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Abstract

This work focuses on the thermal simulation capabilities of SOL using an immersed boundary method.
In particular, on the interpolation of the relevant variables from the original solid boundary to the IB one.
Two schemes for interpolation are studied, capable of imposing both temperature and heat flux tem-
perature boundary conditions. The schemes are then verified for low-Reynolds 2D Taylor-Couette flow
problems with heat transfer, while also having their theoretical order of accuracy verified. A mesh robust-
ness study is conducted across both schemes and boundary conditions, using triangular, quadrilateral,
and hexagonal meshes verifying full capability at handling these grid topologies. The methods are also
employed in simulations using hybrid meshes, where the least squares interpolation method capabilities
are demonstrated. This methodology proves that the linear method lacks the robustness necessary to
handle grids with arbitrary connectivity. The least squares interpolation method was also used to simu-
late flow over a cylinder with heat transfer, employing sampling of Nusselt numbers across the surface of
the solid boundary. After an enhancement was developed and introduced to the Neumann interpolation
method, the achieved results were concordant with the relevant literature and with the body fit simulations
developed in SOL as a benchmark. Overall, this work verifies SOL for heat transfer Taylor-Couette flow
simulations using the immersed boundary method for up to second order both for Dirichlet and Neumann
boundary conditions. Furthermore, it proved capable of solving more complex boundary heat transfer

problems, with a Nusselt number evolution comparable with the literature.
Keywords: IB-Method, CFD, Heat Transfer, Interpolation Methods, Order of Accuracy

1. Introduction

Following the tendencies of the CFD branch,
the objective of the present work is to explore and
implement IB methods for conjugated heat prob-
lems in a pre-existing CFD software developed by
LASEF at Instituto Superior Técnico. An exten-
sive amount of published work was developed us-
ing this software, named SOL, but a brief descrip-
tion of its functioning as well as its capabilities is
featured in the following chapters. Published work
developed using SOL can be seenin [1, 2, 3].

The aim of this master thesis is to enhance and
improve the 1B method functionality of the software
developed at LASEF - SOL. This projects consists
of several implementations, tests, evaluations and
verifications. These contributed to three major as-
pects: new capabilities of SOL, increased robust-
ness of the code and further debugging of the soft-
ware.

2. Background
The immersed-boundary method is becoming
very popular among the CFD community as it al-

lows for the solution of more complex problems.
This complexity can come from the geometry of
the solids — the more complex the geometry, the
harder it is to compute the mesh for the solid —
or the movement of the solid body — if the body
is moving within time, its boundaries are changing
position within time requiring a remeshing process
at each time step iteration. [4, 5, 6]

When using the IB method, cells that contain
only fluid are isolated from the rest of the do-
main. This division of the fluid domain forms the IB
boundary — a delimitation of the shape of the solid
following the trends of the mesh, independently of
its type. The IB boundary will outline the IB cells
and the solid domain. IB cells are cells that contain
the interface solid-fluid. Figure 1 depicts a generic
IB boundary considering a random solid geometry
in 2D.
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Figure 1: Generic representation of a 2D random solid geome-
try and its correspondent IB boundary.

The implementation of the IB method requires
two major steps. The first step is when the en-
tire mesh is analysed and the 1B boundary is de-
termined. Here, the fluid cells are isolated from
IB cells (cells that contain vertices both in the fluid
and solid domains) and solid cells. After the de-
termination of the IB boundary, comes the second
step of the IB method which is the transport vari-
ables interpolation from the solid surface boundary
to the IB boundary. When using the IB method, the
boundary conditions needed for solving the fluid
bulk must be imposed at the IB boundary. Inter-
polation methods have to be used for the boundary
conditions of the solid.

3. Interpolation Methods
3.1. Linear Method for Dirichlet Boundary Condi-
tions

To linearly interpolate the temperature at the im-
mersed boundary a ratio of distances must first be
defined.

dy

=4 (1)

Where d; and d, are defined as the distance
from the IB face center to the fluid cell center of
the cell containing the 1B face and as the distance
between the IB face center to the closest solid
material point, respectively. These distances are
schematized in Figure 2.
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Figure 2: Definition of distances and location of interpolated
values used in linear interpolation method for Dirichlet boundary
condition.

The temperature at the IB face center can now
be obtained with a weighted average using the cal-
culated distance ratio.

Ty =Tc(1 —n) +nT; (2)

Where T is the interpolated temperature at the
IB face center, T. is the temperature at the fluid
cell center which includes the IB face and T is the
temperature at the closest solid point. These tem-
peratures are also schematized in Figure 2.

3.2. Linear Method for Neumann Boundary Condi-
tions

To linearly interpolate the temperature gradient
at the immersed boundary the same ratio of dis-
tances defined on Equation 1 will be utilized.
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Figure 3: Definition of vectors and locations used in the linear
interpolation method for Neumann boundary condition.

Figure 3 shows the vectors required for this inter-
polation. V. represents the temperature gradient
at the fluid cell center, 7i;p is the unit length vec-
tor normal to the IB face pointing outwards from
the solid body, and 7isorrp is the unit length vec-
tor normal to the solid body pointing outwards from
the solid body.

Furthermore, two intermediary variables will be
needed, ¢, and ¢. , which are defined as follows:

¢s =V - 7B

(3)

dr

dn ] SOLID

(4)

¢c = (firB - isoLip) X {
Where [4L] ., ., is the value of the normal
temperature gradient at the solid boundary, this is,
the Neumann condition being imposed at the solid
boundary.

Finally, the value for the temperature gradient at
the IB face center is calculated with a weighted
average using the calculated distance ratio in an
analogous manner to the linear temperature inter-
polation of Equation 2:

b5 = ¢e(l = 1) + 105 )

Where ¢ is the temperature gradient for the 1B
face center.



3.3. Least Squares Interpolation Method for Dirichlet
Boundary Conditions

This section details the methodology employed
to interpolate a boundary condition for the IB face
from an imposed temperature (Dirichlet BC) on the
solid boundary, using a least squares methodology.
The number of points considered varies depending
on the local geometry. However, a generic situation
is presented in Figure 4, where 5 neighbouring fluid
cell centers, 4 IB face centers and 3 solid points are
shown.
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Figure 4: Schematic of relevant points for creation of the stencil
in a generic face f.

In this case, the calculation of the value in face
f, ¢¢, uses a stencil consisting of 5 fluid cell (red
dots) and 3 solid points (black dots). Each of these
points represents a value for the temperature. No
values from IB face centres are used for the inter-
polation.

A quadratic polynomial is now created for each
point in the stencil, following the form:

¢ =Bo+ Bz + Boy + Bz + Bay® + Bszy  (6)

Where the coefficients 3,, are determined by the
least square method and z and y represent the
points’ coordinates in the simulation’s referential.
In matrix form, this equation can be written as: ¢ =
M3 where § = [0, A1, B2, B3, B4, 5] and M :

1L oz oy 2 yi =
1 2o Y2 =3 y5 Tays
M= . (7)

Following the least squares method, minimizing
the square of the difference between the values
considered at each point corresponds to minimiz-
ing the value of [|¢ — MB]||>. Following the works
of Kariya and Kurata [7] this minimization occurs
when the calculation of the vector g is performed
as follows:

B= (M. M) M7 ®8)

After the § vector has been calculated, ¢; can
be directly calculated using Equation 6.

3.4. Least Squares Interpolation Method for Neu-
mann Boundary Conditions

This section details the methodology employed
to interpolate a boundary condition for the IB face
from an imposed temperature gradient (Neumann
BC) on the solid boundary, using a least squares
methodology.

The same generic detail of the IB cut presented
in Figure 4 is considered. However, a new ref-
erential is used, centered on the solid point and
using the solid points normal direction (vector V,,)
pointing outwards as the z direction and the tan-
gential body direction (vector V,) as the y direction,
as schematized in Figure 4. All points considered
in this section use this referential.

In the generic case presented, 5 neighbouring
fluid cell centers and 3 solid points are considered.
The same quadratic polynomial as presented in
Equation 6 is used for all fluid cell center points.
However, the value inherited from solid points is a
temperature derivative, forcing that the quadratic
polynomial in Equation 6 must be differentiated
with respect to z , the normal body direction, re-
sulting in equation 9.

¢ =B+ 205 + By 9)

Thus, the main difference from the methodology
employed for Dirichlet boundary condition lies in
the construction of matrix Myecumaenn @S S€€N IN
Equation 10.

1z oy 27y ;]
1z w2 3 Ys  Tays
— ’ .2 2
MNeumann = |1 LTn  Yn T, Yn Tnln
0 1 0 2%p11 0 Ypyt
_O ]. 0 2(En+m 0 yn+m_

(10)

Where n is the number of fluid cell centers in

the stencil and m is the number of solid points in

the stencil. Solving Equation 8 allows for the direct
calculation of ¢, using Equation 9.

4. Taylor-Couette Problem
In order to perform the tests required, a
physics problem geometry consisting of the two-
dimensional flow between two cylinders was de-
fined in SOL. This problem is also called a Taylor-
Couette flow problem. All simulations in this
chapter were conducted in stationary conditions,
and meshes used in this chapter were hexagonal
meshes.
The fluid domain in this problem corresponds to
the space between the outer most cylinder with ra-
dius Ry = 1 and and the inner most cylinder with



radius Rsorrp = 0,5. The outer most cylinder is
stationary while the inner most cylinder is rotating
with a constant angular velocity, up = 1rad/s in an
anti-clockwise direction.

Regarding the temperature field; a Dirichlet
boundary condition is applied on the outer wall,
which is maintained at 7, = 0. The boundary con-
dition at the inner circle varies between different
simulations. When a Dirichlet condition is applied,
it has a value of Tsor;rp = 1. When a Neumann
bgundary condition is applied, it has a value of
[%]T:RSOLID

All Taylor-Couette simulations conducted use
Pr=1and Re =0, 25.

After this physical domain is fully defined, the an-
alytical solution for both velocity and temperature
fields are implemented in SOL. This allows for the
calculation of analytical errors for both the velocity
and temperature fields given by each simulation.

4.1. Linear Method Results and Discussion
This section relates to the results for the temper-
ature field obtained using the linear interpolation
methods. Figure 5 shows the observed behaviour
of the mean error for a mesh refinement study.
Table 1 represents the observed orders of accu-
racy for the linear interpolation methods, obtained
in an analogous manner to trend line methodology
used for the velocity field.

Table 1: Observed order of convergence using the linear inter-
polation method for both boundary conditions.

Linear

Imposed Temperature 088
(Dirichlet BC) ’
Imposed Temperature Gradient

(Neumann BC) 1,20
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Figure 5: Error decay of the mean temperature error for a
Taylor-Couette flow simulation.

Both schemes’ observed order of accuracy are

within an acceptable variance of the expected
value of 1. The method for imposed tempera-
ture, despite having a deviation of 12% from the
expected value, has lower analytical error in all
considered meshes than the imposed temperature
gradient method, despite it's considerably higher
observed order of accuracy. The higher difference
in the schemes’ response for coarser meshes also
points to the cause of the variance in order of ac-
curacy. Since these methods present first degree
order of accuracy, a mesh refinement study for a
physical problem with coupling of the thermal and
velocity fields would lead to a decrease of the ve-
locity field calculation’s order of accuracy. To ad-
dress the need for a higher order thermal inter-
polation method, the least squares interpolation
method is studied in the following section.

4.2. Least Squares Interpolation Method Results and
Discussion

This section relates to the results obtained us-
ing the least squares interpolation method for the
interpolation of the thermal boundary conditions at
the 1B boundary.

Figure 6 shows the resultant behaviour and Ta-
ble 2 shows the observed order of accuracy.
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Figure 6: Error decay of the mean temperature error for a
Taylor-Couette flow simulation with least squares interpolation
method at the IB for Neumann and Dirichlet boundary condi-
tions.

Table 2: Observed order of convergence using the least
squares interpolation method for both boundary conditions.

Least Squares

Imposed Temperature 209
(Dirichlet BC) ’
Imposed Temperature Gradient

(Neumann BC) 1,85

The least squares interpolation method’s results
present a similar situation to the linear methods’
results since both boundary conditions’ observed
order of convergence have a maximum deviation



of 7.5% from the theoretical value of 2. This max-
imum deviation occurs for the Neumann boundary
condition. The overall analytical error is an entire
order of magnitude below that of the linear interpo-
lation methods for most of the considered meshes,
as is expected for higher order schemes. The least
squares interpolation method also has a reason-
ably lower error when imposing temperature gra-
dient rather than temperature. This difference is
believed to be due to the gradient being able to im-
mediately be implemented in the diffusive scheme
and the temperature requiring an additional calcu-
lation. This hypothesis will be studied further in
subsequent chapters.

5. Mesh Geometry Robustness Study

Testing the current capabilities of SOL at han-
dling heat exchange over an immersed boundary
using several different types of mesh and levels of
refinement presents a invaluable opportunity to as-
sess the robustness of both the interpolation meth-
ods developed and implemented.

SOL’s response to this kind of testing can indi-
cate both limitations in some methods’ mesh han-
dling and other methods’ capabilities at solving the
same problem. This knowledge enables an advan-
tageous starting point for future simulations being
employed using the optimal approach and optimal
interpolation methodology selection.

All simulations in this chapter follow the same
methodology described in Section 4 for the Taylor-
Couette physical problem.

5.1. Structured Meshes

Three different types of structured meshes are
considered for testing. The first type of meshes
used are hexagonal, strictly structured in the fluid
domain. The second type of structured mesh em-
ployed are triangular meshes, with some small
variance in cell connectivity near the outer circle
due to the body fitted nature of the mesh in re-
gards to this outer boundary. The third and last
type of mesh considered are fully structured ra-
dial quadrilateral mesh. For all types of meshes
employed, three different levels of refinement were
considered, corresponding to three different char-
acteristic lengths.

5.1.1 Linear Interpolation Method Results and

Discussion

All results are obtained using the linear interpo-
lation method presented.
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Figure 7: Observed error decay with linear interpolation
method for various mesh types

Table 3: Observed order of convergence with linear method for
three different meshes and boundary conditions.

Triangular Quadrilateral Hexagonal
Imposed Temperature
(Dirichlet BC) 0.82 235 0.88
Imposed Temperature Gradient 0.88 1,83 1,20

(Neumann BC)

Figure 7 shows the observed behaviour for the
considered methods, across both bondary condi-
tions considered. Table 3 presents the observed
order of accuracy for all studies presented in this
section.

The mesh refinement studies conducted for the
linear interpolation methods demonstrate a slight
decrease in the observed order of accuracy when
using triangular structured meshes compared to
hexagonal ones, which is an expected result. The
higher computational power required to mesh a ge-
ometry using hexagonal cells is well documented
to improve accuracy of schemes over the easier
to mesh triangular geometries. The observed or-
der of accuracy for triangular meshes has a maxi-



mum deviation of 18% from the theoretical value of
1, which while considerable is compensated by a
much easier meshing process, as mentioned. [8]

The major outliers are the results obtained when
using quadrilateral radial meshes, where an ob-
served order of accuracy much higher than the
theoretical value of 1 is verified. Considering
the exceptional quality these meshes possess for
the current problem, as described in Chapter 5.1,
these values do not point to a particularly capable
scheme, but instead to a high sensibility to mesh
quality. This hypothesis will be tested using hybrid
meshes.

5.1.2 Least Squares Interpolation Method Re-
sults and Discussion

All results are obtained using the least squares
interpolation method.
Table 4 presents the observed order of conver-
gence for all studies presented in this section.

Table 4: Observed order of convergence with with least
squares interpolation method for three different meshes and
boundary conditions.

Triangular Quadrilateral Hexagonal
Imposed Temperature
(Dirichlet BC) 1.93 151 2,25
Imposed Temperature Gradient 178 228 1,85

(Neumann BC)
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Figure 8: Temperature field for a triangular mesh using least
squares interpolation method and a unitary Neumann boundary
condition

The mesh refinement studies conducted for the
least squares interpolation methods in this Section
demonstrate a slight decrease in the observed or-
der of accuracy when using triangular structured
meshes compared to hexagonal meshes, which is
an expected result which was also observed in the
behaviour of the linear interpolation methods.

The major point to note is the result obtained
when using quadrilateral radial meshes, where an
observed order of accuracy half an order lower
than the theoretical value of 2 is verified. This order
of accuracy is in fact lower than that registered for

the same meshes when utilizing a linear interpo-
lation method. Considering the exceptional quality
these meshes possess for the current problem, as
described in Chapter 5.1, this behaviour points to
a mesh geometry particularly optimal to implement
the linear interpolation method, which resulted in
an exceedingly higher order of accuracy than ex-
pected when using this method. Overall, these
quadrilateral meshes observed behaviour is con-
cordant with what was expected, with deviations
due to it's particularly good fitting to the current
physical problem and to linear interpolation meth-
ods.

It is worth noting that all three structured mesh
types considered can be reused for conjugate heat
transfer problems, with varying advantages. The
higher coarseness inside the IB boundary for the
hexagonal meshes would be of great value in con-
jugate heat transfer problems since the solid do-
main would represent a purely diffusive problem,
which coupled with the much higher typical ther-
mal conductivity of solids compared to that of flu-
ids leads to the lower need for mesh refinement
in this area. Complementarily, the radial quadrilat-
eral meshes’ internal boundary would be appropri-
ate to represent, for example, an imposed heat flux
typically associated with an electrical resistance,
running through a solid submerged in a fluid onto
which it is dissipating heat.

5.2. Hybrid Meshes

Hybrid meshes have a much wider range of con-
nectivity compared to the previously considered
structured meshes. While most elements on these
grids are quadrilaterals, triangles also occur, re-
sulting in the number of cells each vertex belongs
to varying, from 3 to 5. These meshes character-
istics lead to a higher difficulty for the interpolation
methods at the IB boundary to function at the ex-
pected order of accuracy.
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Figure 9: Example of a hybrid mesh used for robustness test-
ing. The IB boundary is represented in blue. The outer circle, a

body-fitted boundary, is represented in black




Five hybrid meshes of similar geometry but vary-
ing levels of refinement were considered. Figure 9
shows one such mesh, the second coarsest. This
figure also demonstrates the higher complexity of
the IB boundary.

5.2.1 Results and Discussion

Figure 10 shows the observed behaviour, and
Figure 11 presents the temperature field obtained
when utilizing a Neumann boundary condition and
a least squares interpolation method.
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Figure 10: Observed error decay with least squares interpola-

tion method for hybrid meshes
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Figure 11: Temperature field for a hybrid mesh using a least
squares interpolation method and an unitary Neumann bound-
ary condition

Table 5: Observed order of convergence in hybrid meshes.

Linear Least Squares
Imposed Temperature )
(Dirichlet BC) 0,37 1,59
Imposed Temperature Gradient 402 2.89

(Neumann BC)

Firstly, the results obtained when using the lin-
ear interpolation method show a complete lack of

sensitivity of the mean temperature error in regards
to mesh refinement, pointing to a high degree of
mesh sensitivity, as evidenced in Table 5. These
methods are not considered capable of handling
hybrid mesh geometries, and are discouraged from
being used outside of structured mesh types.

The least squares interpolation method shows
variable robustness when handling hybrid meshes.
When imposing a temperature gradient at the solid
boundary, the observed order of accuracy is in fact
higher than the theoretical value of 2. However,
when imposing temperature the observed order of
accuracy experiences a decrease of 21% regarding
the expected second order behaviour. It is known
that when the maximum error for the temperature
field has no variation across a mesh refinement
study, the order of accuracy of the mean error low-
ers by at least 1. The hypothesis that this phe-
nomenon is occurring was verified by analysing the
maximum error distribution.

Overall, the developed least squares interpola-
tion method for thermal interpolations at the im-
mersed boundary is robust and capable of handling
hybrid meshes. A boundary condition of imposed
temperature gradient (Neumann) appears to be the
optimal way to implement boundary conditions us-
ing this method.

6. Heat Transfer on the Surface of a Cylinder

The fluid domain comprises a rectangular geome-
try with one inlet on which flow enters the geome-
try with horizontal free stream velocity Uy = 1, null
vertical velocity and temperature 7, = 0 and one
outlet with p = 0 and null velocity derivatives. Both
bottom and top walls have a Ty 4. = 0 Dirichlet
boundary condition and no permeability, this is, null
vertical velocity.

All simulations conducted use Pr = 0.7 and

Re = 20.

Simulations utilizing the body fit approach are
also performed in this section as a means of
benchmarking the IB results.

The Nusselt number is calculated and sampled
along the cylinder boundary for both IB and body fit
simulations and is the variable of most importance
to the current study.

6.1. Dirichlet Results and Discussion

Figure 12 shows the resultant temperature field
across the entire fluid Domain when utilizing a
Dirichlet boundary condition on the cylinder sur-
face.



Figure 12: Detail of temperature field for cylinder with Dirichlet
BC using IB method and a mesh with h = 0.1.

13 compares the results from the most refined
mesh to the results obtained in SOL using a body
fit approach and to the literature data obtained by
Zhang in [9].
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Figure 13: Comparison of Nusselt number distribution over sur-
face of cylinder using IB method, Body Fit method and literature
data.

The IB results present a high concordance with
both the literature data and the body fit results. The
most noteworthy variance between the data is an
overshoot at the leading edge of the cylinder when
considering the 1B method, which also occurs with
the bodyfit approach with a lower magnitude.

A mesh with a bigger fluid domain size is consid-
ered to analyse confinement effects on the Nusselt
overshoot visible in comparison to the literature.
The simulation preserves all other characteristics
of the simulations performed so far in this section.
No improvement to the overshoot is verified.

6.2. Neumann Results and Discussion

Figure 14 evidences the non-symmetric flow resul-
tant from utilizing the existing Neumann interpola-
tion method in the simulation of the current physical
problem.

Figure 14: Detail of temperature field for cylinder with Neumann
BC using IB method with coarsest mesh.

Considering the unexpected and erroneous na-
ture of these results for all mesh refinements con-
sidered, no further results that utilize this Neumann
interpolation method for the IB boundary are pre-
sented. These results indicate an error is occurring
in the Neumann least squares interpolation method
used. Chapter 7 addresses this limitation.

7. Modified Neumann Interpolation Methods
7.1. IB Face Centered Referential

The previously defined method defines the main
point in the stencil as the main solid point. This
point is used as the origin of the referential, from
which all distances are measured and, more im-
portantly, it dictates the main directions, defined as
it's normal and tangent vectors.

Figure 15 demonstrates the new coordinate sys-
tem used, where ‘7”) and 7t represent the base vec-
tors of the new coordinate system, corresponding
in the relevant equations to, respectively, = and v.
Variables represented in this referential are identi-
fied by the subscript Local.
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Figure 15: Schematic of points and vectors for modified Neu-
mann interpolation method.

This reference system does not address the in-
herent error associated with assuming the solid
point normal vectors and the IB face normal vector
share the same direction. However, the main ad-
vantage in utilizing an IB face centered referential
lies in the much simpler calculation of the desired



variable: the temperature gradient at the IB face
center. Since the referential used has the main di-
rection defined by the normal unit vector to the 1B
face center, the gradient at this point can be directly
calculated in the direction of the IB face center nor-
mal.

7.1.1 Results and Discussion

Figure 16 shows the Nusselt distribution along the
cylinder when using a IB face centered Neumann
interpolation method using the finest mesh consid-
ered.
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Figure 16: Comparison of Nusselt distribution obtained using
IB method, a body fit approach and literature data.

Despite the method proving capable of achiev-
ing a solution macroscopically similar to that of
the body fit approach, a more thorough analysis
of the heat transfer across the surface of the cylin-
der, presented as the Nusselt distribution, demon-
strates that even for the most refined meshes a
substantial deviation from the expected results pre-
sented by the literature occurs. This methodology
is further improved in the next section.

7.2. Combination of Directional Derivatives

The previous methodology assumes that the IB
face center normal and the solid face normal vec-
tors share the same direction. The inability to ac-
count for the different vector directions lead to the
development of the methodology presented in this
section. To address this limitation, a weighted com-
bination of both derivatives is utilized. Each deriva-
tive’s relative weight is defined as the value of the
unit length vector upon which the temperature gra-
dient occurs, when defined in the local coordinate
system as defined in Section 7.1. Using this ap-
proach, each polynomial imposes the correct tem-
perature gradient, at the correct relative location,
imposed in the correct direction. Equation 11 de-
fines this process.

dr d¢+ do
=Ng— +ny—
dn T dx Y dy

(11)

where 7 is the unit length vector upon which the
temperature gradient is applied. The variables n,

and n,, correspond to the coordinates of vector 77
in the local coordinate system as defined in Section
7.1, as shown in Equation 12.

%} = (nma ny)Local

(12)

For the solid points considered in this work, 77 is
simply the outwards pointing unit length body nor-
mal.

7.2.1 Results and Discussion

The behaviour achieved with the addition of a com-
bination of directional derivatives to the Neumann
interpolation method grants a response of the lo-
cal heat transfer across the surface of the cylinder
with a much higher concordance to the literature
data. These results prove the postulated hypoth-
esis that the deviation from the literature data and
the body fit data was mostly due to the previous in-
terpolation not addressing the difference in normal
vectors direction.

Figure 17 compares the Nusselt distribution in
literature data from Zhang2008 [9], with the distri-
bution obtained using the IB method in SOL and
with the results achieved using a body fit approach
also using SOL.
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Figure 17: Nusselt distribution comparison of the results from
the IB method, a body fit approach and literature data.

The Immersed Boundary results utilizing the
combination of direction derivatives achieve a very
high concordance with the results also obtained in
SOL utilizing a body fit approach. However both
these methodologies differ from the literature data
at the leading half of the cylinder, culminating in
the leading stagnation point, where a slight over-
shoot, of approximately 12% for the IB method and
8% for the body fit method, occurs. This effect is
also observed for the Dirichlet results, and is be-
lieved to occur due to differing effects of confine-
ment when comparing the simulation obtained in
SOL from those conducted by Zhang in [9], be it
due to different domain size, or slightly different
boundary conditions.

The results indicate there are benefits in utilizing
Neumann boundary conditions instead of Dirichlet.



Figures 13 and 17 show a higher concordance with
the data obtained with the body fit methodology
when imposing heat flux.

8. Conclusions

The present work focused on the thermal sim-
ulation capabilities of SOL using the immersed
boundary method. The overall goal was to en-
able the software to simulate heat transfer prob-
lems using the IB method. In particular, the work
focused on the interpolation of the relevant vari-
ables from the original solid boundary to the IB
boundary. After this work, SOL is capable of han-
dling both imposed temperature and imposed heat
flux temperature boundary conditions across phys-
ical problems of varying complexity and using dif-
ferent mesh geometries.

Both linear and least squares interpolation meth-
ods were verified in both boundary cases using
analytical data for low-Reynolds 2D Taylor-Couette
flow problems with heat transfer, while also verify-
ing their theoretical order of accuracy.

An extensive study of the developed methods
was conducted using various types of structured
grids across a range of refinement. The code
showed robustness to variable mesh geometries
for both methods using Dirichlet and Neumann
boundary conditions.

Several simulations using hybrid meshes for
Taylor-Couette flow problems were also performed,
revealing an inability of the linear interpolation
method in handling grids with more irregular con-
nectivity. The same methodology was also used
to demonstrate the least squares interpolation
method’s ability to handle these mesh geometry.

The least squares interpolation method was
used in simulating flow over a cylinder with heat
transfer, employing sampling of Nusselt numbers
across the surface of the IB boundary. The same
physical problem was also simulated using a body
fit methodology, in order to obtain data also pro-
vided by SOL to use as benchmark for the IB
method’s results.

The Dirichlet boundary condition proved capa-
ble of achieving results that were in accordance
with both the literature and the body fit approach.
However, this study revealed that the least squares
interpolation method for Neumann boundary con-
ditions was not capable of handling this more
complex simulation. This Neumann interpolation
method limitation was addressed in two ways, by
changing the coordinate system used while con-
structing the stencil, and by enabling the imposi-
tion of temperature gradients upon any direction
by utilizing a combination of directional derivatives.
These alterations proved capable of resolving the
method limitations discovered, with the Neumann

interpolation method achieving results with high
concordance with the literature data and with the
body fit approach.

Overall, SOL was verified using analytical data
for heat transfer Taylor-Couette flow simulations
using the immersed boundary method for up to
second order across both Dirichlet and Neumann
boundary conditions, opening the possibility for fu-
ture work to implement fully conjugate heat transfer
problems.

The current work furthers the capabilities of SOL
such that future work may continue to expand upon
the 1B method range of operations.
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