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ABSTRACT
The diversification of areas where data science is present is leading

to the need for more qualified scientists. To counteract this, research

has shifted towards the automation of this workflow, namely with

the development of frameworks for automated machine learning

(AutoML). While these frameworks already bring great advance-

ments in some aspects of the pipeline, the data preparation step

continues to face great difficulties. This work proposes an algorithm

that automates preparation steps and generates features using do-

main knowledge represented in entity-relationship diagrams, while

also defining a set of operators that can be applied to distinct kinds

of data. The work is validated with a case study composed of several

datasets with ER models, showing improvements in model perfor-

mance over existing AutoML tools such as auto-sklearn, while also

having lower processing times.

KEYWORDS
feature engineering, feature generation, AutoML, domain knowl-
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1 INTRODUCTION
Throughout the years, the amount of data that is collected and

processed has increased exponentially. Treating data manually has

become intractable, which is why development in machine learning

(ML) has also increased massively. In this era of Big Data, the more

data that can be processed by a system, the better the information

that can be retrieved for it and the more robust it can get. Processes

for turning raw data into functional knowledge have been defined

and refined into what is known nowadays as Data Science.
This growth is making data science andmachine learning expand

in domains, as companies and industries race to use data-driven

approaches to find the best insights. This is leading to companies

not having enough data scientists that have the necessary amount

of experience needed to deal with this amount of data [22]. To

counteract this, research is inclining towards the automation of the

data science pipeline, to be able to gather valuable insights without

the need for human intervention. These AutoML tools can be a

solution to the high demand and low supply of data scientists, and

are already tackling important parts of the pipeline, such as model

selection and hyper-parameter optimization.

However, the success of ML algorithms depends mainly on the

quality of the data preparation performed on it. This is a crucial step

of the pipeline which occupies 70% to 80% of the time spent on the

knowledge discovery (KDD) process. Current AutoML solutions

still lack quality in feature engineering and feature generation

in particular, with simple or no solutions. This is mostly due to

the frameworks staying domain agnostic, employing black-box

approaches that work for a variety of data types and datasets, and

therefore do not allow for the exploration of available domain

knowledge, which can lead to some distrust among the data science

community over AutoML methods [25].

Recognizing that harnessing domain knowledge improves the

KDD process [1], we argue that representing knowledge and ex-

ploring it through automation tools to increase the information that

can be extracted from datasets is beneficial. We propose a method-

ology for automating the data preparation step, including feature

generation, by exploring domain knowledge expressed in an entity-

relationship (ER) diagram. We also propose DANKFE, an algorithm

that automatically generates variables from the diagram. The algo-

rithm receives a diagram and a dataset, whose variables correspond

to entities in the diagram and based on each relationship described,

it generates a new variable, following the parameters imposed in

the diagram. To ease the representation of domain knowledge, we

also present a set of possible operations that can be applied with

the algorithm.

The work will be validated both in its efficacy and efficiency,

using a case study composed of several public datasets where an

ER diagram was created for each, representing domain knowledge.

The baseline, preprocessed and extended versions of each dataset

were evaluated both in time and performance with the best classi-

fiers trained over each version, with a number of ML models. All

versions were also compared with a popular AutoML framework,

auto-sklearn [7] over the original dataset. The proposed algorithm

was also studied in its scalability. Results show an improvement

both in performance and in computational cost, due to the genera-

tion of useful domain-specific features, compared to methods that

do not use any domain knowledge.

This document is structured as follows: in section 2 we review

related works and the necessary background. Section 3 states the

problem and section 4 presents our solution. The work is then

evaluated in section 5 and conclusions are drawn in section 6.

2 BACKGROUND
Knowledge Discovery in Databases (KDD) is the predecessor term
to what is nowadays usually called data science, and it represents

the entire process of extracting and using valuable information

from raw data. The process begins with understanding the domain

and defining a goal, followed by finding a dataset. The data is

then cleaned and preprocessed and manipulated through feature
engineering. After having the right variables to describe the data, a

goal is then matched to the dataset, specifying the task to perform

(classification, regression, clustering...), from which results a model.
The process is then repeated iteratively, until the model is good



enough to be deployed into production, documented and further

optimized.

Features are the variables describing the data, and in order to

ensure that our models are able to achieve strong results, they are

transformed, reduced and extended. Feature selection techniques

remove redundant and irrelevant variables, avoiding an exceed-

ing number of features, which can lead to overfitting and high

variance [11]. The data can also be rearranged in some new space

[17] through supervised or unsupervised methods, where the vari-

ables are combined or transformed from the original space to a

new one. This is known as feature extraction. Variables can also be

added to the original dataset, either by exploring or not domain

knowledge. Unlike feature extraction, feature generation analyzes

relations among features, augmenting the feature space [17].

Feature engineering is usually the most time-consuming step

of the KDD process [26], since it requires human interaction and

intuition to obtain the best results. This can be subjective, costly

and limits the process’s repeatability. To counteract this, there have

been numerous works on automating feature generation, with or

without the use of domain knowledge to improve induction. With-

out domain knowledge, feature generation can follow a data-driven
approach, that only uses the input data for guidance, and works by

applying operators to features (such as logarithm, exponential or

extraction of parts of a value, e.g. year and month from a date), by

combining features of the same data types through n-ary operators

(such as sum and average), or making aggregations (for example

count, max, min) [12]. Hypothesis-driven approaches use an induced
hypothesis for ranking the new features accordingly. The majority

of these methods use Decision Trees [19]. Other methods for feature

generation without domain knowledge have been used, namely: hi-

erarchical greedy search [15], neural networks [27], reinforcement

learning [14],or genetic programming [18].

Several works have been published throughout the years re-

searching the incorporation of domain knowledge into feature

generation. This knowledge does not need to be complete, as it

has been proven that fragmentary knowledge can still be applied

for narrowing down the feature space [3]. These approaches range

from using domain knowledge from experts [19], to the embedding

of that knowledge into dedicated algorithms [20] or by exploring

external knowledge representation formalisms. Some authors used

a graph-based language for feature generation in linked data, by

querying the relations inside the data. Those frameworks allow

for extracting information from knowledge bases such as YAGO

and DBPedia [2, 10]. There are also examples of feature generation

regarding textual data [9]. Other approaches use already available

knowledge repositories, such as ontologies, finding candidate terms

that match the dataset to increase the feature space [8, 24].

The increased interest on automating the KDD process led to

a huge increase in AutoML frameworks in recent years, which all

have the goal of returning the best approach for a dataset with as

little human intervention as possible [13]. In this context, Auto-

sklearn [7] uses embeddings, clustering, matrix decomposition and

one-hot encoding, as well as meta-features. Auto-Gluon [5] only

uses simple data preprocessing techniques, as well as H2O [16].

TPOT [23] uses meta-features and polynomial combinations.

We can see that AutoML still has much room to improve, es-

pecially in feature generation based on domain knowledge. The

inclusion of this knowledge into AutoML systems could help im-

prove its adoption, seeing that giving data scientists the opportunity

to incorporate domain knowledge into their workflow could lead to

less skepticism around automated frameworks, as well as enabling

them to retrieve more useful information.

3 PROBLEM STATEMENT
As seen before, the desire of exploring domain knowledge across

the KDD process is not new, and has been pursued since its origins

[1]. However, the different approaches proposed along time did not

grasp enough quality to be generally adopted. We can distinguish

two main approaches:

• Embedding the domain knowledge in the mining algorithms

themselves. While these algorithms are undoubtedly more

effective since the knowledge is directly linked with the

algorithm, they suffer the downside of not generalizing well,

requiring a different algorithm for each problem, making it

difficult to adapt to new situations.

• Using general algorithms which explore external knowledge

sources. This approach is much easier to generalize for mul-

tiple problems, but depends on the availability of knowledge

bases and the need for them to be expressive enough to

represent the domain expertise.

Since our problem is to incorporate the use of domain knowledge

for automatic machine learning, which strives to be as general as

possible (through the use of domain agnostic methods), the best

approach is the latter, creating an algorithm capable of exploring

external knowledge and using it to augment the feature space.

Having chosen an approach, we now need to choose a way to

represent knowledge. This knowledgewill be represented as specific

attributes and relationships among the concepts in the domain,

which depending on their properties, can lead to the creation of

new variables.

To our knowledge, ontologies are the most expressive of those

formalisms, but their definition for each domain requires significant

efforts as there needs to be a clear definition of how the axioms

inside are matched to the dataset. Also, the lack of availability of

semantically rich datasets means that there are not many ontologies

ready to use. While this availability continues to be a mirage, a

more available alternative is to make use of databases instead of

knowledge bases.

Databases are indeed the most usual data sources, and they are

usually designed through ER diagrams, formalized as relational

schema a posteriori. ER diagrams have three main elements: rectan-

gles used to define concepts, named entities, ellipses for attributes
and diamonds for relationships among concepts. Since these dia-

grams represent the majority of the elements expressible through

ontologies, we may say they are simplifications of those formalisms.

As a matter of fact, ER diagrams are just not expressive enough to

represent axioms. Nevertheless, they are frequently used in data-

base design which guarantees their availability for a large number

of situations, with plenty of experts which are able to design them.

Having studied the best approach for the algorithm and the

method for representing the knowledge, we can now present the

problem statement in this new context:
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Given a dataset and a corresponding ER diagram, create a new
dataset by transforming and extending the original one, through the
exploration of the knowledge expressed in the diagram.

Before proceeding with the algorithm analysis, we need to spec-

ify how the ER diagram and the dataset are related to each other.

Since a dataset is solely described by a set of variables, it needs to

be able to represent those variables. The problem arises in choos-

ing how to represent them, which can be done either through the

entities themselves or through attributes that characterize the en-

tities. This is known as the reification problem [21], and since we

want to be able to manipulate the existing variables to create new

ones, we choose to represent every variable as an entity, in order

to reason and talk about them. In this manner, the ER diagrams

have to represent all existing variables as entities, and since new

variables result from the combination of existing ones, they have

to be represented through relationships.

We are now ready to define an ER diagram in our context:

Definition 3.1. An ER diagram is a tuple KB=(E, R), where E is

the set of entities and R is the set of relationships among the

entities in E.

Moreover,

Definition 3.2. Given an ER diagram, KB = (E,R) as defined
before, and a dataset D described by a set of d variables, F =

{𝑣1, ..., 𝑣𝑑 }: ∀𝑣 ∈ F ∃𝑒 ∈ E: 𝑒 corresponds to 𝑣 .

In order to explore such diagrams, we translate them into JSON

files, following a predefined structure. JSON is a standard text-based

format for storing and transmitting structured data, used in plenty

of web applications. Other formats could be used, including XML,

RDFS and OWL, to name a few. Independently of the choice, the

specification of the ER elements must follow a strict definition.

Each entity in an ER diagram is characterised by its name, used as
an identifier, its type to help on determining the possible operations

to perform over it and a description optionally used to clarify any

additional information about the entity.

As relationships specify the new variables to generate, they have

a more extensive definition. Each relationship in an ER diagram

is characterised by its name again used as an identifier, but now

also used for naming the new variable to generate, inputs for speci-
fying the list of entities that make up the relationship, operations
corresponding to the sequence of operations to perform over its

inputs to generate the new variable and the constraints its inputs
have to satisfy to make the generation possible. Optionally, it may

include a groupby parameter specifying the variable along with

an aggregation may be made and condition for specifying which

records to aggregate.

3.1 Operations
With this schema, since the operation or operations used to gener-

ate a new variable are specified inside the diagram, the complication

of understanding each operation arrives. In order to be possible

for the algorithm to understand and generate variables with all

imaginable operations, a decoder would be needed inside the al-

gorithm, that would ideally translate the operation specified into

a function. Unfortunately, this would add enormous processing

time and complexity to the solution. To mitigate this, we propose a

set of possible operations types that can be used to generate new

variables. These types work as "relationship templates" that the

algorithm is able to interpret and calculate, therefore creating new

variables for the dataset.

These types of operations span a large range of possible opera-

tions, which can be specified in the ER diagram. We propose the

following types:

• Decomposition operations: any operation over a single record,

described by a single variable, that extracts some component

from its value. Examples of these operations are the decom-

position of a date into its components (year, month, day),
decomposition of strings that follow certain patterns (first-
name, surname), among others.

• Algebraic operations: any mathematical operation over a

single record, described by one or more variables. Examples

of such operations for a single variable are absolute, square
root, division, logarithm for two variables, and sum, product
for any number of variables.

• Mapping operations: any operation over a single record, that

maps the value in one variable to another value, possibly

from different types. Examples of these operations are map-

ping if a date is a holiday or which weekday it is. Comparing

the value of a variable against some threshold or if it is

equal/different from another value can also be considered a

mapping operation.

• Aggregation operations: any operation to be applied over

a set of records. Examples of these operations are sum, av-
erage, max, stdev applied over a set of records, that satisfy

some imposed condition similar to the ones achieved with a

GROUPBY clause in an SQL query.

• Composition operations: a sequence of operations to be ap-

plied one after the other, as a mathematical composition of

functions. This allows for multiple different operations to be

applied for the generation of a variable. An example is ex-

tracting the nr_months that have passed from two dates, first

by subtracting the two dates, which may return the number

of days between them, and taking that result, converting it

into the number of months.

From these operation types, two different procedures can be

distinguished - the generation of variables with or without aggrega-

tions, as specified by the GROUPBY parameter. We call aggregation-
based generation the first one, and record-based generation the

second approach. It is useful to differentiate both approaches since

decomposition, algebraic and mapping operations do not require

information about any other record besides the one where the

operation is being applied, while aggregation operations require

information about other records in which the aggregation is to be

made.

Both procedures can be defined using the previous logic. Con-

sidering D to be a dataset, F = {𝑣1, ..., 𝑣𝑑 } the set of d variables

describing D and KB=(E, R) an ER diagram, as defined before.

Definition 3.3. Let 𝑟 = (Θ,Π,Ψ, ∅, 𝑛𝑢𝑙𝑙) be a record-based re-

lationship in R, with Θ ⊂ E the set of input variables, Π the

sequence of operations, and Ψ the set of constraints to satisfy.

The procedure generates a new variable 𝑣𝑟 , and each record 𝑥 =
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𝑥1 ...𝑥𝑑 in the dataset D becomes 𝑥 ′ = 𝑥1 ...𝑥𝑑 , 𝑥𝑟 , with 𝑥𝑟 filled as

follows:

(1) if ∃\ ∈ Θ ∃𝜓 ∈ Ψ: 𝑥\ ̸ |= 𝜓 , a 𝑛𝑢𝑙𝑙 value is assigned to 𝑥𝑟 ;

(2) otherwise,

(a) 𝑥𝑟 becomes 𝜋 (𝑥\1 ...𝑥\𝑘 ), where 𝜋 is the last operation in

Π and (𝑥\1 ...𝑥\𝑘 ) is the projection of 𝑥 along each variable

\𝑖 ∈ Θ;
(b) if |Π | > 1 then 𝑥𝑟 becomes 𝜋𝑖 (𝑥𝑟 ) with 𝜋𝑖 being each one

of the 𝑖𝑡ℎ with 0 < 𝑖 < 𝑗 , and 𝑗 the number of operations

in Π, from the ( 𝑗 − 1)𝑡ℎ to the first one.

It is also possible to define aggregation-based procedures in a

similar way:

Definition 3.4. Let 𝑟 = (Θ,Π,Ψ,Δ, 𝜙) be a aggregation-based
relationship in R, with Θ ⊂ E the set of input variables, Π the

sequence of operations,Ψ the set of constraints to satisfy, Δ the

set of variables to specify the aggregation and 𝜙 the condition
to constraint the aggregation.

The procedure generates a new variable 𝑣𝑟 , and each record 𝑥 =

𝑥1 ...𝑥𝑑 in the dataset D becomes 𝑥 ′ = 𝑥1 ...𝑥𝑑 , 𝑥𝑟 , with 𝑥𝑟 filled as

follows:

(1) if ∃\ ∈ Θ ∃𝜓 ∈ Ψ: 𝑥\ ̸ |= 𝜓 , a 𝑛𝑢𝑙𝑙 value is assigned to 𝑥𝑟 ;

(2) otherwise,

(a) a temporary variable 𝛾 is created for storing the projec-

tions of each 𝑥 along each variable \𝑖 ∈ Θ (𝑥\1 ...𝑥\𝑘 ) for
all records in D ′ satisfying the condition 𝜙 , and aggre-

gated according to all variables 𝛿 ∈ Δ;
(b) then 𝑥𝑟 becomes 𝜋 (𝛾), where 𝜋 is the last operation in Π;
(c) if |Π | > 1 then 𝑥𝑟 becomes 𝜋𝑖 (𝑥𝑟 ) with 𝜋𝑖 being each one

of the 𝑖𝑡ℎ with 0 < 𝑖 < 𝑗 , and 𝑗 the number of operations

in Π, from the ( 𝑗 − 1)𝑡ℎ to the first one.

In this way, variables that require aggregation operations can

be generated via an aggregation-based procedure, and all other

specified operations can be generated via a record-based procedure.

3.2 Illustration
In order to better understand the algorithm proposed, we can con-

sider as example the knowledge base represented by the ER diagram

represented in fig. 1.

Figure 1: Example of the ER diagram for feature generation.

current_date cases deaths country population first_date high_risk_2w
2021/02/23 1032 63 PT 10295909 2020/03/03 TRUE

2022/02/14 20360 78 UK 10718565 2020/02/23 TRUE

2021/08/12 223 2 PL 37958138 2020/03/07 FALSE

2020/06/11 22 0 AT 8901064 2020/02/26 FALSE

Table 1: Illustration dataset, labeled by ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘_2𝑤

current_date year season nr_months ratio cases_100k current_risk sum_2w sum_2w_100k
2021/02/23 2021 winter 11 16.4 10.023 FALSE 33692 327.237

2022/02/14 2022 winter 24 261.0 189.951 TRUE 284573 2654.954

2021/08/12 2021 summer 17 111.5 0.587 FALSE 2453 6.462

2020/06/11 2020 spring 3 null 0.247 FALSE 471 5.292

Table 2: Generated variables, indexed by current_date.

Additionally, we also consider the data on table 1, which corre-

sponds as the input dataset D to the algorithm, which is described

by the set of variables F={𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑎𝑡𝑒 , 𝑐𝑎𝑠𝑒𝑠 , 𝑑𝑒𝑎𝑡ℎ𝑠 , 𝑐𝑜𝑢𝑛𝑡𝑟𝑦,
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑓 𝑖𝑟𝑠𝑡_𝑑𝑎𝑡𝑒 , ℎ𝑖𝑔ℎ_𝑟𝑖𝑠𝑘_2𝑤 }.

We can see that all variables in F are represented in the ER

diagram as entities (light blue rectangles). Besides the entities that

map to each variable, there are also eight relationships (green dia-

monds) and eight additional entities (dark blue rectangles), which

correspond to the variables that will be generated by the algorithm.

Each relationship is linked to a set of entities, where the lighter

ones correspond to the inputs, and the darker ones to the output

(the variable that will be generated).

Table 2 summarizes the variables generated by our algorithm

when applied to the data in D, shown in the previous table, and

using the ER diagram in fig. 1. First, we find year resulting from a

decomposition operation, computed by extracting the year from

current_date. Similarly, we have season that maps the current_date
to the yearly season. Algebraic operations are illustrated through

ratio (deaths divided by cases), nr_months, (difference in months

between current_date and first_date) and cases_100k (number of

cases divided by the population, multiplied by 100k). All of these

variables only use record-based operations, since the new variables

only depend on values from variables of that same record.

On the other side, sum_2w is an example of a variable resulting

from an aggregation operation, resulting from summing the num-

ber of cases from the last two weeks for the country under analysis

(the country for the record whose value is being filled).

Finally, sum_2w_100k and current_risk could be seen as composition
if we had omitted the sum_2w and cases_per_100k, respectively. Ac-
tually, they are just a division by the population and a comparison

to a threshold (120 cases per 100k), after computing those previous

variables.

Now that the problem and a black-box view of the algorithm

has been explained and illustrated, we can now explain how the

proposed algorithm itself works and the benefits and trade-offs of

each iteration.

4 DANKFE ALGORITHM
The DANKFE (DomAiN Knowledge based Feature Engineering)

algorithm transforms the relationships between entities into new

variables, when presented with an ER diagram and a dataset. The

algorithm is presented in various versions that trade-off speed with

versatility of operations that it the version is able to deal with.
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4.1 DANKFE-I
The first version of the algorithm, DANKFE-I, is described in algo-

rithm 1 and works as follows: the relationships are read from the

ER model, and stored as a queue to be processed. The relationships

are processed one by one, if the input variables for them are already

available. If part of the input is not yet available (meaning that

at least one of the input variables is not originally in the dataset

and still in the queue to be processed), that relationship is sent to

the end of the queue. If all the inputs are already available (have

all been generated or are originally present in the input dataset),

the list of operations specified in the diagram for that relationship

is applied to any row in the dataset that satisfies the constraints

imposed for the relationship. Whenever any row does not meet the

constraints, a null value is imputed. When all rows are processed,

the relationship is removed from the queue. The algorithm ends

when the processing queue is empty.

Algorithm 1 DANKFE-I algorithm

procedure DANKFE-I(D, F , KB)
𝑞𝑢𝑒𝑢𝑒 ← KB[′𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ′]
while 𝑞𝑢𝑒𝑢𝑒 is not empty do

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑝𝑜𝑝 (𝑞𝑢𝑒𝑢𝑒)
𝑖𝑛𝑝𝑢𝑡𝑠 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛[′𝑖𝑛𝑝𝑢𝑡𝑠 ′]
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ← 𝑔𝑒𝑡_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛[′𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ′])
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛[′𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ′])
if 𝑖𝑛𝑝𝑢𝑡𝑠 ∈ F then

𝑎𝑟𝑔𝑠 ← D[𝑖𝑛𝑝𝑢𝑡𝑠]
for 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 in 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

for 𝑟𝑜𝑤 in 𝑎𝑟𝑔𝑠 do
if 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑠 (𝑟𝑜𝑤, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) then

𝑟𝑜𝑤 ← 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑟𝑔𝑠)
else

𝑟𝑜𝑤 ← 𝑛𝑢𝑙𝑙

end if
end for

end for
else

𝑞𝑢𝑒𝑢𝑒 ← 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑞𝑢𝑒𝑢𝑒)
end if

end while
end procedure

This version of the algorithm abides by definition 3.3, meaning it

can perform record-based operations, since it processes the dataset

one record at a time. If a relationship has multiple operations to

be performed (composition operation), the algorithm applies each

operation in the list of operations in reverse (similarly to a com-

position of operations) sequentially over the corresponding inputs

(the values of the input variables defined in the relationship), re-

turning the output value (assigned to the given record), processing

the defined operations row by row.

The operations defined in section 3.1 are defined similarly to a

Production Rule System (PRS), an if-then system which interprets

the operation needed to generate a new value for a relationship,

triggering the necessary actionwith the values of the inputs given to

the algorithm from that relationship. For example, if the algorithm

is processing a relationship found in the ER diagram that wants

to create the year variable, where the input is current_date and
the output is year, the algorithm’s PRS senses if the operation

defined in the relationship is the operation used to extract the year

from the input from the list of operations, triggering the action

that completes that calculation and returns only the year from the

date, which is then written as the new value for the record being

processed for the new variable. This process is then repeated for all

rows that pass the possible constraint defined in the relationship,

and in the end, the year variable is complete and part of the dataset.

Since there is no row dependence in record-based operations,

meaning that these operations only require values of the row being

processed by the algorithm, it can be done very efficiently using

the Pandas function apply and using lambda functions in Python.

4.2 DANKFE-II
The second iteration of DANKFE extends the previous version

by allowing the user to define aggregation-based operations, as

described in definition 3.4. The algorithm is defined in algorithm 2.

Algorithm 2 DANKFE-II algorithm

procedure DANKFE-II(D, F , KB)
𝑞𝑢𝑒𝑢𝑒 ← KB .𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠
while 𝑞𝑢𝑒𝑢𝑒 is not empty do

𝑟𝑒𝑙 ← 𝑝𝑜𝑝 (𝑞𝑢𝑒𝑢𝑒)
if 𝑟𝑒𝑙 .𝑖𝑛𝑝𝑢𝑡𝑠 ⊄ F then

𝑞𝑢𝑒𝑢𝑒 ← 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑒𝑙)
else

for 𝑟𝑜𝑤 in D do
if 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑠 (𝑟𝑜𝑤, 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) then

if 𝑟𝑒𝑙 .𝑔𝑟𝑜𝑢𝑝𝑏𝑦 exists then
𝑟𝑜𝑤 ′ ←

𝑔𝑒𝑡_𝑟𝑜𝑤𝑠 (𝑟𝑜𝑤,D[𝑟𝑒𝑙 .𝑖𝑛𝑝𝑢𝑡𝑠], 𝑟𝑒𝑙 .𝑔𝑟𝑜𝑢𝑝𝑏𝑦, 𝑟𝑒𝑙 .𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
else

𝑟𝑜𝑤 ′ ← 𝑟𝑜𝑤

end if
for 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 in reverse(𝑟𝑒𝑙 .𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) do

𝑟𝑜𝑤 ′ ← 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑟𝑜𝑤 ′)
end for

else
𝑟𝑜𝑤 ′ ← 𝑛𝑢𝑙𝑙

end if
D ′ ← D ′ ∪ {𝑟𝑜𝑤 + 𝑟𝑜𝑤 ′}

end for
end if

end while
return D ′

end procedure

DANKFE-II works in a similar fashion to DANKFE-I when gen-

erating features that only require record-based operations. If the

relationship requires an aggregation operation (specifies a groupby
parameter, then the rows that match the specified condition to per-

form the aggregation need to be collected. Only after this collection

it is then possible to apply the list of operations which create the

new values for that variable, for all the records that specify the
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imposed constraints. The operations are applied as a composition of

functions, beginning with the last one and sequentially applying the

following ones. Whenever any row does not meet the constraints, a

null value is imputed. When all rows are processed, the relationship

is removed from the queue.

The algorithm’s PRS interprets the operation needed to generate

the value, but for aggregation-based operations it also has access

to the collected rows, triggering the calculation and outputting

the calculated value to new variable of that record. For example, if

the algorithm is processing avg_temperature_week_per_city, with
current_date and temperature as inputs and city as groupby, the al-
gorithm collects the rows with a similar city to that record, but only

the oneswithin oneweek. It checks that the operation is average and
after the calculation, the value is written to the new variable in that

record. The process is then repeated for all records that pass the pos-

sible constraint, until the variable avg_temperature_week_per_city
is complete.

As stated before, this version of the algorithm is an extension

of DANKFE-I, meaning it performs record-based operations in a

similar fashion, using lambda functions in Python. This version

of the DANKFE algorithm sacrifices some processing speed (since

the process of collecting rows for generating variables that require

aggregation-based operations takes longer time to run), but it adds

the ability of performing these kinds of operations, which can

greatly benefit the datasets depending on the available domain

knowledge.

4.3 DANKFE-III
As seen before, feature engineering (and subsequently, feature gen-

eration), is only a part of a pipeline of operations that turn raw data

into possibly important information, known as the KDD or data

science process. AutoML frameworks that automate this pipeline

are currently not spending much time or resources into augmenting

datasets, even less with the use of domain knowledge, but rather

spending more computation in other parts such as data preprocess-

ing, model selection and hyper-parameter optimization.

Similarly to how these frameworks work, to be able to reach

the most robust models, other parts of the KDD process can be

coupled with the DANKFE algorithm to yield the best results. The

algorithm can be encapsulated into a new function that deals with

data preparation before and after generating the features, before

running ML models.

Additionally, not all variables require domain knowledge to be

generated. Simple record-based operations such as decomposition

of dates or aggregation-based operations such as a descriptive statis-

tic of a numeric variable (mean, median, maximum, minimum, etc)

can be easily generated by checking in which existing variables we

are able to apply these operations (easily accomplished by checking

their type in the ER model) and by doing so, adding these new

relationships to the ER model, thus creating new variables. For this

to be possible, there needs to be a template where these relation-

ships are described, with the necessary operations for creating this

variables, leaving only the input, output and groupby parameters

empty. An example of a variable template is in fig. 2 (left). This

template relationship is similar to the relationships found in the

ER models, but with those three parameters missing. The user can

choose which automatic variables are to be created, and these will

be added to the ER model with the empty parameters filled in.

The created pipeline can be seen in fig. 3. We can see that data

preprocessing techniques can be applied before the generation of

features with operations such as missing value imputation, dummi-

fication/discretization, label encoding, etc. Afterwards, automatic

variables can be added to the ER model if required by the user. Then,

the DANKFE algorithm runs (either the first or second version de-

pending on whether the ER model has relationships that create

variables which require aggregation-based operations), and finally

additional processing can be applied to the data, such as scaling or

balancing of variables, if chosen by the user.

To implement this, a configuration JSON file is required at the be-

ginning, as well as the dataset and ER model, where the preparation

techniques can be programmed per user choice. The configuration

file can be seen in fig. 2 (right). The user can specify whether the

system checks missing values, scaling, balancing and if automatic

features such as decomposition of dates and aggregated summary

of numeric variables (max, min, average, standard deviation and

median) can be added (given a groupby variable). The configuration

file changes the parameters in the template relationships and intro-

duces these new relationships inside the ER model, being added to

the domain knowledge, so that DANKFE can generate them. From

the example in fig. 2 (right), the input dataset would be cleaned

and checked for missing values, dates would be decomposed auto-

matically and a total of 10 aggregation-based variables would be

added (5 for the summary of cases per country and another 5 for

the summary of deaths per country). Scaling and balancing would

be performed after the features are generated.

Figure 2: Example of automatic variable template (left) and
configuration file (right).

Figure 3: Data preparation and feature generation pipeline.

The configuration file allows the user to select some techniques

for each data preparation step, depending on their suitability for the

task. Missing values can be imputed using the median for numeric

variables and the mode for symbolic variables. A label encoder can

also be used to turn symbolic variables into ordinal ones. Scaling

can be done either by z-score or minmax, and balancing is done

via an hybrid approach that depends on the proportion of the data,
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where it tries to balance the records of each class to 25000. This

allows for the models to continue to reach strong results with a

lower number of records in a more distributed fashion, which helps

in some ML models.

While the DANKFE-III system does not change how the features

are generated, it helps automate the entire data preparation step,

which can be very beneficial for the later data mining stage. This

way, some features can still be generated even with very little

domain knowledge (only knowing which variables are dates or

numerical), which still augments the feature space and possibly

improve the amount of information that ML models can extract. It

also facilitates data cleaning and preprocessing, ensuring that the

enhanced datasets are ready for data mining.

5 CASE STUDY
In order to validate our proposal, we compared the quality of clas-

sification models trained over a case study composed of various

datasets, both in their baseline and extended versions with the

generated features from each algorithm. The datasets spread over

several domains, and an ER diagram and target variable were cre-

ated for each one. Covid-based datasets were explored through the

ER diagram on fig. 1, with the others following similar reasoning.

Besides performance, we studied the time spent training and pre-

dicting models as well as the time spent generating the variables,

and how important they were for the models. Additionally, the

scalability of the DANKFE algorithm was also studied, as well a

comparison of all results with running the same case study through

auto-sklearn [7], one of the most popular AutoML frameworks.

Since most datasets were unbalanced (except for DANKFE-III

where preprocessing techniques were applied), AUC [6] was used

as the leading metric. Since the goal of the solution is to improve

AutoML frameworks with the use of domain knowledge and feature

generation, the behavior of model evaluation was made similar to

the behavior of AutoML frameworks. Several training techniques

(Naive Bayes, KNN, Decision Trees, Random Forests and Gradient

Boosting) were used to find the 10 best models trained over an

equal number of random data partitions, to minimize variance.

For each ML model, the hyper-parameters were tuned using

Grid Search, which explores every defined combination returning

the best result. Since this process can be very time-consuming, if

a model achieved a strong enough result with a combination of

hyper-parameters (over 98% accuracy and 90% F1-Score), then it

would return that specific combination. The 10 optimized models

for each dataset were then averaged.

5.1 DANKFE-I Results
The DANKFE-I algorithm cannot exploit row dependencies, there-

fore it only works with record-based operations. The results ob-

tained from the extended datasets were compared to the baseline

where no features were generated, and no preprocessing was done

on either version.

Results in fig. 4 (left) show the average AUC for all datasets,

for each ML model. We can see that feature generation guided by

domain knowledge improved the performance over the baseline.

The models that have benefited the most are KNN and Gradient

Boosting, with an increase in AUC in almost 5 percentage points

Figure 4: Quality of models (left) and processing times (right)
for different machine learning algorithms.

(pp). It is also interesting to see that auto-sklearn achieves a result

very similar to the original dataset without feature generation,

and KNN and Gradient Boosting achieve in average results above

this framework, by generating variables that require record-based

operations.

Fig. 4 (right) shows the average time per record spent by each

model, including the time spent running DANKFE-I for extending

the dataset. We can see that the time spent in feature generation and

model training has a small increase, which stays somewhat constant

independently of the model used, at around 10 to 20 milliseconds

per record, which is much lower than auto-sklearn, which takes

the fixed time of one hour or around 300 milliseconds per record.

The efficacy of the DANKFE algorithm can also be evaluated by

measuring the impact that the generated features had on the models.

Fig. 5 shows the average feature importance for Decision Trees,

Random Forests and Gradient Boosting. The generated features

(blue) have made the most impact in COVID-based datasets, making

up almost all the importance given by the algorithms, and they also

benefited the other datasets, especially in Random Forests.

Figure 5: Average feature importance for original and gen-
erated variables for Decision Trees (left), Random Forests
(middle) and Gradient Boosting (right).

Figure 6: Time comparison (left) and amount of generated
features (right) per type of operation.

The type of variable generated also influences the time spent, as

seen on 6 (left). Since all record-based operations are performed

using the apply function in the Pandas library, and they do not

require any additional rows, their time is somewhat similar, only

depending on the amount of operations performed per dataset. The
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distribution of operations per dataset can be seen on fig. 6 (right).

Decomposition and mapping operations take similar time to run,

with algebraic operations either taking less or more time than the

other two depending on the dataset.

5.2 DANKFE-II Results
The DANKFE-II algorithm, which introduces aggregation-based op-

erations, was evaluated in the same manner as the previous version.

Since it also does not feature any data preprocessing techniques on

the dataset, the baseline was also not preprocessed.

Figure 7: Quality of models (left) and processing times (right)
for different machine learning algorithms.

As seen in fig. 7, the addition of aggregation-based operations

leads to an overall increase in results for all algorithms except KNN.

Naive Bayes and Decision Trees benefited the most, improving 5 pp.

On average, model results with DANKFE-II surpass auto-sklearn,

with a maximum difference of 4.6 pp. for Gradient Boosting.

In terms of time spent, features that require aggregation-based

operations can take much longer to generate compared to ones

that do not need them, due to the fact that they require rows to be

collected and aggregated, which can take a longer time to run. Nev-

ertheless, the time spent per record still remains somewhat constant

independently of the algorithm used, taking approximately 15% of

the time spent by auto-sklearn for the entire process (generation +

model selection and optimization).

Aggregation-based operations have also caused a big impact in

feature importance for the machine learning models. Fig. 8 shows

that apart from the Crime dataset, the generated features were given

the most importance by far, in Decision Trees, Random Forests and

Gradient Boosting. The largest difference compared to the previous

version of the algorithm can be seen in the AQ dataset, where

aggregation-based operations became the most important for the

models.

As stated before, aggregation-based operations take longer to

run, depending on the amount of records needed for aggregation

before the value for the new variable is calculated. Fig. 9 (left) con-

firms this. Even though only the AQ and GCCD datasets have the

majority of generated features needing aggregation-based opera-

tions, as seen on fig. 9 (right), this type of operation is the one that

takes longer to run.

5.3 DANKFE-III Results
DANKFE-III couples the feature generation algorithm inside a data

preparation pipeline, which ensures the datasets not only benefit

from being enriched with the use of domain knowledge, but also

improve on possible pitfalls that can appear while data mining, such

Figure 8: Average feature importance for original and gen-
erated variables for Decision Trees (left), Random Forests
(middle) and Gradient Boosting (right).

Figure 9: Time comparison (left) and amount of generated
features (right) per type of operation.

as being unbalanced, having data with different scales, having miss-

ing values which require imputation, nominal data which requires

encoding, etc. Some of these issues can decrease the performance

of ML models, while others can even prevent them from running

and need immediate fixing.

For fairer comparison, the baseline datasets were also prepro-

cessed, using the same scaling and balancing techniques in order

to study the impact of the feature generation algorithm alone.

Fig. 10 shows that adding data preprocessing techniques can

greatly increase the performance of models, as seen in the prepro-

cessed baseline (Base + Prep), which depending on the model can

have better AUC than the results from running DANKFE-II. How-

ever, adding these techniques to DANKFE-II also results in more

robust models, with higher scores than the preprocessed baseline

for all models, especially in Naive Bayes with an increase of over

10 pp. Compared to auto-sklearn, DANKFE-III achieves a higher

score in all models expect Naive Bayes, with the highest score being

Gradient Boosting with an increase of 5.3 pp.

In terms of time spent per record, DANKFE-III has a small in-

crease compared to the previous iteration. This is due to the larger

amount of variables generated by automatic operations, such as

decomposition of dates and summaries of numeric variables, as

well as preprocessing techniques. Fig. 11 shows that these values

stay constant independently of the model used, at around 50 mil-

liseconds per record, which is a substantial decrease from the 300

milliseconds by auto-sklearn, while also achieving stronger results.

Similarly to DANKFE-II, all models give larger importance to

generated features (blue) instead of the original ones (orange), ex-

cept for Decision Trees and Gradient Boosting in the GCCD dataset

and Random Forests in the AQ dataset, which can be seen in fig. 12.

Compared to the previous version, all datasets havemore aggregation-

based variables due to the automatic generation of the summary

for numeric variables, which can be seen on fig. 13 (right). The

larger amount of these variables contributes to a larger time spent

in generating them, which can be seen in 13 (left).
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Figure 10: Quality ofmodels (left) and processing times (right)
for different machine learning algorithms.

Figure 11: Quality ofmodels (left) and processing times (right)
for different machine learning algorithms.

Figure 12: Average feature importance for original and gen-
erated variables for Decision Trees (left), Random Forests
(middle) and Gradient Boosting (right).

Figure 13: Time comparison (left) and amount of generated
features (right) per type of operation.

Finally, to test how the DANKFE algorithm works in terms of

scalability, different samples of a larger GCCD dataset (containing

135k records) were taken with different sizes, generating the same

set of variables for each one.

Fig. 14 (left) shows the total amount of time spent on feature

generation when varying the dataset size, including reading the

Figure 14: Scalability study: total time on variable generation
(left) per types of variables generated (right).

original dataset and writing the extended version. It is clear that the

algorithm presents a linear growth in time depending on the number

of records. This behavior can be further detailed in fig. 14 (right),

where we can see that compared to aggregation-based operations,

record-based ones (algebraic, decomposition and mapping) take

residual time. This evidences the trade-off between the different

iterations of DANKFE, where processing speed (and therefore time

to put a model into production, as per the KDD process) is sacrificed

to give room for more functionality and therefore models with

better performance, using potentially interesting variables that

require aggregation-based operations.

6 CONCLUSION
In this era of Big Data, where the amount of data that needs to be

processed on a daily basis is becoming intractable for the amount

of data scientists that are qualified for a specific domain, the par-

adigm of data science is being shifted, where the focus is not on

creating the best possible model for a specific problem, but rather to

make machine learning more available to the general public, while

keeping a good performance, in order to still make the most of the

benefits that come from applying the KDD process, to the large

amounts of data that companies require nowadays.

This paradigm is leading to the rapid development of AutoML

frameworks, with black-box domain agnostic approaches that achieve

good results without the need for expert data scientists (which can

lead to some mistrust in such frameworks), but do not take any

advantage of domain knowledge in the data preparation step, which

is known to improve results and the amount of useful information

retrievable from a system, since it is the most demanding part of

the workflow.

Therefore, we proposed a system that extends datasets to in-

crease the amount of information using domain knowledge stored

in an ER model. Following the KDD process, we implemented an

algorithm that is able to interpret the knowledge in the ER diagrams

and extend a given dataset, using a set of operations to augment the

feature space and possibly improve the performance of ML models

trained with that dataset. The algorithm works for every domain as

long as there is domain knowledge present in an ER model, which

is widely used in the database community. Even if there is not

much domain knowledge available, the DANKFE algorithm can be

coupled to the rest of the data preparation and feature engineering

phase of the data science workflow by automatically generating

some potentially interesting variables, as well as cleaning, scaling

and balancing the dataset.
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For evaluation, a case study composed of several datasets of

different domains was created, as well as a classification problem

and an ER model with some domain knowledge for every dataset.

Validating the algorithm in both efficacy and efficiency, results

show that feature generation through the use of domain knowledge

improves the quality of models, for all models tested (varying in

simplicity). Not only does the score improve, but also the time

spent in generation and training remains short, with DANKFE-

III spending 50 milliseconds per record on average. Compared to

a popular AutoML framework (auto-sklearn), the generation of

features yielded better results except for Naive Bayes, and while

taking at worse around 6x less time per record.

In conclusion, making use of domain knowledge could prove

very beneficial for automatic machine learning methods which

currently do not make use of it, since it is able to improve model

performance with low added complexity. It also gives data scientists

a way to continue to use their valuable domain knowledge in the

implementation of their models, which could improve the trust in

these systems.

While the DANKFE system shows strong results compared to a

recent and widely used AutoML approach, it also has some limita-

tions, as previously stated. The system is currently limited to a set

of defined operations that while span a large amount of possibilities

in terms of feature generation, it is not yet possible to generate

every single kind of feature. For this to be possible, the DANKFE

system would require a decoder that would translate automatically

the operations inside the ER model into Python functions, before

running them.

Even though it was not the main focus of our work, the data

preparation surrounding the DANKFE algorithm could also be im-

proved, by enlarging the amount of preprocessing operations that a

user can choose to perform on the data, such as dummification, type

transformations or other kinds of encoding. While results show that

the generated features tend to be considered useful by MLmodels, it

is also known that the presence of redundant or irrelevant features

can hurt models, as well as add unnecessary temporal and spatial

complexity. To mitigate this, techniques such as feature selection

or extraction, which are part of feature engineering, could also be

tested, ensuring that only relevant or important features are added

to the input dataset.

While DANKFE runs much faster than an AutoML approach, it

can still be further optimized, by generating multiple features at the

same time, given that the features follow the same constraints. The

current implementation of DANKFE only processes one feature at

a time, which can be slow if the dataset is large and especially the

generated features use aggregation-based variables. Lastly, other

knowledge representations can be tested in the future, such as

ontologies or extended ER models [4], which have the benefits of

allowing axioms and inheritances, aggregations and compositions,

respectively. While ER models are more publicly available, these

other approaches could allow for more functionalities.
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