate objective of this tool is to
maximize the efficiency of prototyping tasks and
accelerate the design process, specific objectives
were set for all the intermediate stages of the im-
plemented solution pipeline, making the tool more
versatile and introducing important advancements
across the board.



2. Background
2.1. Object Detection

The most common deep learning architectures used
for computer vision and image analysis, such as
convolutional neural networks (CNNs), which will
be covered in detail in this chapter, are part of a
broader family of machine learning methods. The
basis of de design of conventional CNNs was first in-
troduced by LeCun et al. [4] to tackle the challenges
posed by computer vision. More particularly, CNNs
were created to solve a handwritten digit recogni-
tion problem, known as image classification. Ob-
ject detection is an extension of image classifica-
tion, consisting of detecting an object in an image
and identifying its position and size in the image,
apart from the usual image classification task [2].
One common approach to perform object detec-
tion is a one-step framework based in the regres-
sion task that consists of approximating input vari-
ables of a mapping function to a continuous output
variable. The idea is to map the pixels of the im-
age directly to bounding box coordinates and class
probabilities. This approach achieves better perfor-
mance, as it avoids several interdependent stages.

2.2. You Only Look Once

The You Ounly Look Once (YOLO) algorithm [5]
frames object detection as a regression problem of
spatially separated bounding boxes and associated
class probabilities with a single network. Since the
whole detection pipeline is a single network, it can
be optimized end-to-end directly on detection per-
formance.

YOLO is considered a milestone in the develop-
ment of target detection algorithms, such as RCNN,
Faster-RCNN, and SSD, making it the most ad-
vanced real-time object detection model. Over
time, YOLO has had several iterations and be-
came faster and more reliable. Currently, there
are five main versions of YOLO, from YOLOv1 to
YOLOvVS5.

The first iteration, YOLOv1, was developed on
the basis of the R-CNN region proposals approach.
As aforementioned, R-CNN uses a CNN for tar-
get detection and SVM for prediction classification,
making it computationally heavy and slow. How-
ever, the bounding boxes position detection and ob-
ject classification accuracy were high.

YOLOv5 [3] is currently the latest iteration of
YOLO. This version introduced significant running
speed improvements, with the fastest speed reach-
ing 140 frames per second. At the same time, the
size of YOLOv5 became smaller, with the weight
file being nearly 90% lighter than the weights of
YOLOwV4, allowing YOLOv5 to be deployed on em-
bedded devices. YOLOv) also has a higher ac-
curacy rate and even better capacities to identify
small objects.

3. Implementation

The ultimate goal of the system is to identify dif-
ferent elements in a hand-drawn interface using
computer vision. Similarly to other deep learning
algorithms, computer vision models require large
amounts of labelled data, which are not promptly
available.

3.1. Screen Templates and User Interface Elements
The OutSystems Ul framework includes a wide va-
riety of adaptive and interactive UI elements that
compose screen templates. Deciding which UI pat-
terns needed to be included in the dataset required
a meticulous analysis of the complete OutSystems
UI library, matching each screen template with all
the respective contained Ul elements.

After mapping all screen templates, a set of 16
prominent user interface elements was chosen based
on the number of uses and number of ambiguous
and/or redundant elements. These criteria were
fine tuned along with the dataset generation pro-
cess progress, in order to achieve the best results.

3.2. Hand-drawn Representation of User Interface
Elements

Following the curation process of the 83 Ul patterns
available in the OutSystems UI framework and hav-
ing the final goal of this project in mind, it was nec-
essary to establish a hand-drawn representation for
each of the 16 relevant elements.

Setting a streamlined, intuitive, and distinct rep-
resentation for each element was critically impor-
tant. The high variability of hand-drawn sketches
naturally requires a large dataset covering the most
diverse styles of hand-drawing. Without restricting
the number of admissible representations for each
UI element, the complex challenge of training the
model to correctly identify each element would only
be more arduous.

Having a final representations catalogue was crit-
ical before launching the laborious task of building
a human-generated dataset. However, it was the
result of an iterative process that occurred in par-
allel with the development of two other important
stages of the pipeline: the automatic dataset gen-
erator tool and the object detection model.

While fine-tuning the hand-drawn representa-
tions of Ul elements led to important improvements
of the dataset generator tool, it has also benefited
from a preliminary analysis of the testing results
using a simpler implementations of YOLOv2 and a
smaller dataset using the standard representations
proposed by teleportHQ, depicted in Figure 1.

Before launching the crowdsourced effort of pro-
ducing a human-generated dataset, it was critically
important to stabilize the hand-drawn representa-
tions of all UI elements, so that voluntary collabora-
tors did not have to repeat sketches multiple times.
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Figure 1: List of hand-drawn representations sup-
ported by our object detection model.

3.3. Human-generated Dataset

One of the most difficult challenges posed by neu-
ral networks is collecting large amounts of relevant
and labeled elements for the dataset. Considering
that the final goal of this project is to convert any
hand-made sketch into actual code, having a sig-
nificant number of diverse hand-drawn sketches in
the dataset is critically important. This means that
the core of the dataset has to be made of real and
diverse human-generated records.

While there are no particularly efficient meth-
ods to crowdsource the production of a human-
generated dataset, we started by designing a
straightforward contribution process to promote re-
mote contributions. This was inspired by the previ-

ous in-person dataset generation sessions organized
during the previous thesis work supported by Out-
Systems [1].

For this thesis work, we required contributors to
return their paper copies in case something went
wrong with the photo-taking task that was re-
quested. This cautious request proved to be appro-
priate, considering that the returned physical copies
of hand-drawn sketches were used to fine-tune the
pre-processing tool, as will be explained later on.

After receiving photos from all volunteers,
we summarized all contributions by assigning
a unique ID to each volunteer and counting
the total of sketches uploaded. This sum-
mary was then used to organize our human-
generated dataset.  All uploaded images were
renamed following the same hierarchical ra-
tional of batch, user ID, and sketch ID (e.g.,
BATCH_000001-USER_000019-SKETCH 000037 . png).
Streamlined, structured and clear filenames are cru-
cial for many of the tools implemented throughout
the pipeline.

Having the human-generated dataset organized
by batch, user, and sketch, we proceeded with a
sequence of two pre-processing steps before the la-
beling task. First, all photos were rescaled to a
standard size of 1200 by 900 pixels, which corre-
sponds to the average OutSystems UI screen tem-
plate resolution. Secondly, a binarization step was
embedded into the pre-processing script using the
method by Sauvola, in an attempt to remove noise
and preserve a pure white background where the
hand-drawn lines are black. Finally, after all con-
tributions were organized and pre-processed, it was
possible to proceed with the labeling task using a
graphical image annotation tool called Labellmg.
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Figure 2: Resizing and binarization pre-processing
results (photo file renamed from IMG_1405. jpeg to
BATCH_000002-USER_000005-SKETCH_000006 . png.

Labeling a dataset using this tool consists of
opening each image from the dataset, drawing a
bounding box around each object, and selecting the
corresponding class.

After the labeling task was completed, a sum-
mary of all volunteer contributions was prepared,
containing the total amount of produced and la-
beled sketches per volunteer, adding up to over 1000
sketches.



However, the latest YOLOv5 version, used in this
thesis, only supports the state-of-the-art YOLO an-
notations standard, which provides an individual
text file per image with the same name correspond-
ing to the intended image.

In order to convert Labellmg Pascal VOC anno-
tations into the YOLO format, we used a Python
script that requires a class.txt file describing all
classes and converts XML annotations exported
by Labellmg (on which all bounding boxes are
given by <xmin>, <ymin>, <xmax>, and <ymax>) into
TXT files following the YOLO format (given by
x_center, y_center, width, and height).

After converting all annotations into the YOLO
format, a review of the labeling process was con-
ducted by inspecting each annotated sample using
a tooled called Roboflow [6]. This tool provided
an important insights for this thesis work using
its Dataset Health Check feature, which shows how
many elements of each class there are and provides
an intuitive visualization of class balance or imbal-
ance, shown in Figure 3.
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Figure 3: Nlustration of the proposed approach for
computer-generated sketches, where the elements of
the Admin Dashboard screen template are replaced
with their respective hand-drawn representation.

3.4. Computer-generated Dataset

While producing a human-generated dataset is key
to achieve the best object detection results, creat-
ing a larger and realistic dataset in a timely man-
ner requires an automatic dataset generation tool.
After the laborious task of collecting over 1000
unique hand-drawn sketches, and manually label-

ing over 14,000 elements one by one, a dataset gen-
erator was developed following the sketchification
approach with slight contextual adjustments.

The general idea of this approach, shown in Fig-
ure 4, is to take advantage of the cumbersome label-
ing task, by replacing the elements in the UI with
their correct hand-drawn representation.

My Requests = Hh [NSNEE
4 5 ® v ) iﬂg@ w2 Q@ wH2 @

Last Submited W WY [Lenic)

o6
Y
‘ i
\
i |
|
|

L
@
e

Figure 4: Nlustration of the proposed approach for
computer-generated sketches, where the elements of
the Admin Dashboard screen template are replaced
with their respective hand-drawn representation.

Eventually, the sketchification approach can also
be combined with data augmentation techniques
and morphological operations. The higher the num-
ber of labeled hand-drawn UI elements from the
human-generated dataset, the higher the number of
possible combinations in new computer-generated
screen templates. By randomly combining different
sources of Ul elements in each screen template, a
distinct and realistic dataset can be generated.

After having a significant number of representa-
tions for each Ul element, which were hand-drawn
by different people, it is possible to massively gen-
erate realistic dataset samples.

Therefore, our implementation of this dataset
generator starts with an element cropper that ex-
tracts each labeled UI element from the human-
generated dataset and organizes them into folders,
each corresponding to a single class.

3.5. Object Detection Model

Our object detection model serves a simple role in
the implemented pipeline: it receives a hand-drawn
sketch as input and extracts all the features of the
image, namely the class and position of the objects.
Therefore, the object detection stage is the central
stage of the implemented solution, considering that
all further pipeline stages rely on its output.

While region proposals are one of the most com-
mon approaches to localize objects and has very
good performance, it requires multiple stages, such
as generating region proposals, extracting features
with a CNN;, classifying, and generating bounding
boxes, making it computationally expensive.

The You Only Look Once (YOLO) algorithm fol-
lows a one-step framework approach, which usually
allows significantly more efficient computing times
and maintains high accuracy levels.



This approach consists of feeding a given hand-
drawn sketch into the YOLO network, which then
outputs a set of bounding boxes coordinates asso-
ciated with their respective class and confidence
level for each detected object. From its first it-
eration, YOLOv1, which was based on Darknet
and built into C, to its fifth and fastest iteration
yet, YOLOv5, YOLO has improved its architec-
ture, currently providing the highest detection ac-
curacy and the fastest inference speed of all itera-
tions, making it the ideal choice for our pipeline.
In addition, YOLOV5 is written in Python instead
of C, making the installation and integration pro-
cesses easier from the official Ultralytics’ GitHub
repository.

Our YOLOv5 implemented pipeline includes all
necessary steps to build, train, and test our model.
Essentially, it consists of five main steps imple-
mented in Google Colaboratory that will be re-
viewed in this section: 1) install YOLO and im-
port our dataset from the previous pipeline stage,
2) configure our custom model, 3) connecting Ten-
sorboard and WandB to plot metrics, 4) train our
model, and 5) validate and test our model’s accu-
racy and perform detections on unseen samples for
further qualitative analyses.

Google Colaboratory is an online Integrated De-
velopment Environment (IDE) that supports aca-
demic research and learning on AI. Colab provides a
code environment similar to Jupyter Notebook, and
supports Graphics Processing Unit (GPU) acceler-
ation. It also supports the most important libraries
for deep learning research work, such as PyTorch,
TensorFlow, Keras, and OpenCV.

Because machine learning tasks and deep learning
algorithms require good hardware processing power
(usually based on GPU), most desktop computers
are not ideal to train a model. However, the Colab’s
GPU acceleration (Tesla T4 architecture) is an un-
deniable offer, considering that these are some of
the highest performing GPUs.

All in all, our model was trained by compiling
and running the train.py file according with the fol-
lowing configurable arguments:

e Image size: 1200 (width).

e Rectangular images: True.

e Batch size: 16.

e Epochs: the number of training iterations.
e ——data: dataset path ../data.yaml.

e ——cfg: configuration of our model described in
a YAML model configuration file.

e —-name: model name to be displayed and even-
tually saved.

3.6. Spatial Grouping Algorithm

The ultimate goal of the implemented pipeline is to
generate the code of a sketched interface that re-
spects the principles of the OutSystems UI frame-
work, a low-code framework for web and mobile ap-
plications.

A flexible and effective approach is to leverage the
established web standards for creating user inter-
faces. With HTML and CSS it is possible to build
any layout for an app, making it responsive and
user-friendly. User interfaces created with HTML
and CSS look usually sharper than their counter-
parts thanks to the specialized rasterization engines
of modern web browsers.

This approach is especially important not only
because our model supports media Ul elements such
as images, videos, and charts, but also because
styling the generated app according to OutSystems
UI framework requires us to match the established
design of each Ul element.

Once the model outputs the detection results con-
taining classes and positions of all elements in a
sketch, generating the corresponding Ul requires a
code generation step that transforms the drawing
primitives into a purposeful and spatially organized
mock-up. A simple approach would be to straightly
generate each Ul element as a floating HTML ele-
ment. However, this approach would compromise
the appearance and overall functionality.

The nature of HTML and CSS formatting entails
several visual deformations due to the lack of a hi-
erarchical structure in the object detection model
output. In order to display the UI elements cor-
rectly, for instance a Header-1 and an Image side
by side, they first need to be embedded into a con-
tainer, so that CSS properties can be changed to
position elements accordingly.

The first phase consists of testing horizontal in-
tersections with edge-to-edge bounding boxes. If
no intersection is possible the edge-to-edge group is
closed, we conclude that there are no elements side
by side, and proceed to check with all other UI el-
ements. In case an intersection is found, then we
create a group and try to intersect it as a whole
with other horizontally aligned elements, if any.

During the second phase of this algorithm, we
proceed to test vertical intersections within major
horizontal groups, so that vertically aligned ele-
ments can coexist properly.

This is evaluated by expanding each element’s
bounding box from top to bottom and intersecting
it with all other elements in the horizontal group.
If no intersection is found, then we close the group,
save it and proceed to find groups with the next
UI elements. Otherwise, we adjust the CSS flex
property to align the elements within the identified

group.



3.7. Code Generation

The last stage of this thesis is a code generator,
which will allow us to render the sketched user in-
terface after going through all pipeline stages. As
covered in the previous section, once our object de-
tection model outputs the drawing primitives and
a hierarchy is inferred by our spatial grouping al-
gorithm, a domain-specific language (DSL) will be
generated.

Our code generator, written in React and Type-
script, parses the DSL and generates the same
structure following teleport HQ’s User Interface Def-
inition Language (UIDL).

This UIDL is also a universal format that can
describe all the possible scenarios for a given user
interface, thus allowing us to generate the same user
interface with various tools and frameworks, tran-
sition technologies without effort, and provide pro-
grammatic manipulation. All in all, it is a human-
readable JSON document, which is supported na-
tively by most programming languages.

The first building block of the UIDL structure
is called a UIDLNode, which serves as a root for
further nodes. Depending on each element’s pur-
pose, the node may be static, dynamic, element,
conditional, repeat, slot, and nested-style.

4. Results

This section exhibits the overall performance of the
implemented pipeline, focusing on the object detec-
tion performance metrics. The analysis of the re-
sults covers different experiments with our YOLOv5
model for human- and computer-generated datasets
and also dives into the impact of early pipeline
stages on the object detection results.

Both datasets are structured to be used for train,
test, and validation using YOLOv5. Google Colab
provides access to powerful GPUs, which is criti-
cally important to accelerate the train, so we de-
cided to implement our model in Colab, following
the existing Ultralytics notebook [8].

A suitable number of training epochs was chosen
to train our model with a custom dataset without
exceeding Google Colab’s usage quotas.

Due to the training time constraints imposed,
the parameters of training the YOLOv5 model were
limited to an image size of 1200 pixels, a batch size
of 30 samples, and a total of 200 epochs. Each fold
took 27 to 39 minutes to train.

In order to provide a fair comparison between
the performance of different folds of the human-
generated dataset, the splitting task followed the
same consistent approach, focusing on the impor-
tance of keeping the most diverse styles of hand-
writing and hand-drawing apart, thus avoiding
overfitting scenarios.

4.1. Quantitative Results

A quantitative analysis of key performance metrics
is crucial to evaluate our model’s performance. The
most relevant and commonly used evaluation met-
ric for object detection algorithms is mean average
precision (mAP).

In this section, we present the results for both
the validation and the test sets of our human- and
computer-generated datasets. For the 5-fold cross
validation approach we present the accuracy results
for the average of all folds.

We considered three different types of loss from
YOLO: box loss, objectness loss and classification
loss. The box loss represents how well the model
can locate the center of a Ul element and how well
the predicted bounding box covers the entire hand-
drawn representation. Objectness loss is a measure
of the probability that an object exists in a pro-
posed region of interest. If the objectivity is high,
it means that the image window is likely to contain
a Ul element. Finally, classification loss evaluates
how well the model predicts the correct class of the
sketched UI elements.

We used early stopping to select the best weights.
All bounding box losses are calculated by mean
square loss, and the classification loss is calculated
by cross-entropy loss. The x-axis represents epochs
in all figures and the y-axis corresponds to the title
of each sub-figure.

4.2. Human-generated Dataset

For the five folds of our human-generated dataset,
the model improved swiftly in terms of precision,
recall, and mean average precision before plateau-
ing after about 200 epochs. The box, objectness
and classification losses of the validation data also
showed a rapid decline until around epoch 200.

Besides analyzing the overall results for all folds,
it is important to discuss the element-wise perfor-
mance of the model to understand which elements
are leading to better results or hurting the perfor-
mance.

The confusion matrix shown in Figure 7 is rep-
resentative of the element-wise performance of the
trained networks. Most elements have excellent per-
formance, considering that the predictions are cor-
rect between 91% and 100%. This specific visual-
ization was extremely useful for fine-tuning UI el-
ements representations. The overall scenario was
significantly different when representations were not
distinctive enough.

One of the issues that was identified earlier was
related with images noise after the pre-processing
binarization operation. Sometimes, little scratches
or even shadows from the back-page are visible and
binarized as Text elements.
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Figure 5: Confusion matrix for all 16 classes and
background false negatives of fold 1.

This means that our model predicts a significant
amount of Text elements where, in fact, there are
no elements drawn at all (nearly 72% of image back-
ground false positives). The detailed analysis of this
issue is mainly qualitative, so we will cover it in the
next section.

Table 1 presents the results for the 5-fold ap-
proach followed for the human-generated dataset.
This table presents the accuracy results for the test
set.

We focused on three key performance metrics:
precision, recall, and two mean average precision
(mAP) values over different IoU thresholds (up to
0.5 and from 0.5 to 0.95). We also included how
many samples of the 1,003 human-generated sam-
ples were present in the validation and test set (con-
sidering that they represent around one-fifth of the
dataset) and how many samples of each UI element
are present in those images. In spite of the overall
good results, it is clear that underrepresented ele-
ments show inferior results (e.g., Slider and Check-
bozx).

4.3. Computer-generated Dataset Results

The main issues with the human-generated dataset
results are the pen scratches identified as Text el-
ements and the underrepresented classes, like the
Slider and Checkbox elements, that are more rare
in the dataset.

Figure 6 shows the main differences between
human- and computer-generated datasets when it
comes to the distribution of the number of images
per class, the distribution of bounding boxes aspect
ratios, and the distribution of bounding boxes cen-
ter coordinates (z, y) for both datasets.
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Figure 6: Distribution of the number of images per
class, bounding boxes aspect ratios, and bounding
box center coordinates (z, y) for both datasets.

The computer-generated dataset allowed us to
create a more even distribution of elements, thus
duplicating the human-generated dataset size to a
total of 2000 samples.

The total of elements per class, however, was not
duplicated across the board, as we used OutSys-
tems Ul screen templates to create these samples
and some classes are naturally more present in real-
world user interfaces, sometimes appearing repeat-
edly in an application.

Besides adjusting the number of represented
classes, the use of a dataset generator based on
screen templates compromised the diversity of
bounding boxes aspect ratios and their distribution.

The confusion matrix shows that the issue with
background false detections as Text elements re-
duced by over 55%, as the computer-generated sam-
ples do not include as much noise as real human
hand-drawn samples.

This was an important breakthrough to our
model, but the overall accuracy was still not perfect
and the results suggest that the class equilibrium
need to be improved. All underrepresented classes,
like the Pagination, Slider, and Video Ul elements,
still have inferior results to over-represented classes.

While data augmentation operations were used to
increase the representations and worked brilliantly
for some, they are not as effective for some repre-
sentations.

As an example, the straightforward representa-
tion of the Icon element can be easily augmented
with several data augmentation operations without
compromising its legibility.



Table 1: Average 5-fold cross validation results for the human-generated test set.

Classes Images Labels Precision Recall mAPQ.5 mAP@Q.5:.95
Image 201 218 0.9568 0.9782 0.988 0.837
Video 201 30 0.9182 0.7096 0.814 0.584
Icon 201 182 0.965 0.9908 0.990 0.650
Table 201 84 0.99 0.8234 0.966 0.679
Input-text 201 158 0.899 0.9806  0.9534 0.715
Checkbox 201 33 0.878 0.9274 0.960 0.635
Textarea 201 44 0.9754 0.9168  0.9558 0.771
Button 201 331 0.9908 0.9976 0.994 0.776
Header-1 201 199 0.977 0.9644  0.9884 0.628
Header-2 201 349 0.9566 0.984 0.984 0.6316
Dropdown 201 59 0.928 0.874 0.9094 0.6974
Text 201 985 0.955 0.9878 0.990 0.613
Link 201 63 0.885 0.9846 0.982 0.709
Slider 201 43 0.8164 0.5533 0.714 0.507
Chart 201 84 0.928 0.9792 0.982 0.7494
Pagination 201 36 0.9152 0.8156 0.850 0.5394
All Classes 201 2898 0.933 0.9042 0.939 0.6704

However, more meticulous representations that
include text and small details are more difficult
to augment. The solution to improve the results
for both datasets is, thus, collect more human-
generated samples and manually label them.

The box, objectness and classification losses of
the validation data also showed a rapid decline until
around epoch 200.
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Figure 7: Confusion matrix for the model trained
with a computer-generated dataset and tested with
the human-generated dataset.

Table 2 presents the performance metrics of pre-
cision, recall, and two mAP values over different
ToU thresholds (up to 0.5 and from 0.5 to 0.95) for
this model trained with computer-generated sam-
ples and tested with human-generated sketches.

4.4. Qualitative Results

Evaluating the performance of our model required
more than discussing and analyzing YOLO’s quan-
titative metrics. In fact, qualitative results were
just as important to find opportunities for improv-
ing our model, fine-tune our elements representa-
tions, adjust the model hyperparameters, and mod-
ify our data augmentation stages.

Throughout the implementation of this thesis, a
continuous qualitative evaluation was pursued to
better perceive the performance of our object de-
tector in real-world scenarios.

The approach followed to evaluate the qualitative
results consisted of exporting the predicted labels
by printing the model primitives as bounding boxes
onto with their corresponding class onto the image.
As shown in Figure 8 this was done by comparing
the ground-truth labels printed onto the input im-
ages and the predicted labels.

Figure 8: Example of an accurate detection per-
formed by the model.

The qualitative analysis of our object detection
results show that there are two important issues to
be considered. The first is related to the aspect ra-
tio of the represented UI elements and the second
is related to the pre-processing stage of the imple-
mented pipeline.



Table 2: Detection results for the test set for the human-generated test set.

Classes Images Labels Precision Recall mAPQ.5 mAP@Q@.5:.95
Image 400 529 0.971 1 0.995 0.877
Video 400 10 0.964 0.9 0.986 0.689
Icon 400 1088 0.996 1 0.996 0.85
Table 400 184 1 0.979 0.995 0.855
Input-text 400 366 0.987 0.992 0.993 0.798
Checkbox 400 12 0.993 1 0.995 0.759
Textarea 400 137 0.996 0.993 0.995 0.868
Button 400 459 0.994 0.989 0.995 0.813
Header-1 400 299 0.979 0.983 0.992 0.769
Header-2 400 368 0.953 1 0.994 0.671
Dropdown 400 135 0.993 0.993 0.995 0.756
Text 400 1568 0.964 0.998 0.996 0.665
Link 400 146 0.934 1 0.995 0.821
Slider 400 12 1 0.804 0.938 0.562
Chart 400 169 0.973 0.994 0.991 0.66
Pagination 400 24 1 0.667 0.932 0.642
All Classes 400 5506 0.981 0.956 0.986 0.753

This low confidence score is due to the aspect
ratio variability of some elements in hand-drawn
sketches that are not similar to any OutSystems Ul
screen template. Although it may seem straight-
forward to match a very wide representation of an
element with a regular one, it requires more train-
ing over more diverse sketches and, thus, a larger
dataset. The example shown in Figure 9 presents a
lower confidence score for the Image element, but
it is still high enough to surpass the 0.5 threshold.
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Figure 9: Example of an unusually wide Image ele-
ment that is not above the 0.5 threshold.

Figure 10 shows the second issue of some of our
detections, which is related with the low quality of
the input image. The first example shows a low
confidence score for the Table element and the sec-
ond example shows that the Button and Table ele-
ments are almost imperceptible, making the confi-
dence score below the 0.5 threshold.
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Figure 10: Example of two missing detections of a
Button and an Image due to pre-processing issues.

This issue is due to the discrepancy of light, bril-
liance, shades, and saturation across different users’
photos. In this specific case, the the original pho-
tos was shaded, meaning that a significant image
brightness decrease from the center to the corners
was present, therefore influencing the image quality
by creating unwanted dark or shaded edges that the
pre-processing algorithm is then unable to binarize
correctly. A significant variation of colors over the
imaging field may occur due to the camera used by
the user having a small sensor.

In order to achieve better results, several ap-
proaches were tested during the implementation
of our pipeline, namely skeletonization and recon-
struction based on graph morphological transfor-
mations [7], but these techniques were only success-
ful in a limited small group of images that did not
present too much noise.



5. Conclusions

This thesis was developed on the premise of con-
ducting a successful pioneering research project to
introduce a novel approach which explores how
the state-of-the-art computer vision algorithms can
be used for code generation from hand-drawn UI
sketches.

We propose an automatic tool, based on machine
learning, that converts hand-drawn UI sketches into
code and eventually generates the actual U, hence
availing the agile experimentation afforded by hand-
made sketches.

More specifically, the proposed solution pipeline
consists of a software tool that identifies the
sketched elements using computer vision, evalu-
ates their hierarchy, and finally generates the cor-
responding UI.

The proposed solution maximizes the efficiency
of the design process and consequently shortens the
SDLC of software applications, which not only im-
proves the manageability, objectivity, and control of
projects, but also reduces time-to-market and cost-
to-market of applications, delivering meticulous and
more substantial solutions in a shorter time.

Automatic Ul generation has been building mo-
mentum in software development and continues to
drive start-ups focused in this field of research.
However, it is far from mature. Some ideas, which
emerged from the development of the proposed so-
lution, might encourage future pioneering research
projects in this field, namely: evolving the YOLOv5
hyperparameters to control the training, avoid over-
fitting, and find optimal values, hence improving
the computer vision results; testing and analyzing
the results of YOLOv5 for video frames coming
from a continuous stream, in order to take full ad-
vantage of real-time automatic Ul generation; im-
proving the heuristics to better infer the hierarchi-
cal structure of hand-drawn UI elements from ab-
solute positions identified by the computer vision
model; exploring more code generators and APIs
that take an agnostic hierarchy of spatially arranged
elements to generate a final Ul; and implement-
ing an optical character recognition system to avoid
static placeholders (e.g., buttons action text, search
field suggestion placeholders, text labels, headers,
etc.).
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